首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses a Fundamental physics experiment that will test relativistic gravity at the accuracy better than the effects of the second order in the gravitational field strength, ∝ G2. The Laser Astrometric Test Of Relativity (LATOR) mission uses laser interferometry between two micro‐spacecraft whose lines of sight pass close by the Sun to accurately measure deflection of light in the solar gravity. The key element of the experimental design is a redundant geometry optical truss provided by a long‐baseline (100 m) multi‐channel stellar optical interferometer placed on the International Space Station (ISS). The spatial interferometer is used for measuring the angles between the two spacecraft and for orbit determination purposes. In Euclidean geometry, determination of a triangle's three sides determines any angle therein; with gravity changing the optical lengths of sides passing close by the Sun and deflecting the light, the Euclidean relationships are overthrown. The geometric redundancy enables LATOR to measure the departure from Euclidean geometry caused by the solar gravity field to a very high accuracy. LATOR will not only improve the value of the parameterized post‐Newtonian (PPN) γ to unprecedented levels of accuracy of 1 part in 108, it will also reach ability to measure effects of the next post‐Newtonian order (c−4) of light deflection resulting from gravity's intrinsic non‐linearity. The solar quadrupole moment parameter, J2, will be measured with high precision, as well as a variety of other relativistic effects including Lense‐Thirring precession. LATOR will lead to very robust advances in the tests of Fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The implication of actual cometary observations for the physical nature of comets is briefly reviewed and brings out the complete conflict with observation of the ice-dust solid nucleus model put forward in recent years as representing the fundamental structure of comets. That under increasing solar heat the nucleus develops an expanding atmosphere is incosistent with the well-established phenomenon that the comacontracts with decreasing distance from the Sun. Several comets remaining always beyond Mars have nevertheless been strongly active and produced fine tails. The some comets show at times a star-like point of light is readily explicable on the dust-cloud structure and by no means establishes that a solid nucleus exists. With the nucleus-area corresponding not to a small solid mass but to an optical phenomenon, there would be no reason to expect that it would describe a precise dynamical orbit. On the hypothesis of a nucleus, it is necessary to postulate further some internal jet-propulsion mechanism to account for the orbital deviations.In planning a space-mission to a comet, and if search for a nucleus is included, it will be of the highest importance for its success to ensure beforehand that the equipment carried with not fail to discover a kilometric-sized body if one is present, otherwise a null result could be interpreted simply as a failure of this part of the mission and not a proving the absence of any nucleus.  相似文献   

3.
There are abundant emission and absorption lines superimposed on the continuum spectra of the different solar atmospheric layers. The chemical composition and physical state of the solar atmosphere can be probed by the inversion of the profiles of these spectral lines. Due to the low density and large temperature difference in the chromosphere and transition region of the Sun, it is hard to establish the thermal dynamic equilibrium. It is necessary to adopt the theory of Non-Local Thermodynamic Equilibrium (N-LTE) to construct the corresponding atmospheric model. In this paper, the departure from the Local Thermodynamic Equilibrium (LTE) in the middle and lower atmosphere of the sun is investigated with the well-defined relative departure factor and the relevant calculations. We first make an inversion of the spectral lines formed at the different heights in the chromosphere and transition region during a total solar eclipse, to obtain the parameters of the observed spectral lines, such as the continuum source function, line source function, Doppler width, and thus the equivalent kinetic temperature. According to these line parameters obtained by the inversion, we calculate the quantitative results about the departure from the LTE at each space sampling point in the 2D field of view. Secondly, we reconstruct the 2D distributions of the radiation intensity, equivalent kinetic temperature, and relative departure factor according to the alignment of the optical fiber array in the integrated field unit (IFU) used by the telescope. The results show that there is a stronger correlation in the distributions of the temperature and relative departure factor existed in local small regions, but without evident correlation with the distribution of radiation intensity. There is an obvious difference between the distributions of the equivalent temperature and relative departure factor derived from two spectral lines, which shows a strong structurization and complexity existed in some local small regions of the solar atmosphere, and provides a new perspective for us to further understand the physics of the middle and lower atmosphere of the Sun.  相似文献   

4.
The effects of the solar radiation field on the propagation of relativistic dust grains are evaluated. It is concluded that relativistic iron grains with energies 1019 eV will melt in the solar radiation field before they reach the Earth's orbit around the Sun. However iron grains with lower energies will reach the Earth's orbit but grains travelling from the direction of the Sun will melt. This directional anisotropy or fingerprint may be used to search for relativistic dust grains in the primary cosmic rays. The fact that no significant solar system anisotropy has been detected places constraints on the hypothesis that the initiating particles of the extensive air showers are relativistic iron grains.  相似文献   

5.
Recent observations point to the presence of structured dust grains in the discs surrounding young brown dwarfs, thus implying that the first stages of planet formation take place also in the substellar regime. Here, we investigate the potential for planet formation around brown dwarfs and very low-mass stars according to the sequential core accretion model of planet formation. We find that, for a brown dwarf mass 0.05 M, our models predict a maximum planetary mass of  ∼5   M  , orbiting with semimajor axis ∼ 1 au. However, we note that the predictions for the mass–semimajor axis distribution are strongly dependent upon the models chosen for the disc surface density profiles and the assumed distribution of disc masses. In particular, if brown dwarf disc masses are of the order of a few Jupiter masses, Earth-mass planets might be relatively frequent, while if typical disc masses are only a fraction of Jupiter mass, we predict that planet formation would be extremely rare in the substellar regime. As the observational constraints on disc profiles, mass dependencies and their distributions are poor in the brown dwarf regime, we advise caution in validating theoretical models only on stars similar to the Sun and emphasize the need for observational data on planetary systems around a wide range of stellar masses. We also find that, unlike the situation around solar-like stars, Type II migration is totally absent from the planet formation process around brown dwarfs, suggesting that any future observations of planets around brown dwarfs would provide a direct measure of the role of other types of migration.  相似文献   

6.
GAIA is the 'super- Hipparcos ' satellite scheduled for launch in 2010 by the European Space Agency. It is a scanning satellite that carries out multi-colour, multi-epoch photometry on all objects brighter than 20th mag. We conduct detailed simulations of supernovae (SNe) detection by GAIA . Supernovae of each type are chosen according to the observed distributions of absolute magnitudes, and located in nearby galaxies according to the local large-scale structure. Using an extinction model of the Galaxy and the scanning law of the GAIA satellite, we calculate how many SNe are detectable as a function of the phase of the light curve. Our study shows that GAIA will report data on ∼21 400 SNe during the five-year mission lifetime, of which ∼14 300 are SNe Ia, ∼1400 are SNe Ib/c and ∼5700 are SNe II. Using the simulations, we estimate that the numbers caught before maximum are ∼6300 SNe Ia, ∼500 SNe Ib/c and ∼1700 SNe II. During the mission lifetime, GAIA will issue about 5 SNe alerts a day.
The most distant SNe accessible to GAIA are at a redshift   z ∼ 0.14  and so GAIA will provide a huge sample of local SNe. There will be many examples of the rarer subluminous events, over-luminous events, SNe Ib/c and SNe II-L. SNe rates will be found as a function of galaxy type, as well as extinction and position in the host galaxy. Amongst other applications, there may be about 26 SNe each year for which detection of gravitational waves is possible and about 180 SNe each year for which detection of gamma-rays is possible. GAIA 's astrometry will provide the SN position to better than milliarcseconds, offering opportunities for the identification of progenitors in nearby galaxies and for studying the spatial distribution of SNe of different types in galaxies.  相似文献   

7.
We show that the excellent optical and gamma-ray data available for GRB 080319B rule out the internal shock model for the prompt emission. The data instead point to a model in which the observed radiation was produced close to the deceleration radius  (∼1017 cm)  by a turbulent source with random Lorentz factors of ∼10 in the comoving frame. The optical radiation was produced by synchrotron emission from relativistic electrons, and the gamma-rays by inverse-Compton scattering of the synchrotron photons. The gamma-ray emission originated both in eddies and in an inter-eddy medium, whereas the optical radiation was mostly from the latter. Therefore, the gamma-ray emission was highly variable whereas the optical was much less variable. The model explains all the observed features in the prompt optical and gamma-ray data of GRB 080319B. We are unable to determine with confidence whether the energy of the explosion was carried outwards primarily by particles (kinetic energy) or magnetic fields. Consequently, we cannot tell whether the turbulent medium was located in the reverse shock (we can rule out the forward shock) or in a Poynting-dominated jet.  相似文献   

8.
New spectroscopy of the classical Algol system δ Lib, combined with high-quality optical and infrared photometry, provides the basis for a good understanding of the close binary system's main parameters. Detailed analysis of the photometry reveals the significant role of a third light source, pointing to the existence of a companion to the eclipsing system of mass  ∼1 M  .
We review the methodology of applying high-accuracy positional information, available from the Hipparcos Intermediate Astrometric Data archive, to stars that may have such companions. Analysis of the astrometry of δ Lib also points to a third star similar to the one already identified by Worek from radial-velocity data, although with slightly revised parameters. O–C data do not contradict this, but their general precision (while confirming the close pair's Algol status) fails to allow a decision on the third orbit parameters: Worek's or revised ones. Taking the photometry, spectroscopy and astrometry together, however, the existence of a third star of comparable mass to the Sun, as a relatively close companion to the eclipsing binary (∼4 au), is confirmed.  相似文献   

9.
With the Hamilton echelle spectrograph at the Lick Observatory, emission-rich spectral lines of the planetary nebula NGC 6543 were secured in the wavelength range from 3550 to 10 100 Å. We chose two bright regions, ∼8 arcsec east and ∼13 arcsec north of the central star, the physical conditions and chemical abundances of which may differ as a result of the different physical characteristics involving the mass ejection of different epochs. By combining Hamilton echelle observations with archive UV data secured with the International Ultraviolet Explorer ( IUE ), we obtain improved diagnostics and chemical compositions for the two observed regions. The diagnostic diagram gives the average value of T e=8000∼8300 K, and the electron number density near N e∼5000 cm−3 for most ions, while some low-excitation lines indicate much higher temperatures, i.e. T e∼10 000 K. With the construction of a photoionization model, we try to fit the observed spectra in a self-consistent way: thus, for most elements, we employ the same chemical abundances in the nebular shell; and we adopt an improved Sobolev approximation model atmosphere for the hydrogen-deficient Wolf–Rayet type central star. Within the observational errors, the chemical abundances do not seem to show any positional variation except for helium. The chemical abundances of NGC 6543 appear to be the same as in average planetary nebulae. The progenitor star may have been an object of one solar mass, most of the heavier elements of which were less plentiful than in the Sun.  相似文献   

10.
The emission measure distribution in the upper transition region and corona of ε Eri is derived from observed emission-line fluxes. Theoretical emission measure distributions are calculated assuming that the radiation losses are balanced by the net conductive flux. We discuss how the area factor of the emitting regions as a function of temperature can be derived from a comparison between these emission measure distributions. It is found that the filling factor varies from ∼0.2 in the mid-transition region to ∼1.0 in the inner corona. The sensitivity of these results to the adopted ion fractions, the iron abundance and other parameters is discussed. The area factors found are qualitatively similar to the observed structure of the solar atmosphere, and can be used to constrain two-component models of the chromosphere. Given further observations, the method could be applied to investigate the trends in filling factors with indicators of stellar activity.  相似文献   

11.
Discs in the 6 Myr old cluster η Chamaeleontis were searched for emission from hot H2. Around the M3 star ECHA J0843.3−7905, we detect circumstellar gas orbiting at ∼2 au. If the gas is ultraviolet excited, the ro-vibrational line traces a hot gas layer supported by a disc of mass  ∼0.03 M  , similar to the minimum mass solar nebula. Such a gas reservoir at 6 Myr would promote the formation and the inwards migration of gas giant planets.  相似文献   

12.
The Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-m liquid-mirror telescope surveying  ∼1000 deg2  of the Southern hemisphere sky. It will be a remarkably simple and inexpensive telescope that none the less will deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consist of nightly, high signal-to-noise ratio, multiband light curves of Type Ia supernovae (SNe Ia). At the end of the 3-yr run, ALPACA is expected to collect  ≳100 000  SNe Ia up to   z ∼ 1  . This will allow us to reduce present systematic uncertainties affecting the standard-candle relation. The survey will also provide several other data sets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak-lensing measurements. In this preliminary analysis, we forecast constraints on dark energy parameters from SNe Ia and baryon acoustic oscillations. The combination of these two data sets will provide competitive constraints on the dark energy parameters under minimal prior assumptions. Further studies are needed to address the accuracy of weak-lensing measurements.  相似文献   

13.
The temperature anomaly of the terrestrial lower troposphere, inferred from the Microwave Sounding Unit (MSU) radiometers, is found to be inversely correlated with the area of the Sun covered by coronal holes. The correlation between the monthly time series of global tropospheric temperature anomaly and total coronal hole area from January 1979 to April 1998 has a Pearson coefficient of −0.46, which is different from zero at a 95% confidence level. Physical reasonings for the explained and unexplained parts of the correlation are discussed. The coronal hole area is a physical proxy for both the global-scale, 22-yr geometrical and shorter-term, dynamical components of the cosmic ray modulation, as well as the corpuscular emission of the Sun. Other solar parameters that may indicate a solar radiative effect on climate are also evaluated. It is concluded that variable fluxes either of solar charged particles or cosmic rays modulated by the solar wind, or both, may influence the terrestrial tropospheric temperature on timescale of months to years.  相似文献   

14.
Launched in October 1990, the ESA-NASA Ulysses mission has conducted the very first survey of the heliosphere within 5 AU of the Sun over the full range of heliolatitudes. With polar passes taking place in 1994 and 1995, the timing of the mission has enabled Ulysses to characterise the global structure of the heliosphere at solar minimum, when the corona adopts its simplest configuration. The most important findings to date include a confirmation of the uniform nature of the high-speed (∼ 750 km/s)solar wind flow from the polar coronal holes, filling two-thirds of the volume of the inner heliosphere; the sharp boundary, existing from the chromosphere through the corona, between fast and slow solar wind streams; the latitude independence of theradial component of the heliospheric magnetic field; the lower-than-expected latitude gradient of galactic and anomalous cosmic rays; the continued existence of recurrent increases in the flux of low-energy ions and electrons up to the highest latitudes. Without doubt, the Ulysses mission has provided a unique set of observations of the heliosphere at solar minimum, resulting in a good understanding of many aspects of its behaviour. In this review, we will highlight some of the key findings to date, and also look ahead to the challenges that await as Ulysses returns to high latitudes to explore the heliosphere at solar maximum and beyond. Finally, a brief summary is given of the prospects for heliospheric research in the post-Ulysses era. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Birmingham Solar Oscillations Network (BiSON) instruments use resonant scattering spectrometers to make unresolved Doppler velocity observations of the Sun. Unresolved measurements are not homogenous across the solar disc and so the observed data do not represent a uniform average over the entire surface. The influence on the inhomogeneity of the solar rotation and limb darkening has been considered previously and is well understood. Here, we consider a further effect that originates from the instrumentation itself. The intensity of light observed from a particular region on the solar disc is dependent on the distance between that region on the image of the solar disc formed in the instrument and the detector. The majority of BiSON instruments have two detectors positioned on opposite sides of the image of the solar disc and the observations made by each detector are weighted towards differing regions of the disc. Therefore, the visibility and amplitudes of the solar oscillations and the realization of the solar noise observed by each detector will differ. We find that the modelled bias is sensitive to many different parameters such as the width of solar absorption lines, the strength of the magnetic field in the resonant scattering spectrometer, the orientation of the Sun's rotation axis, the size of the image observed by the instrument and the optical depth in the vapour cell. We find that the modelled results best match the observations when the optical depth at the centre of the vapour cell is 0.55. The inhomogeneous weighting means that a 'velocity offset' is introduced into unresolved Doppler velocity observations of the Sun, which varies with time, and so has an impact on the long-term stability of the observations.  相似文献   

16.
17.
Our study deals with the correlations between the solar activity on the one hand and the solar irradiance above the Earth’s atmosphere and at ground level on the other. We analyzed the combined ACRIM I+II time series of the total solar irradiance (TSI), the Mauna Loa time series of terrestrial insolation data, and data of terrestrial cosmic ray fluxes. We find that the correlation between the TSI and the sunspot number is strongly non-linear. We interpret this as the net balance between brightening by faculae and darkening by sunspots where faculae dominate at low activity and sunspots dominate at high activity. Such a behavior is hitherto known from stellar analogs of the Sun in a statistical manner. We perform the same analysis for the Mauna Loa data of terrestrial insolation. Here we find that the linear relation between sunspot number and insolation shows more than 1% rise in insolation by sunspot number variations which is much stronger than for the TSI. Our conclusion is that the Earth atmosphere acts as an amplifier between space and ground, and that the amplification is probably controlled by solar activity. We suspect the cosmic rays intensity as the link between solar activity and atmospheric transparency. A Fourier analysis of the time series of insolation shows three dominant peaks: 10.5, 20.4, and 14.0 years. As a matter of fact, the cosmic rays data show the same pattern of significant peaks: 10.7, 22.4, and 14.9 years. This analogy supports our idea that the cosmic rays variation has influence on the transparency of the Earth atmosphere.  相似文献   

18.
We study protoplanetary disc evolution assuming that angular momentum transport is driven by gravitational instability at large radii, and magnetohydrodynamic (MHD) turbulence in the hot inner regions. At radii of the order of 1 au such discs develop a magnetically layered structure, with accretion occurring in an ionized surface layer overlying quiescent gas that is too cool to sustain MHD turbulence. We show that layered discs are subject to a limit cycle instability, in which accretion on to the protostar occurs in ∼104-yr bursts with ̇ ∼10−5 M yr−1, separated by quiescent intervals lasting ∼105 yr where ̇ ≈10−8 M yr−1. Such bursts could lead to repeated episodes of strong mass outflow in young stellar objects. The transition to this episodic mode of accretion occurs at an early epoch ( t ≪1 Myr), and the model therefore predicts that many young pre-main-sequence stars should have low rates of accretion through the inner disc. At ages of a few Myr, the discs are up to an order of magnitude more massive than the minimum-mass solar nebula, with most of the mass locked up in the quiescent layer of the disc at r ∼1 au. The predicted rate of low-mass planetary migration is reduced at the outer edge of the layered disc, which could lead to an enhanced probability of giant planet formation at radii of 1–3 au.  相似文献   

19.
20.
With modern imaging and spectral instruments observing in the visible, EUV, X-ray, and radio wavelengths, the detection of oscillations in the solar outer atmosphere has become a routine event. These oscillations are considered to be the signatures of a wave phenomenon and are generally interpreted in terms of magnetohydrodynamic (MHD) waves. With multiwavelength observations from ground- and space-based instruments, it has been possible to detect waves in a number of different wavelengths simultaneously and, consequently, to study their propagation properties. Observed MHD waves propagating from the lower solar atmosphere into the higher regions of the magnetized corona have the potential to provide excellent insight into the physical processes at work at the coupling point between these different regions of the Sun. High-resolution wave observations combined with forward MHD modeling can give an unprecedented insight into the connectivity of the magnetized solar atmosphere, which further provides us with a realistic chance to reconstruct the structure of the magnetic field in the solar atmosphere. This type of solar exploration has been termed atmospheric magnetoseismology. In this review we will summarize some new trends in the observational study of waves and oscillations, discussing their origin and their propagation through the atmosphere. In particular, we will focus on waves and oscillations in open magnetic structures (e.g., solar plumes) and closed magnetic structures (e.g., loops and prominences), where there have been a number of observational highlights in the past few years. Furthermore, we will address observations of waves in filament fibrils allied with a better characterization of their propagating and damping properties, the detection of prominence oscillations in UV lines, and the renewed interest in large-amplitude, quickly attenuated, prominence oscillations, caused by flare or explosive phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号