首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The Einstein static model of the universe as a whole is considered. The Hubble law is explained by the Doppler effect due to the downward inertial acceleration along a certain radius experienced by an observer in the center of the universe, with the total acceleration over all radii being equal zero. Evolution of the universe is introduced through the wave function of the universe dependent on time. This yields the energy density of the universe hence the temperature of the universe dependent on time. On the contrary, the energy, forth and intensity of radiation are fixed with time that allows to develop the Newtonian physics in the whole universe. The time-temperature relation of the universe in the model considered is the same as in the radiation dominated universe in the Friedmann model that allows to explain primordial nucleosynthesis as it is in the standard scenario. The modern parameters of the universe in the model considered are consistent with the observations.  相似文献   

2.
In this paper, we have considered a model of our universe containing five components as its constituents. Then, we have done here the statefinder diagnostics for this model. This model can successfully explain the accelerated expansion of the universe given that it satisfies a certain condition. Here we have considered the modified Chaplygin gas as the dynamically changing part of the dark energy component of our universe. Chaplygin gas provides early deceleration and late time acceleration of the universe. The graphical representation of statefinder parameters shows that the total evolution of the universe starts from radiation era to phantom model.  相似文献   

3.
During the nineteenth century, it was common for physicists to believe in the existence of a material vacuum composed of an incompressible fluid that fills the whole universe. This fluid was called the aether. Its original purpose was to provide an elastic tenuous medium for light propagation through space. Although it is well understood today that no such medium is needed for light propagation, the existence of a cosmic aether medium in space is still possible and its physical properties can be understood on models of cosmology that have nothing to do with Big-Bang cosmology. It is possible that electromagnetic radiation emitted by the cosmic aether medium has already been detected. The low-frequency electromagnetic radiation emitted by the aether is called the cosmic microwave background radiation. The present study outlines a model for an aether medium that explains the genesis of the microwave background radiation in a closed static (nonexpanding) universe. It is shown that the spectrum of the microwave background radiation is a perfect blackbody with a temperature T rad=2.77 K in harmony with the perfect cosmological principle. It is further shown that the aether medium is opaque at radio and microwave frequencies. This particular feature of the model does not contradict any observations regarding the existence of distant radio galaxies and quasars.  相似文献   

4.
We consider the BSBM(Bekenstein, Sandvik, Barrow and Magueijo) cosmological model in the presence of tachyon potential with the aim of studying the stability of the model and test it against observations. The phase space analysis shows that from fourteen critical points that represent the state of the universe, only one is stable.With a small perturbation, the universe transits from a state of unstable deceleration to stable acceleration. The stability analysis combined with the best fitting process imposes constraints on the cosmological parameters that are in agreement with observation. In the BSBM theory, the variation of fundamental constants is driven from variation of a scalar field. The tachyonic scalar field, responsible for both variation of fundamental constants and universal acceleration, is reconstructed.  相似文献   

5.
The Kepler problem is studied in a space with the Friedmann-Lemaitre-Robertson-Walker metrics of the expanding universe. Cosmic evolution leads to decreasing energy of particles, causing free particles to be captured in bound states, so that the evolution of the universe can be treated as a possible mechanism of the formation of galaxies and clusters of galaxies. The cosmological model is considered where the evolution of the universe plays the role usually inscribed to cold dark matter.  相似文献   

6.
Almost all astronomers now believe that the Hubble recession law was directly inferred from astronomical observations. It turns out that this common belief is completely false. Those models advocating the idea of an expanding universe are ill-founded on observational grounds. This means that the Hubble recession law is really a working hypothesis. One alternative to the Hubble recession law is the tired-light hypothesis originally proposed by Zwicky (Proc. Nat. Acad. Sci. 15:773, 1929). This hypothesis leads to a universe that is an eternal cosmos continually evolving without beginning or end. Such a universe exists in a dynamical state of virial equilibrium. Observational studies of the redshift-magnitude relation for Type Ia supernovae in distant galaxies might provide the best observational test for a tired-light cosmology. The present study shows that the model Hubble diagram for a tired-light cosmology gives good agreement with the supernovae data for redshifts in the range 0<z<2. This observational test of a static cosmology shows that the real universe is not necessarily undergoing expansion nor acceleration. An erratum to this article can be found at  相似文献   

7.
In this paper, we have considered a model for FRW space-time in the presence of coupled scalar field φ and potential V(φ) with causal viscous fluid and polytropic fluid. We have shown that irrespective of fluid the causality theory provides late time acceleration of the universe. In all cases, the potential always decreases due to evolution of the universe.  相似文献   

8.
Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ∼2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.  相似文献   

9.
We consider the cosmological dynamics of a tachyon field localized on the extended DGP braneworld scenario. We present a detailed analysis of the critical points in the phase space of the model, their stability and late-time cosmological viability of the solutions. We study the luminosity distance behavior of this ?EDGP model and compare it with ΛCDM model. Also we show that the EDGP solutions in the presence of tachyon field can explain late time acceleration of the universe.  相似文献   

10.
Motivated by some previous works of Rudra et al. we set to explore the background dynamics when dark energy in the form of New Variable Modified Chaplygin gas is coupled to dark matter with a suitable interaction in the universe described by brane cosmology. The main idea is to find out the efficiency of New variable modified Chaplygin gas to play the role of DE. As a result we resort to the technique of comparison with standard dark energy models. Here the RSII brane model have been considered as the gravity theory. An interacting model is considered in order to search for a possible solution of the cosmic coincidence problem. A dynamical system analysis is performed because of the high complexity of the system. The statefinder parameters are also calculated to classify the dark energy model. Graphs and phase diagrams are drawn to study the variations of these parameters and get an insight into the effectiveness of the dark energy model. It is also seen that the background dynamics of New Variable Modified Chaplygin gas is consistent with the late cosmic acceleration. After performing an extensive mathematical analysis, we are able to constrain the parameters of new variable modified Chaplygin gas as m<n to produce the best possible results. Future singularities are studied and it is found that the model has a tendency to result in such singularities unlike the case of generalized cosmic Chaplygin gas. Our investigation leads us to the fact that New Variable Modified Chaplygin gas is not as effective as other Chaplygin gas models to play the role of dark energy.  相似文献   

11.
Many have speculated about the presence of a stiff fluid in very early stage of the universe. Such a stiff fluid was first introduced by Zel’dovich. Recently the late acceleration of the universe was studied by taking bulk viscous stiff fluid as the dominant cosmic component, but the age predicted by such a model is less than the observed value. We consider a flat universe with viscous stiff fluid and decaying vacuum energy as the cosmic components and found that the model predicts a reasonable background evolution of the universe with de Sitter epoch as end phase of expansion. More over, the model also predicts a reasonable value for the age of the present universe. We also performed a dynamical system analysis of the model and found that the end de Sitter phase predicted by the model is stable.  相似文献   

12.
Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach’s principle, governed by Einstein’s general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive $\ddot{M}(t) > 0$ . For a constant deceleration parameter $q = -M(t) \ddot{M}(t)/\dot{M}(t) \sim-0.6$ , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red~1.0012. The expansion and acceleration of black hole universe are driven by external energy.  相似文献   

13.
We have developed a cosmological model for the Earth rotation and planetary acceleration that gives a good account (data) of the Earth astronomical parameters. These data can be compared with the ones obtained using space-base telescopes. The expansion of the universe has shown to have an impact on the rotation of planets, and in particular, the Earth. The expansion of the universe causes an acceleration that is exhibited by all planets.  相似文献   

14.
Evolution of the universe is discussed in the framework of f(R) theory of gravity. The deceleration parameter is used to interpret various phases of the universe. We investigate the future evolution of the flat FRW universe by using observationally viable f(R) models. A numerical technique is applied to solve the evolution equation in terms of Hubble parameter which is used to explore late time acceleration of the universe. Some novel and interesting results based on the choice of coupling parameters in gravitational action are obtained. We can conclude that the considered f(R) models imply unification of matter dominated epoch with present accelerating phase of the universe.  相似文献   

15.
In this work, we have considered the spatially homogeneous and anisotropic Bianchi type-II universe filled with two interacting fluids; dark matter and holographic dark energy components. Assuming the proportionality relation between one of the components of shear scalar and expansion scalar which yields time dependent deceleration parameter, an exact solution to Einstein’s field equations in Bianchi type-II line element is obtained. We have investigated geometric and kinematics properties of the model and the behaviour of the holographic dark energy. It is observed that the mean anisotropic parameter is uniform through the whole evolution of the universe and the coincidence parameter increases with increasing time. The solutions are also found to be in good agreement with the results of recent observations. We have applied the statefinder diagnostics method to study the behaviour of different stages of the universe and to differentiate the proposed dark energy model from the ΛCDM model. We have also established a correspondence between the holographic dark energy model and the tachyon scalar field dark energy model. We have reconstructed the potential and the dynamics of the tachyon scalar field, which describes accelerated expansion of the universe.  相似文献   

16.
We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach’s cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach’s cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρa −4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.  相似文献   

17.
This paper is aimed to investigate 5D holographic dark energy (HDE) in DGP-Brane cosmology by employing a combination of Sne Ia, BAO and CMB observational data and constraining cosmological parameters. The FRW dynamics for the normal branch (?=+1) solution of induced gravity brane-world model is taken with the assumption that matter in 5D bulk is HDE such that its holographic nature is reproduced effectively in 4D universe. In the HDE model, we used Hubble horizon as IR cutoff instead of future event horizon. This way, while the model predicts current universe acceleration, it also removes the problem of circular reasoning and causality observed in using future event horizon as IR cutoff.  相似文献   

18.
We consider generalized teleparallel gravity in the flat FRW universe with a viable power-law f(T) model. We construct its equation of state and deceleration parameters which give accelerated expansion of the universe in quintessence era for the obtained scale factor. Further, we develop correspondence of f(T) model with scalar field models such as, quintessence, tachyon, K-essence and dilaton. The dynamics of scalar field as well as scalar potential of these models indicate the expansion of the universe with acceleration in the f(T) gravity scenario.  相似文献   

19.
The present paper outlines a cosmological paradigm based upon Dirac’s large number hypothesis and continual creation of matter in a closed static (nonexpanding) universe. The cosmological redshift is caused by the tired-light phenomenon originally proposed by Zwicky. It is shown that the tired-light cosmology together with continual matter creation has a universal Hubble constant H 0=(512π 2/3)1/6(GC 0)1/3 fixed by the universal rate C 0 of matter creation, where G is Newton’s gravitational constant. It is also shown that a closed static universe has a finite age τ 0=(243π 5/8GC 0)1/3 also fixed by the universal rate of matter creation. The invariant relationship H 0 τ 0=3π 261/2 shows that a closed static universe is much older (≈one trillion years) than any expanding universe model based upon Big-Bang cosmology. It is this property of a static universe that resolves any cosmic age crisis provided that galaxy formation in the universe is a continual recurring process. Application of Dirac’s large number hypothesis gives a matter creation rate C 0=4.6×10?48 gm?cm?3?s?1 depending only on the fundamental constants of nature. Hence, the model shows that a closed static universe has a Hubble constant H 0=70 km?s?1?Mpc?1 in good agreement with recent astronomical determinations of H 0. By using the above numerical value for H 0 together with observational data for elongated cellular-wall structures containing superclusters of galaxies, it is shown that the elongated cellular-wall configurations observed in the real universe are at least one hundred billion years old. Application of the microscopic laws of physics to the large-scale macroscopic universe leads to a static eternal cosmos endowed with a matter-antimatter symmetry. It is proposed that the matter-antimatter asymmetry is continuously created by particle-antiparticle pair annihilation occurring in episodic cosmological gamma-ray bursts observed in the real universe.  相似文献   

20.
We consider cosmological dynamics of a canonical bulk scalar field, which is coupled non-minimally to 5-dimensional Ricci scalar in a DGP setup. We show that presence of this non-minimally coupled bulk scalar field affects the jump conditions of the original DGP model significantly. Within a superpotential approach, we perform some numerical analysis of the model parameter space and consider bulk-brane energy exchange in this setup. Also we show that the normal, ghost-free branch of the DGP solutions in this case has the potential to realize a self-consistent phantom-like behavior and therefore explains late time acceleration of the universe in a consistent way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号