首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Transmission electron microscopic (TEM) and electron energy‐loss spectroscopic (EELS) study of the Ivuna and Orgueil (CI), and Tagish Lake (C2 ungrouped) carbonaceous chondrite meteorites shows two types of C‐clay assemblages. The first is coarser‐grained (to 1 μm) clay flakes that show an intense O K edge from the silicate together with a prominent C K edge, but without discrete C particles. Nitrogen is common in some clay flakes. Individual Orgueil and Tagish Lake meteorite clay flakes contain up to 6 and 8 at% C, respectively. The C K‐edge spectra from the clays show fine structure revealing aromatic, aliphatic, carboxylic, and carbonate C. The EELS data shows that this C is intercalated with the clay flakes. The second C‐clay association occurs as poorly crystalline to amorphous material occurring as nanometer aggregates of C, clay, and Fe‐O‐rich material. Some aggregates are dominated by carbonaceous particles that are structurally and chemically similar to the acid insoluble organic matter. The C K‐edge shape from this C resembles that of amorphous C, but lacking the distinct peaks corresponding to aliphatic, carboxylic, and carbonate C groups. Nanodiamonds are locally abundant in some carbonaceous particles. The abundance of C in the clays suggest that molecular speciation in the carbonaceous chondrites is partly determined by the effects of aqueous processing on the meteorite parent bodies, and that clays played an important role. This intricate C‐clay association lends credence to the proposal that minerals were important in the prebiotic chemical evolution of the early solar system.  相似文献   

2.
Organic matter (OM) was widespread in the early solar nebula and might have played an important role for the delivery of prebiotic molecules to the early Earth. We investigated the textures, isotopic compositions, and functional chemistries of organic grains in the Renazzo carbonaceous chondrite by combined high spatial resolution techniques (electron microscopy–secondary ion mass spectrometry). Morphologies are complex on a submicrometer scale, and some organics exhibit a distinct texture with alternating layers of OM and minerals. These layered organics are also characterized by heterogeneous 15N isotopic abundances. Functional chemistry investigations of five focused ion beam‐extracted lamellae by electron energy loss spectroscopy reveal a chemical complexity on a nanometer scale. Grains show absorption at the C‐K edge at 285, 286.6, 287, and 288.6 eV due to polyaromatic hydrocarbons, different carbon‐oxygen, and aliphatic bonding environments with varying intensity. The nitrogen K‐edge functional chemistry of three grains is shown to be highly complex, and we see indications of amine (C‐NHx) or amide (CO‐NR2) chemistry as well as possible N‐heterocycles and nitro groups. We also performed low‐loss vibrational spectroscopy with high energy resolution and identified possible D‐ and G‐bands known from Raman spectroscopy and/or absorption from C=C and C‐O stretch modes known from infrared spectroscopy at around 0.17 and 0.2 eV energy loss. The observation of multiglobular layered organic aggregates, heterogeneous 15N‐anomalous compositions, and indication of NHx‐(amine) functional chemistry lends support to recent ideas that 15N‐enriched ammonia (NH3) was a powerful agent to synthesize more complex organics in aqueous asteroidal environments.  相似文献   

3.
First results from wideband (electron phase energies of 5–51 eV), high-resolution (0.1 eV) spectral measurements of photoelectron–enhanced plasma lines made with the 430 MHz radar at Arecibo Observatory are presented. In the F region, photoelectrons produced by solar EUV line emissions (He II and Mg IX) give rise to plasma line spectral peaks/valleys. These and other structures occur within an enhancement zone extending from electron phase energies of 14–27 eV in both the bottomside and topside ionosphere. However, photoelectron–thermal electron Coulomb energy losses can lead to a broadened spectral structure with no resolved peaks in the topside ionosphere. The plasma line energy spectra obtained in the enhancement zone exhibit a unique relation in that phase energy is dependent on pitch angle; this relation does not exist in any other part of the energy spectrum. Moreover, large fluctuations in the difference frequency between the upshifted and downshifted plasma lines are evident in the 14–27 eV energy interval. At high phase energies near 51 eV the absolute intensities of photoelectron-excited Langmuir waves are much larger than those predicted by existing theory. The new measurements call for a revision/improvement of plasma line theory in several key areas.  相似文献   

4.
Abstract– We performed micro‐Raman spectroscopic analyses of the carbon vein in five ureilites: Allan Hills (ALH) A77257, Northwest Africa (NWA) 3140, Shi?r 007, Yamato 790981 (Y‐790981), and Yamato 791538 (Y‐791538). The graphite peaks showed that the graphite structure in ureilite is well developed, especially compared with the carbonaceous material in carbonaceous chondrite. The domain sizes of the graphite were 45–110 Å. We observed shifts in the diamond peak positions to higher wave numbers with a large full width at half maximum (FWHM), especially for NWA 3140. Although the FWHM of a diamond peak is not a crucial diagnostic test for a chemical vapor deposition (CVD) origin of diamond, the shift of the diamond peaks to higher wave numbers could be a strong indicator that supports the CVD origin as these shifts have only been observed in CVD diamonds. We discuss the origin of diamond from various aspects, and confirm that the CVD model is the most plausible. We conclude that all carbon material (graphite, amorphous carbon, diamond, etc.) condensed on the early condensates in the primitive solar nebula.  相似文献   

5.
The Sutter's Mill (SM) meteorite fell in El Dorado County, California, on April 22, 2012. This meteorite is a regolith breccia composed of CM chondrite material and at least one xenolithic phase: oldhamite. The meteorite studied here, SM2 (subsample 5), was one of three meteorites collected before it rained extensively on the debris site, thus preserving the original asteroid regolith mineralogy. Two relatively large (10 μm sized) possible diamond grains were observed in SM2‐5 surrounded by fine‐grained matrix. In the present work, we analyzed a focused ion beam (FIB) milled thin section that transected a region containing these two potential diamond grains as well as the surrounding fine‐grained matrix employing carbon and nitrogen X‐ray absorption near‐edge structure (C‐XANES and N‐XANES) spectroscopy using a scanning transmission X‐ray microscope (STXM) (Beamline 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory). The STXM analysis revealed that the matrix of SM2‐5 contains C‐rich grains, possibly organic nanoglobules. A single carbonate grain was also detected. The C‐XANES spectrum of the matrix is similar to that of insoluble organic matter (IOM) found in other CM chondrites. However, no significant nitrogen‐bearing functional groups were observed with N‐XANES. One of the possible diamond grains contains a Ca‐bearing inclusion that is not carbonate. C‐XANES features of the diamond‐edges suggest that the diamond might have formed by the CVD process, or in a high‐temperature and ‐pressure environment in the interior of a much larger parent body.  相似文献   

6.
Insoluble organic matter (IOM) and hydrothermally treated IOM extracted from two carbonaceous chondrites, Murchison and Allende, was studied using sulfur K‐edge XANES (X‐ray absorption near edge structure) and μ‐Raman spectroscopy, with the aim to understand their IOM's sulfur speciation and structural order, and how aqueous alteration or thermal metamorphism may have transformed these materials. We found that the sulfur‐functional group chemistry of both the Murchison IOM and hydrothermally treated IOM samples have a large chemical variability ranging from oxidation states of S?2 to S+6, and exhibit a transformation in their oxidation state after the hydrothermal treatment (HT) to produce thiophenes and thiol compounds. Sulfoxide and sulfite peaks are also present in Murchison. Sulfates considered intrinsic to Murchison are most likely preaccretionary in nature, and not a result of reactions with water at high temperatures on the asteroid parent body. We argue that the reduced sulfides may have formed in the CM parent body, while the thiophenes and thiol compounds are a result of the HT. Micro‐Raman spectra show the presence of aliphatic and aromatic moieties in Murchison's material as observed previously, which exhibits no change after HT. Because the Murchison IOM was modified, as seen by XANES analysis, absence of a change observed using micro‐Raman indicated that although the alkyl carbons of IOM were cleaved, the aromatic network was not largely modified after HT. By contrast, Allende IOM contains primarily disulfide and elemental sulfur, no organic sulfur, and shows no transformation after HT. This nontransformation of Allende IOM after HT would indicate that parent body alteration of sulfide to sulfate is not feasible up to temperatures of 300°C. The reduced sulfur products indicate extreme secondary chemical processing from the precursor compounds in its parent body at temperatures as high as 624°C, as estimated from μ‐Raman D band parameters. The Raman parameters in Allende IOM that was interpreted in terms of amorphous carbon with regions of large clusters of benzene rings, was transformed after the HT to those with fewer benzene rings.  相似文献   

7.
Four ureilites subjected to impact metamorphism in a pressure range of ~15–100 GPa were investigated for mineralogical and petrological features and optical luminescence of their diamonds with the aim to understand how properties of ureilitic diamonds are correlated with shock and thermal histories of the host meteorite. Petrological data show that all the investigated ureilites experienced multistage metamorphic histories. Some of them were shocked at least twice or/and underwent high‐temperature thermal metamorphism and fluid metasomatism in the parent body interior. Photoluminescence spectra of individual diamond grains reveal the presence of neutral and negatively charged nitrogen‐vacancy (NV0 and NV?, respectively) and H3 (two nitrogens and a vacancy) defects, indicating relatively high nitrogen contents of the diamonds and some degree of thermal annealing of the grains. The diamond grain size and morphology, a texture of graphite‐diamond aggregates, and spectroscopic properties of the diamond phase vary widely both within an individual meteorite and between the ureilites. Shock‐driven transformation of sp2‐C into diamond provides the most natural explanation of the observed spectroscopic diversity of the diamond grains if one takes into account strong dependence of the PT parameters and efficiency of the transformation on structure of the carbonaceous precursor.  相似文献   

8.
A model for the energy balance and chemical equilibrium of the gas in photodissociation regions at the edge of molecular clouds, which are illuminated by strong FUV fields (6 eV ≦ hv ≦ 13.6 eV), has been developed. This model is used to calculate the emergent intensities in the fine structure lines of OI (63 μm, 145 μm), CI (609 μm, 370 μm), and CII (158 μm) and in the low-lying rotational transitions of CO. The numerical results show that column densities in the range 2 × 1017 to 2 × 1018 cm2 can be expected from the C+/C/CO transition region at the edge of molecular clouds. This difference with previous chemical calculations is partly due to a higher assumed carbon abundance, partly due to the charge exchange reactions of C+ with S and SiO, and partly due to carbon self-shielding which is taken into account. A detailed model is constructed for the Orion photodissociation region, which explains the observed OI (63 μm, 145 μm), CII (158 μm), CI (609 μm), and CO emission. In this model the CI (609 μm) emission originates in the warm (50°K) molecular gas behind Θ1C Ori but near the surface of OMCI.  相似文献   

9.
Abstract— Electron‐beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution, and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope (STEM) with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single‐atomic‐column resolution, liquids, and implanted gases can be detected, and UV‐VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub‐500 ppm level. Electron energy‐loss spectroscopy (EELS) can be carried out with 0.10–0.20 eV energy resolution and atomic‐scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy‐dispersive X‐ray spectroscopy (EDS) and energy‐filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K‐edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), X‐ray elemental maps showing the nanometer‐scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H2O in vesicles and implanted H2 and He in irradiated mineral and glass grains.  相似文献   

10.
Abstract— Carbon isotopic compositions were measured for shock‐produced diamond and shocked graphite formed at peak pressures ranging from 37 to 52 GPa. The δ13C values of diamonds produced in a sealed container were generally lower than that of the initial graphite. The differences in the carbon isotopic composition between initial graphite and shocked graphite/diamond may reflect kinetic isotopic fractionation during the oxidation of the graphite/diamond and/or analytical artifacts possibly induced by impurities in the samples. The pressure effect on the isotopic fractionations between graphite and diamond can be estimated from the δ13C values of impurity‐free diamonds produced using a vented container from which gases, including oxygen, in pore spaces escaped during or after the diamond formation (e.g., 0.039 ± 0.085‰ at a peak pressure of 52 GPa). Any isotopic fractionation induced by shock conversion of graphite to diamond is too small to be detected in natural shock‐induced diamond‐graphite systems related to terrestrial impact cratering processes.  相似文献   

11.
We present here the Raman spectroscopic study of silicate and carbonaceous minerals in three ordinary chondrites with the aim to improve our understanding the impact process including the peak metamorphic pressures present in carbon‐bearing ordinary chondites. The characteristic Raman vibrational peaks of olivines, pyroxenes, and plagioclase have been determined on three ordinary chondrites from India, Dergaon (H5), Mahadevpur (H4/5), and Kamargaon (L6). The Raman spectra of these meteorite samples show the presence of nanodiamonds at 1334–1345 cm?1 and 1591–1619 cm?1. The full‐width at half maximum (FWHM) of Raman peaks for Mahadevpur and Dergaon reflect the nature of shock metamorphism in these meteorites. The frequency shift in Raman spectra might be because of shock effects during the formation of the diamond/graphite grains.  相似文献   

12.
Mason Gully, the second meteorite recovered using the Desert Fireball Network (DFN), is characterized using petrography, mineralogy, oxygen isotopes, bulk chemistry, and physical properties. Geochemical data are consistent with its classification as an H5 ordinary chondrite. Several properties distinguish it from most other H chondrites. Its 10.7% porosity is predominantly macroscopic, present as intergranular void spaces rather than microscopic cracks. Modal mineralogy (determined via PS‐XRD, element mapping via energy dispersive spectroscopy [EDS], and X‐ray tomography [for sulfide, metal, and porosity volume fractions]) consistently gives an unusually low olivine/orthopyroxene ratio (0.67?0.76 for Mason Gully versus ~1.3 for typical H5 ordinary chondrites). Widespread “silicate darkening” is observed. In addition, it contains a bright green crystalline object at the surface of the recovered stone (diameter ≈ 1.5 mm), which has a tridymite core with minor α‐quartz and a rim of both low‐ and high‐Ca pyroxene. The mineralogy allows the calculation of the temperatures and ?(O2) characterizing thermal metamorphism on the parent body using both the two‐pyroxene and the olivine‐chromite geo‐oxybarometers. These indicate that MG experienced a peak metamorphic temperature of ~900 °C and had a similar ?(O2) to Kernouvé (H6) that was buffered by the reaction between olivine, metal, and pyroxene. There is no evidence for shock, consistent with the observed porosity structure. Thus, while Mason Gully has some unique properties, its geochemistry indicates a similar thermal evolution to other H chondrites. The presence of tridymite, while rare, is seen in other OCs and likely exogenous; however, the green object itself may result from metamorphism.  相似文献   

13.
The syntheses of interstellar c-C3H2, H2CCC, c-C3H, and HCCC, where "c" stands for the cyclic isomer, are thought to proceed via dissociative recombination of the precursor ions c-C3H3+ and H2CCCH+, which are themselves produced mainly via the radiative association reaction between C3H+ and H2. We have utilized ab initio methods to study the potential energy surface (PES) for the association of the linear ion C3H+ and H2 to form the isomers c-C3H3+ and H2CCCH+. The overall rate coefficient for radiative association has been calculated as a function of temperature via the phase space method. Our ab initio calculations show that the H2CCCH+ isomer is formed directly without an activation barrier from reactants, and that isomerization between the two isomers can occur readily via a low-energy pathway consisting of two transition states (saddle points on the PES) and one intermediate (local minimum on the PES). Calculations of the equilibrium coefficient for the isomerization H2CCCH+ <-> c-C3H3+ as a function of energy shows that equal abundances of these two ions should be produced as relaxation proceeds, in agreement with experimental measurements at high pressure. Our results confirm the important point that a simple ion-molecule association reaction can produce a cyclic hydrocarbon. If dissociative recombination reactions involving c-C3H3+ and H2CCCH+ maintain the carbon skeletal structure of the ions and produce roughly similar C3H/C3H2 branching ratios, then abundance ratios of unity are produced between the cyclic and noncyclic isomers of C3H and C3H2 via this mechanism. The large abundance ratio of c-C3H2 to H2CCC observed in TMC-1 can then be explained by differential destruction rates.  相似文献   

14.
Abstract— The x‐ray powder diffraction patterns of 50–100 μm C‐rich grains from five ureilitic meteorites—Kenna, Allan Hills (ALH) 78019, Yamato (Y)‐82100, Y‐791538, and ALH 77257—were obtained by using a Gandolfi camera. The results reveal that the basal spacing of part of the graphite coexisting with diamond is slightly smaller compared to the normal spacing. Compressed graphite is experimentally known to occur at the initial stage of the direct transformation from graphite to diamond structures at high pressures and temperatures. The presence of the compressed graphite in ureilites, therefore, gives clear evidence that the diamond formed by high‐pressure conversion of graphite. The modes of occurrence of C minerals observed with reflected light through an optical microscope reveal that graphite coexisted with olivine and pyroxene during igneous or metamorphic processes and, furthermore, that part of the graphite was converted to diamond by impact. The relative x‐ray intensity of diamond to graphite increases in the following order: ALH 78019 and Y‐82100 < Y‐791538 < Kenna < ALH 77257. This correlates with the shock level that is estimated mainly on the basis of the shock features of silicates. Therefore, the relative amounts of diamond to graphite suggested by x‐ray intensities may be useful as a measure of the degree of shock.  相似文献   

15.
The infrared transmission spectra and photochemical behavior of various organic compounds isolated in solid N2 ices, appropriate for applications to Triton and Pluto, are presented. It is shown that excess absorption in the surface spectra of Triton and Pluto, i.e., absorption not explained by present models incorporating molecules already identified on these bodies (N2, CH4, CO, and CO2), that starts near 4450 cm-1 (2.25 micrometers) and extends to lower frequencies, may be due to alkanes (C(n)H2n+2) and related molecules frozen in the nitrogen. Branched and linear alkanes may be responsible. Experiments in which the photochemistry of N2:CH4 and N(2):CH4:CO ices was explored demonstrate that the surface ices of Triton and Pluto may contain a wide variety of additional species containing H, C, O, and N. Of these, the reactive molecule diazomethane, CH2N2, is particularly important since it may be largely responsible for the synthesis of larger alkanes from CH4 and other small alkanes. Diazomethane would also be expected to drive chemical reactions involving organics in the surface ices of Triton and Pluto toward saturation, i.e., to reduce multiple CC bonds. The positions and intrinsic strengths (A values) of many of the infrared absorption bands of N2 matrix-isolated molecules of relevance to Triton and Pluto have also been determined. These can be used to aid in their search and to place constraints on their abundances. For example, using these A values the abundance ratios CH4/N2 approximately 1.3 x 10(-3), C2H4/N2 < or = 9.5 x 10(-7) and H2CO/N2 < or = 7.8 x 10(-7) are deduced for Triton and CH4/N2 approximately 3.1 x 10(-3), C2H4/N2 < or = 4.1 x 10(-6), and H2CO/N2 < or = 5.2 x 10(-6) deduced for Pluto. The small amounts of C2H4 and H2CO in the surface ices of these bodies are in disagreement with the large abundances expected from many theoretical models.  相似文献   

16.
The kinetics of the release of the Xe‐P3 component from coarse‐grained fractions of Orgueil (CI) meteorite nanodiamonds has been investigated using stepped and isothermal pyrolysis. It has been shown that a first‐order chemical reaction diffusion model with a single activation energy cannot provide a satisfactory explanation for the observed retention of Xe‐P3 during parent body thermal metamorphism and the kinetics of Xe‐P3 release from nanodiamonds during isothermal pyrolysis. Using the activation energy and frequency factor calculated according to this model, it is shown that in the course of thermal metamorphism of the Orgueil meteorite almost the entire Xe‐P3 component must have been lost in a very short time (<4 yr at approximately 100 °C). However, the calculated retention of Xe‐P3 increases significantly if a diffusion model with a spectrum of activation energies is used. In this case, the model can explain not only a high retention of Xe‐P3 in the Orgueil nanodiamonds but also the release pattern of the Xe‐P3 from Semarkona and Bishunpur nanodiamonds that have experienced a significant gas loss during parent body metamorphism as well as the release of Xe‐P3 during isothermal pyrolysis of the Orgueil nanodiamonds. The energetically complicated Xe‐P3 distribution is most likely caused by structural damage to the nanodiamond grains or a complex phase composition of carbon in the surface layer of the diamond grains. It is supposed that the structural damage of the diamond grains can have a radiation origin, while the variations of the carbon phase composition in the grain's mantle can be caused by the radiation‐induced reactions and/or a thermal effect.  相似文献   

17.
Abstract— Active capture is a new process for the incorporation of large quantities of heavy noble gases into growing surfaces. Adsorption in the conventional sense involves surface bonding by polarization (Van der Waals forces). What is referred to as “anomalous adsorption” of heavy noble gases involves chemical bonds and can occur when other (more chemically active) species are not available to preempt sites with unfilled bonds. Anomalous adsorption has been observed under conditions of fracture, vacuum deposition and ionizing radiation. Active capture depends upon anomalous adsorption to retain noble gases on a surface long enough to be captured in a growing surface film as it is deposited. The fundamental principle may be the impingement onto the growing film with sufficient energy to liberate surface electrons (work function energy of a few electronvolts) so that they are retained by anomalous adsorption long enough to be entrapped in the growing surface. Trapping efficiencies of ?1% have been observed for Kr and Xe in laboratory experiments, implying a fundamentally new mechanism for the incorporation of heavy noble gases onto surfaces. It may play a role in explaining the large concentrations of planetary noble gases contained in phase‐Q.  相似文献   

18.
Photoelectron flux in the energy range 6–70 eV coming from the sunlight conjugate ionosphere has been measured directly by the rocket borne low energy electron spectrometer in the altitude region of 210–350 km. Pitch angle distribution of the measured flux is nearly isotropic, the flux decreasing slightly with pitch angle. The photoelectron fluxes measured at 350 km at the energies of 15 and 30 eV are 3 × 106 and 1 × 106 (cm2 s str eV)?1 respectively which decrease to 1 × 106 and 1 × 105 at 250 km at the same energies. These values are consistent with the vertical profile of the 630 nm airglow intensity measured simultaneously. The fluxes obtained near apogee show peaks in the range 20–30 eV which also appear in the daytime photoelectron flux, indicating reduced loss of electrons during the passage from the conjugate ionosphere through the plasmasphere at the low geomagnetic latitude where observation was made. Photoelectron fluxes observed below the apogee height are compared to the calculated fluxes to investigate the interaction of electrons with the atmospheric species during the passage in the ionosphere. Calculated fluxes obtained by using continuous slowing-down approximation and neglecting pitch angle scattering are in good agreement with the observations although there still remain disagreements in detailed comparison which may be ascribed to the assumptions inherent in the calculation and/or to the uncertainties of the input data for the calculation.  相似文献   

19.
Abstract— Portales Valley (PV) is an unusual metal‐veined meteorite that has been classified as an H6 chondrite. It has been regarded either as an annealed impact melt breccia, as a primitive achondrite, or as a meteorite with affinities to silicated iron meteorites. We studied the petrology of PV using a variety of geochemical‐mineralogical techniques. Our results suggest that PV is the first well‐documented metallic‐melt meteorite breccia. Mineral‐chemical and other data suggest that the protolith to PV was an H chondrite. The composition of FeNi metal in PV is somewhat fractionated compared to H chondrites and varies between coarse vein and silicate‐rich portions. It is best modeled as having formed by partial melting at temperatures of ?940–1150 °C, with incomplete separation of solid from liquid metal. Solid metal concentrated in the coarse vein areas and S‐bearing liquid metal concentrated in the silicate‐rich areas, possibly as a result of a surface energy effect. Both carbon and phosphorus must have been scavenged from large volumes and concentrated in metallic liquid. Graphite nodules formed by crystallization from this liquid, whereas phosphate formed by reaction between P‐bearing metal and clinopyroxene components, depleting clinopyroxene throughout much of the meteorite and growing coarse phosphate at metal‐silicate interfaces. Some phosphate probably crystallized from P‐bearing liquids, but most probably formed by solid‐state reaction at ?975‐725 °C. Phosphate‐forming and FeO‐reduction reactions were widespread in PV and entailed a change in the mineralogy of the stony portion on a large scale. Portales Valley experienced protracted annealing from supersolidus to subsolidus temperatures, probably by cooling at depth within its parent body, but the main differences between PV and H chondrites arose because maximum temperatures were higher in PV. A combination of a relatively weak shock event and elevated pre‐shock temperatures probably produced the vein‐and‐breccia texture, with endogenic heating being the main heat source for melting, and with stress waves from an impact event being an essential trigger for mobilizing metal. Portales Valley is best classified as an H7 metallic‐melt breccia of shock stage S1. The meteorite is transitional between more primitive (chondritic) and evolved (achondrite, iron) meteorite types and offers clues as to how differentiation could have occurred in some asteroidal bodies.  相似文献   

20.
Abstract– None of the well‐established nitrogen‐related IR absorption bands, common in synthetic and terrestrial diamonds, have been identified in the presolar diamond spectra. In the carbonado diamond spectra, only the single nitrogen impurity (C center) is identified and the assignments of the rest of the nitrogen‐related bands are still debated. It is speculated that the unidentified bands in the nitrogen absorption region are not induced by nitrogen, but rather by nitrogen‐hydrides because in the interstellar environment, nitrogen reacts with hydrogen and forms NH+; NH; NH2; NH3. Among these hydrides, the electronic configuration of NH+ is the closest to carbon. Thus, this ionized nitrogen‐mono‐hydride is the best candidate to substitute carbon in the diamond structure. The bands of the substitutional NH+ defect are deduced by redshifting the irradiation‐induced N+ bands due to the mass of the additional hydrogen. The six bands of the NH+ defects are identified in both the presolar and the carbonado diamond spectra. The new assignments identify all of the nitrogen‐related bands in the spectra, indicating that presolar and carbonado diamonds contain only single nitrogen impurities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号