首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— An impact crater 26.8 km in diameter, located in the northern lowlands (70.32°N, 266.45°E) at the base of the flanking slopes of the shield volcano Alba Patera, is characterized by highly unusual deposits on its southeastern floor and interior walls and on its southeastern rim. These include multiple generations of distinctive arcuate ridges about 115–240 m in width and lobate deposits extending down the crater wall and across the crater floor, forming a broad, claw‐like, ridged deposit around the central peak. Unusual deposits on the eastern and southeastern crater rim include frost, dunes, and a single distal arcuate ridge. Based on their morphology and geometric relationships, and terrestrial analogs from the Mars‐like Antarctic Dry Valleys, the floor ridges are interpreted to represent drop moraines, remnants of the previous accumulation of snow and ice, and formation of cold‐based glaciers on the crater rim. The configuration and superposition of the ridges indicate that the accumulated snow and ice formed glaciers that flowed down into the crater and across the crater floor, stabilized, covering an area of about 150 km2 produced multiple individual drop moraines due to fluctuation in the position of the stable glacier front. Superposition of a thin mantle and textures attributed to a recent ice‐age period (?0.5–2 Myr ago) suggest that the glacial deposits date to at least 4–10 Myr before the present. At least five phases of advance and retreat are indicated by the stratigraphic relationships, and these may be related to obliquity excursions. These deposits are in contrast to other ice‐related modification and degradation processes typical of craters in the northern lowlands, and may be related to the distinctive position of this crater in the past atmospheric circulation pattern, leading to sufficient preferential local accumulation of snow and ice to cause glacial flow.  相似文献   

2.
A survey of craters in the vicinity of Newton Basin, using high-resolution images from Mars Global Surveyor and Mars Odyssey, was conducted to find and analyze examples of gullies and arcuate ridges and assess their implications for impact crater degradation processes. In the Phaethontis Quadrangle (MC-24), we identified 225 craters that contain these features. Of these, 188 had gullies on some portion of their walls, 118 had arcuate ridges at the bases of the crater walls, and 104 contained both features, typically on the same crater wall. A major result is that the pole-facing or equator-facing orientation of these features is latitude dependent. At latitudes >44° S, equator-facing orientations for both ridges and gullies are prevalent, but at latitudes <44° S, pole-facing orientations are prevalent. The gullies and arcuate ridges typically occupy craters between ∼2 and 30 km in diameter, at elevations between −1 and 3 km. Mars Orbiter Laser Altimeter (MOLA) elevation profiles indicate that most craters with pole-facing arcuate ridges have floors sloping downward from the pole-facing wall, and some of these craters show asymmetry in crater rim heights, with lower pole-facing rims. These patterns suggest viscous flow of ice-rich materials preferentially away from gullied crater walls. Clear associations exist between gullies and arcuate ridges, including (a) geometric congruence between alcoves and sinuous arcs of arcuate ridges and (b) backfilling of arcuate ridges by debris aprons associated with gully systems. Chronologic studies suggest that gullied walls and patterned crater floor deposits have ages corresponding to the last few high obliquity cycles. Our data appear consistent with the hypothesis that these features are associated with periods of ice deposition and subsequent erosion associated with obliquity excursions within the last few tens of millions of years. Arcuate ridges may form from cycles of activity that also involve gully formation, and the ridges may be in part due to mass-wasted, ice-rich material transported downslope from the alcoves, which then interacts with previously emplaced floor deposits. Most observed gullies may be late-stage features in a degradational cycle that may have occurred many times on a given crater wall.  相似文献   

3.
Abstract— We present numerical simulations of crater formation under Martian conditions with a single near‐surface icy layer to investigate changes in crater morphology between glacial and interglacial periods. The ice fraction, thickness, and depth to the icy layer are varied to understand the systematic effects on observable crater features. To accurately model impact cratering into ice, a new equation of state table and strength model parameters for H2O are fitted to laboratory data. The presence of an icy layer significantly modifies the cratering mechanics. Observable features demonstrated by the modeling include variations in crater morphometry (depth and rim height) and icy infill of the crater floor during the late stages of crater formation. In addition, an icy layer modifies the velocities, angles, and volumes of ejecta, leading to deviations of ejecta blanket thickness from the predicted power law. The dramatic changes in crater excavation are a result of both the shock impedance and the strength mismatch between layers of icy and rocky materials. Our simulations suggest that many of the unusual features of Martian craters may be explained by the presence of icy layers, including shallow craters with well‐preserved ejecta blankets, icy flow related features, some layered ejecta structures, and crater lakes. Therefore, the cratering record implies that near‐surface icy layers are widespread on Mars.  相似文献   

4.
Abstract— The late Eocene Chesapeake Bay impact structure (CBIS) on the Atlantic margin of Virginia is one of the largest and best‐preserved “wet‐target” craters on Earth. It provides an accessible analog for studying impact processes in layered and wet targets on volatile‐rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ?85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the “inverted sombrero” morphology observed at some craters in layered targets. The distribution of crater‐fill materials in the CBIS is related to the morphology. Suevitic breccia, including pre‐resurge fallback deposits, is found in the central crater. Impact‐modified sediments, formed by fluidization and collapse of water‐saturated sand and silt‐clay, occur in the annular trough. Allogenic sediment‐clast breccia, interpreted as ocean‐resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat‐floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar‐sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles.  相似文献   

5.
Abstract The pattern of radial and concentric offset dikes at Sudbury strongly resembles fracture patterns in certain volcanically modified craters on the Moon. Since the Sudbury dikes apparently formed shortly after the impact event, this resemblance suggests that early endogenic modification at Sudbury was comparable to deformation in lunar floor-fractured craters. Although regional deformation has obscured many details of the Sudbury Structure, such a comparison of Sudbury with lunar floor-fractured craters provides two alternative models for the original size and surface structures of the Sudbury basin. First, the Sudbury date pattern can be correlated with fractures in the central peak crater Haldane (36 km in diameter). This comparison indicates an initial Sudbury diameter of between 100 and 140 km but requires loss of a central peak complex for which there is little evidence. Alternatively, comparison of the Sudbury dikes with fractures in the two-ring basin Schrödinger indicates an initial Sudbury diameter of at least ~ 180 km, which is in agreement with other recent estimates for the size of the Sudbury Structure. In addition to constraining the size and structure of the original Sudbury crater, these comparisons also suggest that crater modification may reflect different deformation mechanisms at different sizes. Most lunar floor-fractured craters are attributed to deformation over a shallow, crater-centered intrusion; however, there is no evidence for such an intrusion at Sudbury. Instead, melts from the evolving impact melt sheet probably entered fractures formed by isostatically-induced flexure of the crater floor. Since most of the lunar floor-fractured craters are too small (<100-km diameter) to induce significant isostatic adjustment, crater modification by isostatic uplift apparently is limited to only the largest of craters, whereas deformation over igneous intrusions dominates the modification of smaller craters.  相似文献   

6.
Abstract— Impact craters are not always circular; sometimes their rims are composed of several straight segments. Such polygonal impact craters (PICs) are controlled by pre‐existing target structures, mainly faults or other similar planes of weakness. In the Argyre region, Mars, PICs comprise ? 17% of the total impact crater population (>7 km in diameter), and PICs are relatively more common in older geologic units. Their formation is mainly controlled by radial fractures induced by the Argyre and Ladon impact basins, and to a lesser extent by the basin‐concentric fractures. Also basin‐induced conjugate shear fractures may play a role. Unlike the PICs, ridges and graben in the Argyre region are mostly controlled by Tharsis‐induced tectonism, with the ridges being concentric and graben radial to Tharsis. Therefore, the PICs primarily reflect an old impact basin‐centered tectonic pattern, whereas Tharsis‐centered tectonism responsible for the graben and the ridges has only minor influence on the PIC rim orientations. According to current models of PIC formation, complex PICs should form through a different mechanism than simple PICs, leading to different orientations of straight rim segments. However, when simple and complex PICs from same areas are studied, no statistically significant difference can be observed. Hence, in addition to enhanced excavation parallel to the strike of fractures (simple craters) and slumping along the fracture planes (complex craters), we propose a third mechanism involving thrusting along the fracture planes. This model is applicable to both simple and small complex craters in targets with some dominating orientations of structural weakness.  相似文献   

7.
Abstract— Impact cratering is an important geological process on Mars and the nature of Martian impact craters may provide important information as to the volatile content of the Martian crust. Terrestrial impact structures currently provide the only ground‐truth data as to the role of volatiles and an atmosphere on the impact‐cratering process. Recent advancements, based on studies of several well‐preserved terrestrial craters, have been made regarding the role and effect of volatiles on the impact‐cratering process. Combined field and laboratory studies reveal that impact melting is much more common in volatile‐rich targets than previously thought, so impact‐melt rocks, melt‐bearing breccias, and glasses should be common on Mars. Consideration of the terrestrial impact‐cratering record suggests that it is the presence or absence of subsurface volatiles and not the presence of an atmosphere that largely controls ejecta emplacement on Mars. Furthermore, recent studies at the Haughton and Ries impact structures reveal that there are two discrete episodes of ejecta deposition during the formation of complex impact craters that provide a mechanism for generating multiple layers of ejecta. It is apparent that the relative abundance of volatiles in the near‐surface region outside a transient cavity and in the target rocks within the transient cavity play a key role in controlling the amount of fluidization of Martian ejecta deposits. This study shows the value of using terrestrial analogues, in addition to observational data from robotic orbiters and landers, laboratory experiments, and numerical modeling to explore the Martian impact‐cratering record.  相似文献   

8.
Abstract— Observations of impact craters on Earth show that a water column at the target strongly influences lithology and morphology of the resultant crater. The degree of influence varies with the target water depth and impactor diameter. Morphological features detectable in satellite imagery include a concentric shape with an inner crater inset within a shallower outer crater, which is cut by gullies excavated by the resurge of water. In this study, we show that if oceans, large seas, and lakes existed on Mars for periods of time, marine‐target craters must have formed. We make an assessment of the minimum and maximum amounts of such craters based on published data on water depths, extent, and duration of putative oceans within “contacts 1 and 2,” cratering rate during the different oceanic phases, and computer modeling of minimum impactor diameters required to form long‐lasting craters in the seafloor of the oceans. We also discuss the influence of erosion and sedimentation on the preservation and exposure of the craters. For an ocean within the smaller “contact 2” with a duration of 100,000 yr and the low present crater formation rate, only ?1–2 detectable marine‐target craters would have formed. In a maximum estimate with a duration of 0.8 Gyr, as many as 1400 craters may have formed. An ocean within the larger “contact 1‐Meridiani,” with a duration of 100,000 yr, would not have received any seafloor craters despite the higher crater formation rate estimated before 3.5 Gyr. On the other hand, with a maximum duration of 0.8 Gyr, about 160 seafloor craters may have formed. However, terrestrial examples show that most marine‐target craters may be covered by thick sediments. Ground penetrating radar surveys planned for the ESA Mars Express and NASA 2005 missions may reveal buried craters, though it is uncertain if the resolution will allow the detection of diagnostic features of marine‐target craters. The implications regarding the discovery of marine‐target craters on Mars is not without significance, as such discoveries would help address the ongoing debate of whether large water bodies occupied the northern plains of Mars and would help constrain future paleoclimatic reconstructions.  相似文献   

9.
We present geologic evidence suggesting that after the development of Mars' cryolithosphere, the formation of aquifers in southwestern Chryse Planitia and their subsequent disruption led to extensive regional resurfacing during the Late Hesperian, and perhaps even during the Amazonian. In our model, these aquifers formed preferentially along thrust faults associated with wrinkle ridges, as well as along fault systems peripheral to impact craters. The characteristics of degraded wrinkle ridges and impact craters in southwestern Chryse Planitia indicate a profound role of subsurface volatiles and especially liquid water in the upper crust (the upper one hundred to a few thousands of meters). Like lunar wrinkle ridges, the martian ones are presumed to mark the surface extensions of thrust faults, but in our study area the wrinkle ridges are heavily modified. Wrinkle ridges and nearby plains have locally undergone collapse, and in other areas they are associated with domical intrusions we interpret as mud volcanoes and mud diapirs. In at least one instance, a sinuous valley emanates from a modified wrinkle ridge, further indicating hydrological influences on these thrust-fault-controlled features. A key must be the formation of volatile-rich crust. Primary crustal formation and differentiation incorporated juvenile volatiles into the global crust, but the crustal record here was then strongly modified by the giant Chryse impact. The decipherable rock record here begins with the Chryse impact and continues with the resulting basin's erosion and infilling, which includes outflow channel activity. We propose that in Simud Vallis surface flow dissection into the base of the cryolithosphere-produced zones where water infiltrated and migrated along SW-dipping strata deformed by the Chryse impact, thereby forming an extensive aquifer in southwestern Chryse Planitia. In this region, compressive stresses produced by the rise of Tharsis led to the formation of wrinkle ridges. Zones of high fracture density within the highly strained planes of the thrust faults underlying the wrinkle ridges formed regions of high permeability; thus, groundwater likely flowed and gathered along these tectonic structures to form zones of elevated permeability. Volatile depletion and migration within the upper crustal materials, predominantly along fault systems, led to structurally controlled episodic resurfacing in southwestern Chryse Planitia. The erosional modification of impact craters in this region is linked to these processes. This erosion is scale independent over a range of crater diameters from a few hundred meters to tens of kilometers. According to our model, pressurized water and sediment intruded and locally extruded and caused crustal subsidence and other degradational activity across this region. The modification of craters across this wide range of sizes, according to our model, implies that there was intensive mobilization of liquid water in the upper crust ranging from about one hundred to several thousand meters deep.  相似文献   

10.
Clark R. Chapman 《Icarus》1974,22(3):272-291
Computerized cratering-obliteration models are developed for use in interpreting planetary surface histories in terms of the diameter-frequency relations for craters classified by morphology. An application is made to a portion of the lunar uplands, revealing several episodes of blanketing, presumably due to the formation of some of the major basins.Application to Martian craters leads to the following picture of Martian cratering and obliteration history. During a probable period of intense early bombardment, craters were degraded by two processes: a depositional-type process connected with the declining cratering rate, and a process tending to flatten the largest craters (e.g., isostatic adjustment). During late stages of the early bombardment, or subsequent to it, there occurred a major relative episode of obliteration (probably atmosphere related), but it ceased concurrently with the massive (presumably volcanic) resurfacing of the cratered plains. Subsequent resurfacing episodes have occurred in the smooth plain terrains, but obliteration processes have been virtually absent in the low-latitude cratered terrains.Recent global Martian cratering interpretations of Hartmann and Soderblom are compared. Absolute cratering chronologies are only so good as knowledge of the absolute cratering flux on Mars. The crater data of Arvidson, Mutch, and Jones do not confirm the basis, whereby Soderblom requires the dominant Martian crater obliteration process to be coincident in time with the early bombardment. If the asteroidal-cometary impact flux on Mars has averaged five times the lunar flux during post-lunar-mare epochs, then the obliterative episode lasted about half a billion years and occurred about 1.5 × 109 yr ago.  相似文献   

11.
Two constraints placed upon the cratering flux at Mars by the SNC meteorites are examined: crystallization ages as a constraint on surface ages and cosmic ray exposure ages and number of impacts as a constraint on absolute rates. The crystallization ages of the SNC meteorites appear to constrain the Martian cratering rate to be 4xLunar or more if the parent lavas are in the north of Mars and the number of SNC ejecting impacts are small. If the SNCs result from a single impact that formed the Lyot basin then the cratering rate must be at least 7xLunar or higher to produce a basin age less than the SNC crystallization age because the basin ages are themselves determined by crater counting. Assuming multiple uncorrelated impacts for SNC ejection from Mars over 10 million years a cratering rate of approximately 4xLunar is also found for ejecting impacts that form craters over 12km in diameter. Therefore, both crystallization ages and ejection ages and number of impacts appear consistent with a 4xLunar cratering rate at Mars. The effect on Martian chronologies of such a high cratering rate is to place the SNC crystallization ages partly within the epoch of channel formation on Mars and to extend this liquid water epoch over much of Mars history.  相似文献   

12.
Abstract— The 50,000 year old, 1.8 km diameter Lonar crater is one of only two known terrestrial craters to be emplaced in basaltic target rock (the 65 million year old Deccan Traps). The composition of the Lonar basalts is similar to martian basaltic meteorites, which establishes Lonar as an excellent analogue for similarly sized craters on the surface of Mars. Samples from cores drilled into the Lonar crater floor show that there are basaltic impact breccias that have been altered by post‐impact hydrothermal processes to produce an assemblage of secondary alteration minerals. Microprobe data and X‐ray diffraction analyses show that the alteration mineral assemblage consists primarily of saponite, with minor celadonite, and carbonate. Thermodynamic modeling and terrestrial volcanic analogues were used to demonstrate that these clay minerals formed at temperatures between 130°C and 200°C. By comparing the Lonar alteration assemblage with alteration at other terrestrial craters, we conclude that the Lonar crater represents a lower size limit for impact‐induced hydrothermal activity. Based on these results, we suggest that similarly sized craters on Mars have the potential to form hydrothermal systems, as long as liquid water was present on or near the martian surface. Furthermore, the Fe‐rich alteration minerals produced by post‐impact hydrothermal processes could contribute to the minor iron enrichment associated with the formation of the martian soil.  相似文献   

13.
Abstract— The results of a systematic field mapping campaign at the Haughton impact structure have revealed new information about the tectonic evolution of mid‐size complex impact structures. These studies reveal that several structures are generated during the initial compressive outward‐directed growth of the transient cavity during the excavation stage of crater formation: (1) sub‐vertical radial faults and fractures; (2) sub‐horizontal bedding parallel detachment faults; and (3) minor concentric faults and fractures. Uplift of the transient cavity floor toward the end of the excavation stage produces a central uplift. Compressional inward‐directed deformation results in the duplication of strata along thrust faults and folds. It is notable that Haughton lacks a central topographic peak or peak ring. The gravitational collapse of transient cavity walls involves the complex interaction of a series of interconnected radial and concentric faults. While the outermost concentric faults dip in toward the crater center, the majority of the innermost faults at Haughton dip away from the center. Complex interactions between an outward‐directed collapsing central uplift and inward collapsing crater walls during the final stages of crater modification resulted in a structural ring of uplifted, intensely faulted (sub‐) vertical and/or overturned strata at a radial distance from the crater center of ?5.0–6.5 km. Converging flow during the collapse of transient cavity walls was accommodated by the formation of several structures: (1) sub‐vertical radial faults and folds; (2) positive flower structures and chaotically brecciated ridges; (3) rollover anticlines in the hanging‐walls of major listric faults; and (4) antithetic faults and crestal collapse grabens. Oblique strike‐slip (i.e., centripetal) movement along concentric faults also accommodated strain during the final stages of readjustment during the crater modification stage. It is clear that deformation during collapse of the transient cavity walls at Haughton was brittle and localized along discrete fault planes separating kilometer‐size blocks.  相似文献   

14.
Abstract— We use Mars Orbiter Laser Altimeter (MOLA) topographic data and Thermal Emission Imaging System (THEMIS) visible (VIS) images to study the cavity and the ejecta blanket of a very fresh Martian impact crater ?29 km in diameter, with the provisional International Astronomical Union (IAU) name Tooting crater. This crater is very young, as demonstrated by the large depth/diameter ratio (0.065), impact melt preserved on the walls and floor, an extensive secondary crater field, and only 13 superposed impact craters (all 54 to 234 meters in diameter) on the ?8120 km2 ejecta blanket. Because the pre‐impact terrain was essentially flat, we can measure the volume of the crater cavity and ejecta deposits. Tooting crater has a rim height that has >500 m variation around the rim crest and a very large central peak (1052 m high and >9 km wide). Crater cavity volume (i.e., volume below the pre‐impact terrain) is ?380 km3 the volume of materials above the pre‐impact terrain is ?425 km3. The ejecta thickness is often very thin (<20 m) throughout much of the ejecta blanket. There is a pronounced asymmetry in the ejecta blanket, suggestive of an oblique impact, which has resulted in up to ?100 m of additional ejecta thickness being deposited down‐range compared to the up‐range value at the same radial distance from the rim crest. Distal ramparts are 60 to 125 m high, comparable to the heights of ramparts measured at other multi‐layered ejecta craters. Tooting crater serves as a fresh end‐member for the large impact craters on Mars formed in volcanic materials, and as such may be useful for comparison to fresh craters in other target materials.  相似文献   

15.
Abstract– The majority of meteorite impacts occur at oblique incidence angles. However, many of the effects of obliquity on impact crater size and morphology are poorly understood. Laboratory experiments and numerical models have shown that crater size decreases with impact angle, the along‐range crater profile becomes asymmetric at low incidence angles, and below a certain threshold angle the crater planform becomes elliptical. Experimental results at approximately constant impact velocity suggest that the elliptical threshold angle depends on target material properties. Herein, we test the hypothesis that the threshold for oblique crater asymmetry depends on target material strength. Three‐dimensional numerical modeling offers a unique opportunity to study the individual effects of both impact angle and target strength; however, a systematic study of these two parameters has not previously been performed. In this work, the three‐dimensional shock physics code iSALE‐3D is validated against laboratory experiments of impacts into a strong, ductile target material. Digital elevation models of craters formed in laboratory experiments were created from stereo pairs of scanning electron microscope images, allowing the size and morphology to be directly compared with the iSALE‐3D craters. The simulated craters show excellent agreement with both the crater size and morphology of the laboratory experiments. iSALE‐3D is also used to investigate the effect of target strength on oblique incidence impact cratering. We find that the elliptical threshold angle decreases with decreasing target strength, and hence with increasing cratering efficiency. Our simulations of impacts on ductile targets also support the prediction from Chapman and McKinnon (1986) that cratering efficiency depends on only the vertical component of the velocity vector.  相似文献   

16.
Abstract– The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12 mm were accelerated to velocities of 2.5–7.8 km s?1, yielding craters with diameters between 3.9 and 40 cm. Results show that the target’s porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger‐scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size.  相似文献   

17.
Planetary atmospheres influence cratering rates at small diameters (∼2-250 m) by filtering impactor populations via ablation, aerobraking and breakup of entering objects. The atmosphere of Mars undergoes rapid and drastic obliquity-driven variations in density, corresponding to pressure variations between zero and several tens of millibars. Here a simulation is used to assess the fate of a large population of impactors interacting with the present and predicted past and future martian atmospheres. We find that even Mars's present atmosphere significantly reduces crater production rates at small diameters (<30 m) and past denser atmospheres would have affected cratering even more strongly, and to considerably larger diameters. These effects are increased if the inner Solar System's small impactor population contains significant numbers of icy, cometary bodies. Evidence of recent atmospheric density variations may be detectable in the martian small cratering record with future planned imaging capabilities. Because of martian atmospheric effects and variations, surface ages derived from counts of craters of less than about 250 m on Mars may be underestimated.  相似文献   

18.
Abstract– We present a case modeling study of impact crater formation in H2O‐bearing targets. The main goal of this work was to investigate the postimpact thermal state of the rock layers modified in the formation of hypervelocity impact craters. We present model results for a target consisting of a mixture of H2O‐ice and rock, assuming an ice/water content variable with depth. Our model results, combined with results from previous work using dry targets, indicate that for craters larger than about 30 km in diameter, the onset of postimpact hydrothermal circulation is characterized by two stages: first, the formation of a mostly dry, hot central uplift followed by water beginning to flow in and circulate through the initially dry and hot uplifted crustal rocks. The postimpact thermal field in the periphery of the crater is dependent on crater size: in midsize craters, 30–50 km in diameter, crater walls are not strongly heated in the impact event, and even though ice present in the rock may initially be heated enough to melt, overall temperatures in the rock remain below melting, undermining the development of a crater‐wide hydrothermal circulation. In large craters (with diameters more than 100 km or so), the region underneath the crater floor and walls is heated well above the melting point of ice, thus facilitating the onset of an extended hydrothermal circulation. These results provide preliminary constraints in characterizing the many water‐related features, both morphologic and spectroscopic, that high‐resolution images of Mars are now detecting within many Martian craters.  相似文献   

19.
Lunar irregular mare patches (IMPs) comprise dozens of small, distinctive, and enigmatic lunar mare features. Characterized by their irregular shapes, well-preserved state of relief, apparent optical immaturity, and few superposed impact craters, IMPs are interpreted to have been formed or modified geologically very recently (<~100 Ma; Braden et al. 2014 ). However, their apparent relatively recent formation/modification dates and emplacement mechanisms are debated. We focus in detail on one of the major IMPs, Sosigenes, located in western Mare Tranquillitatis, and dated by Braden et al. ( 2014 ) at ~18 Ma. The Sosigenes IMP occurs on the floor of an elongate pit crater interpreted to represent the surface manifestation of magmatic dike propagation from the lunar mantle during the mare basalt emplacement era billions of years ago. The floor of the pit crater is characterized by three morphologic units typical of several other IMPs, i.e., (1) bulbous mounds 5–10 m higher than the adjacent floor units, with unusually young crater retention ages, meters thick regolith, and slightly smaller subresolution roughness than typical mature lunar regolith; (2) a lower hummocky unit mantled by a very thin regolith and significantly smaller subresolution roughness; and (3) a lower blocky unit composed of fresh boulder fields with individual meter-scale boulders and rough subresolution surface texture. Using new volcanological interpretations for the ascent and eruption of magma in dikes, and dike degassing and extrusion behavior in the final stages of dike closure, we interpret the three units to be related to the late-stage behavior of an ancient dike emplacement event. Following the initial dike emplacement and collapse of the pit crater, the floor of the pit crater was flooded by the latest-stage magma. The low rise rate of the magma in the terminal stages of the dike emplacement event favored flooding of the pit crater floor to form a lava lake, and CO gas bubble coalescence initiated a strombolian phase disrupting the cooling lava lake surface. This phase produced a very rough and highly porous (with both vesicularity and macroporosity) lava lake surface as the lake surface cooled. In the terminal stage of the eruption, dike closure with no addition of magma from depth caused the last magma reaching shallow levels to produce viscous magmatic foam due to H2O gas exsolution. This magmatic foam was extruded through cracks in the lava lake crust to produce the bulbous mounds. We interpret all of these activities to have taken place in the terminal stages of the dike emplacement event billions of years ago. We attribute the unusual physical properties of the mounds and floor units (anomalously young ages, unusual morphology, relative immaturity, and blockiness) to be due to the unusual physical properties of the substrate produced during the waning stages of a dike emplacement event in a pit crater. The unique physical properties of the mounds (magmatic foams) and hummocky units (small vesicles and large void space) altered the nature of subsequent impact cratering, regolith development, and landscape evolution, inhibiting the typical formation and evolution of superposed impact craters, and maintaining the morphologic crispness and optical immaturity. Accounting for the effects of the reduced diameter of craters formed in magmatic foams results in a shift of the crater size–frequency distribution age from <100 Myr to billions of years, contemporaneous with the surrounding ancient mare basalts. We conclude that extremely young mare basalt eruptions, and resulting modification of lunar thermal evolution models to account for the apparent young ages of the IMPs, are not required. We suggest that other IMP occurrences, both those associated with pit craters atop dikes and those linked to fissure eruptions in the lunar maria, may have had similar ancient origins.  相似文献   

20.
Resolution of Voyager 1 and 2 images of the mid-sized, icy saturnian satellites was generally not much better than 1 km per line pair, except for a few, isolated higher resolution images. Therefore, analyses of impact crater distributions were generally limited to diameters (D) of tens of kilometers. Even with the limitation, however, these analyses demonstrated that studying impact crater distributions could expand understanding of the geology of the saturnian satellites and impact cratering in the outer Solar System. Thus to gain further insight into Saturn’s mid-sized satellites and impact cratering in the outer Solar System, we have compiled cratering records of these satellites using higher resolution CassiniISS images. Images from Cassini of the satellites range in resolution from tens m/pixel to hundreds m/pixel. These high-resolution images provide a look at the impact cratering records of these satellites never seen before, expanding the observable craters down to diameters of hundreds of meters. The diameters and locations of all observable craters are recorded for regions of Mimas, Tethys, Dione, Rhea, Iapetus, and Phoebe. These impact crater data are then analyzed and compared using cumulative, differential and relative (R) size-frequency distributions. Results indicate that the heavily cratered terrains on Rhea and Iapetus have similar distributions implying one common impactor population bombarded these two satellites. The distributions for Mimas and Dione, however, are different from Rhea and Iapetus, but are similar to one another, possibly implying another impactor population common to those two satellites. The difference between these two populations is a relative increase of craters with diameters between 10 and 30 km and a relative deficiency of craters with diameters between 30 and 80 km for Mimas and Dione compared with Rhea and Iapetus. This may support the result from Voyager images of two distinct impactor populations. One population was suggested to have a greater number of large impactors, most likely heliocentric comets (Saturn Population I in the Voyager literature), and the other a relative deficiency of large impactors and a greater number of small impactors, most likely planetocentric debris (Saturn Population II). Meanwhile, Tethys’ impact crater size-frequency distribution, which has some similarity to the distributions of Mimas, Dione, Rhea, and Iapetus, may be transitional between the two populations. Furthermore, when the impact crater distributions from these older cratered terrains are compared to younger ones like Dione’s smooth plains, the distributions have some similarities and differences. Therefore, it is uncertain whether the size-frequency distribution of the impactor population(s) changed over time. Finally, we find that Phoebe has a unique impact crater distribution. Phoebe appears to be lacking craters in a narrow diameter range around 1 km. The explanation for this confined “dip” at D = 1 km is not yet clear, but may have something to do with the interaction of Saturn’s irregular satellites or the capture of Phoebe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号