首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract— U-Th-Pb, Rb-Sr, and Sm-Nd isotopic signatures of corroded, but unaltered, black glassy tektites from Cretaceous-Tertiary (K-T) boundary rock on Haiti are not consistent with their derivation from an impact on MOR-derived oceanic crust or continental regions involving middle Proterozoic or older crustal material. Two single-grain and two batches of these tektites yielded present-day ?Nd = ?3.0 to ?3.4, ?Sr = +55 to 56, 206Pb/204Pb = 18.97; 207Pb/204Pb = 15.74; 208Pb/204Pb = 38.91 values, and Pb, Rb, Sr, Sm, and Nd concentrations of ~6, ~45, ~535, ~4.7, and ~22 ppm, respectively. Initial ?Nd and ?Sr values for the tektites are different from time-integrated Nd-Sr isotopic signatures for almost all oceanic crustal types. Age-corrected Pb isotopic values are similar to those for pelagic sediments with distinctly higher 207Pb/204Pb values compared to MORB. However, these results do not exclude the possibility of an oceanic impact site, if the tektites were derived from fine-grained sediments that typically overlie such regions, although other mineralogic and chemical evidence from K-T boundary debris suggests otherwise. Moreover, the Nd average crustal residence age of ~ 1080 Ma (TDM) for the black tektites eliminates impact sites on continental crustal regions involving middle Proterozoic or older rocks, or sedimentary rocks largely derived from them. Previously reported major and trace element data from the black tektites suggest that the source material was possibly sedimentary with a composition similar to average shale or graywacke. If this is the case, then the Nd isotopic data suggest that the source rocks were not older than Silurian (TCHUR = 400 Ma) in age, and were composed largely of young (< 1080 Ma) crustal material. Of the suspected K-T boundary impact sites, both the Manson (Iowa) and Chicxulub (Yucatan) structures occur in suitable lithologies to yield the Haitian black tektites, although neither structure has as yet proven to be the tektite source.  相似文献   

2.
Abstract— We report Sr-Nd isotope parameters, rare earth element (REE), and major element data for isolated findings of tektite-like objects from western Siberia (urengoites, South-Ural glass), as well as for two indochinites. The latter were recovered in Vietnam and their overall geochemical characteristics equal those of other tektites from the indochinite subgroup of the Australasian strewn field. The three urengoites (~24 Ma) are extremely silica-rich (89 to 96 wt% SiC2), and their REE abundances vary between 45 and 76 ppm. With LaN/YbN ranging from 7.6 to 10.4 and EuN/EU* between 0.69 and 0.75, their REE distribution patterns match that of average upper crust. The urengoites have present-day ?Sr of +155 to +174 and ?Nd ranging from ?18 to ?23. Their model ages in million years are: TSruR = 1200 up to 4060 and TNdcHUR = 1570 up to 2070. Data points for the urengoites plot colinearly in the Rb-Sr evolution diagram. The age corresponding to the slope is 183 ± 30 Ma (2s?), which is indistinguishable from the intercept age of 211 Ma in the TSrUR vs. l/fRb diagram. Rubidium-strontium and Sm-Nd systematics of the urengoites indicate a heterogeneous precursor material, derived from Paleoproterozoic continental crust, which underwent Rb/Sr fractionation and partial Sr isotope homogenization in Jurassic times. Any relation between the urengoites and the Haughton impact crater, having within 2s? errors an identical age, can be excluded on the basis of isotope relationships and geochemical data. The only known South-Ural glass (~6.2 Ma) is characterized by intermediate SiO2 (65 wt%), high Al2O3 (14 wt%) and CaO (12 wt%), and low FeOTOT (0.4 wt%) contents. This unique tektite-like object contains 110 ppm REE displaying a steeply negative C1 normalized distribution with LaN/YbN of 17, and EuN/Eu1 of 0.71. The Rb abundance (10 ppm) and Rb/Sr ratio are low, and combined with a “crustal” 87Sr/86Sr ratio of 0.722, yielding an unrealistic TSruR age of 2.5 Ga. The Rb-Sr systematics imply a rather recent parent/daughter element decoupling. The TNdCHUR age of the South-Ural glass is ~1690 Ma. Geochemical data suggest that urengoites and the South-Ural glass belong to two discrete groups of tektites, whose source craters remain to be discovered.  相似文献   

3.
Abstract— Late Eocene tektite material from DSDP site 612 is composed of angular to spherical tektites and microtektites containing abundant vesicles and a few unmelted to partially melted mineral inclusions. The major element compositions of the 612-tektites are generally comparable to those of North American tektites, but the physical features suggest that the DSDP-612 tektites were formed by less severe shock melting. The 87Sr/86Sr and 143Nd/144Nd compositions of 612-tektites: a) show much wider ranges than the tightly constrained group of North American tektites and microtektites, and b) are significantly different from those of other groups of tektites. The existence of large isotopic variations in tektites from DSDP site 612 requires that they were formed from a chemically and isotopically heterogeneous material in a regime that is distinctive from that of other groups of tektites. TNDCHUR and TSrUR model ages of the 612-tektites indicate that they were formed from a crustal source of late Precambrian mean age (800–1000 Ma) which in middle Palaeozoic time (?400 Ma) was further enriched in Rb/Sr during sedimentary processes. These source characteristics suggest that the impact which produced the 612-tektites occurred in rocks of the Appalachian orogeny or sediments derived from this orogenic belt. Potential source materials for both 612-tektites and North American tektites are present on the eastern and southeastern part of the North American continent and its adjacent shelf. The distinct isotopic differences between 612-tektites and North American tektites indicate that the two groups of tektites were either formed by the impact of more than one bolide in the same general area, or by a single impact event that sampled different layers.  相似文献   

4.
Abstract— During Leg 150 of the Ocean Drilling Project (ODP), two sites (903C and 904A) were cored that have sediments of the same biostratigraphic age as the upper Eocene tektite-bearing ejecta layer at Deep Sea Drilling Project (DSDP) Site 612. Core 45X from ODP Site 904A (~4 km north of Site 612) contains a 5 cm thick tektite-bearing ejecta layer, and Core 56 from Site 903C (~8 km north-northwest of Site 904) contains a 2 cm thick layer of impact ejecta without any tektite or impact glass. Shocked quartz and feldspar grains, with multiple sets of planar deformation features (PDFs), and abundant coesite-bearing grains are present at both sites. The major oxide contents, trace element compositions, and rare earth element (REE) patterns of the Site 904 tektites are similar to those of the Site 612 tektites and to North American tektites (especially bediasites). The ?Sr and ?Nd values for one composite tektite sample from Site 904 fall within the range previously obtained for the Site 612 tektites, which defines a linear trend that, if extrapolated, would intersect the values obtained for North American tektites. The water contents of eight tektite fragments from Site 904 range from 0.017 to 0.098 wt%, and, thus, are somewhat higher than is typical for tektites. The heavy mineral assemblages of the 63–125 μm size fractions from the ejecta layers at Sites 612, 903, and 904 are all similar. Therefore, we conclude that the ejecta layer at all three sites is from the same impact event and that the tektites at Sites 904 and 612 belong to the North American tektite strewn field. Clinopyroxene-bearing (cpx) spherules occur below, or in the lower part of, the main ejecta layer at all three sites. At all three sites, the cpx spherules have been partly or completely replaced with pyrite that preserved the original crystalline textures. Site 612, 903, and 904 cpx spherules are similar to those found in the Caribbean Sea, Gulf of Mexico, central equatorial Pacific, western equatorial Pacific, and eastern Indian Ocean. The cpx event appears to have preceded the North American tektite event by 10–15 ka or less. The fining-upward sequence at all three sites and concentration of the denser, unmelted impact ejecta at the top of the tektite layer at Sites 612 and 904 suggest that the tektite-bearing ejecta layers are not the result of downslope redeposition and that the unmelted ejecta landed after the glass. Geographic variations in thickness of the tektite-bearing ejecta layer, the lack of carbonate clasts in the ejecta layer, and the low CaO content of the tektite glass suggest that the ejecta (including the tektite glass) were derived from the Chesapeake Bay structure rather than from the Toms Canyon structure. A sharp decline in microfossil abundances suggests that local environmental changes caused by the impact may have had adverse effects on benthic foraminifera, radiolaria, sponges, and fish as well as the planktic foraminifera.  相似文献   

5.
Abstract— The 65 Ma Chicxulub impact structure, Mexico, with a diameter of ~180 km is the focus of geoscientific research because of its link to the mass extinction event at the Cretaceous‐Tertiary (K/T) boundary. Chicxulub, now buried beneath thick post‐impact sediments, is probably one of the best‐preserved terrestrial impact structures known. Because of its inaccessibility, only limited samples on the impact lithologies from a few drill cores are available. We report major element and Sr‐, Nd‐, O‐, and C‐isotopic data for Chicxulub impact‐melt lithologies and basement clasts in impact breccias of drill cores C‐1 and Y‐6, and for melt particles in the Chicxulub ejecta horizon at the K/T boundary in Beloc, Haiti. The melt lithologies with SiO2 ranging from 58 to ~63 wt% show significant variations in the content of Al, Ca, and the alkalies. In the melt matrix samples, δ13C of the calcite is about ?3%o. The δ18O values for the siliceous melt matrices of Y‐6 samples range from 9.9 to 12.4%o. Melt lithologies and the black Haitian glass have rather uniform 87Sr/86Sr ratios (0.7079 to 0.7094); only one lithic fragment displays 87Sr/86Sr of 0.7141. The Sr model ages TSrUR for most lithologies range from 830 to 1833 Ma; unrealistic negative model ages point to an open Rb‐Sr system with loss of Rb in a hydrothermal process. The 143Nd/144Nd ratios for all samples, except one basement clast with 143Nd/144Nd of 0.5121, cluster at 0.5123 to 0.5124. In an ?Nd‐?Sr diagram, impactites plot in a field delimited by ?Nd of ?2 to ?6, and ?Sr of 55 to 69. This field is not defined by the basement lithologies described to occur as lithic clasts in impact breccias and Cretaceous sediments. At least one additional intermediate to mafic precursor component is required to explain the data.  相似文献   

6.
Abstract– To better understand the impact cratering process and its environmental consequences at the local to global scale, it is important to know when in the geological record of an impact crater the impact‐related processes cease. In many instances, this occurs with the end of early crater modification, leaving an obvious sedimentological boundary between impactites and secular sediments. However, in marine‐target craters the transition from early crater collapse (i.e., water resurge) to postimpact sedimentation can appear gradual. With the a priori assumption that the reworked target materials of the resurge deposits have a different chemical composition to the secular sediments we use chemostratigraphy (δ13Ccarb, %Corg, major elements) of sediments from the Chesapeake Bay, Lockne, and Tvären craters, to define this boundary. We show that the end of impact‐related sedimentation in these cases is fairly rapid, and does not necessarily coincide with a visual boundary (e.g., grain size shift). Therefore, in some cases, the boundary is more precisely determined by chemostratigraphy, especially carbonate carbon isotope variations, rather than by visual inspection. It is also shown how chemostratigraphy can confirm the age of marine‐target craters that were previously determined by biostratigraphy; by comparing postimpact carbon isotope trends with established regional trends.  相似文献   

7.
Abstract— The 65 Ma old Chicxulub impact structure with a diameter of about 180 km is again in the focus of the geosciences because of the recently commenced drilling of the scientific well Yaxcopoil‐ 1. Chicxulub is buried beneath thick post‐impact sediments, yet samples of basement lithologies in the drill cores provide a unique insight into age and composition of the crust beneath Yucatàn. This study presents major element, Sr, and Nd isotope data for Chicxulub impact melt lithologies and clasts of basement lithologies in impact breccias from the PEMEX drill cores C‐1 and Y‐6, as well as data for ejecta material from the K/T boundaries at La Lajilla, Mexico, and Furlo, Italy. The impact melt lithologies have an andesitic composition with significantly varying contents of Al, Ca, and alkali elements. Their present day 87Sr/86Sr ratios cluster at about 0.7085, and 143Nd/144Nd ratios range from 0.5123 to 0.5125. Compared to the melt lithologies that stayed inside the crater, data for ejecta material show larger variations. The 87Sr/86Sr ratios range from 0.7081 for chloritized spherules from La Lajilla to 0.7151 for sanidine spherules from Furlo. The 143Nd/144Nd ratio is 0.5126 for La Lajilla and 0.5120 for the Furlo spherules. In an εtCHUR(Nd)‐εtUR(Sr) diagram, the melt lithologies plot in a field delimited by Cretaceous platform sediments, various felsic lithic clasts and a newly found mafic fragment from a suevite. Granite, gneiss, and amphibolite have been identified among the fragments from crystalline basement gneiss. Their 87Sr/86Sr ratios range from 0.7084 to 0.7141, and their 143Nd/144Nd ratios range from 0.5121 to 0.5126. The TNdDM model ages vary from 0.7 to 1.4 Ga, pointing to different source terranes for these rocks. This leads us to believe that the geological evolution and the lithological composition of the Yucatàn basement is probably more complex than generally assumed, and Gondwanan as well as Laurentian crust may be present in the Yucatàn basement.  相似文献   

8.
Abstract— Electron microprobe and laser ablation, inductively‐coupled plasma mass spectrometer analyses of 24 georgiaites show that these tektites are all Si‐rich (79–83 wt% SiO2) glasses with variable major and trace element abundances (e.g., FeO varies from 2.1 to 3.7 wt%). Glass compositions are similar to but not identical with average upper continental crust. For example, georgiaites are light rare earth element enriched with small negative Eu anomalies (Eu/Eu*=0.73‐0.86) and La‐Th‐Sc systematics are intermediate between that of Archean and post‐Archean continental crust. When the georgiaite data are placed in the context of data for all North American tektites, triangular arrays appear on some oxide‐oxide plots (e.g., FeO‐MgO). Large variations in refractory element abundances and ratios compared to the variation in SiO2 favors mixing over volatilization as a cause of the compositional variation. If all the tektites formed as a result of a single impact, then triangular arrays in oxide‐oxide variation diagrams require at least three source components. These components include a Si‐rich material, probably a quartz‐rich sand that was predominant in the formation of georgiaites. Two relatively silica‐poor and Fe‐rich components have compositional characteristics similar to shales and greywackes. The La‐Th‐Sc systematics of the georgiaites and most other North American tektites are distinctive and could potentially be used to link the tektites to Eocene sediments at the Chesapeake Bay impact structure.  相似文献   

9.
Abstract— Post‐impact crater morphology and structure modifications due to sediment loading are analyzed in detail and exemplified in five well‐preserved impact craters: Mjølnir, Chesapeake Bay, Chicxulub, Montagnais, and Bosumtwi. The analysis demonstrates that the geometry and the structural and stratigraphic relations of post‐impact strata provide information about the amplitude, the spatial distribution, and the mode of post‐impact deformation. Reconstruction of the original morphology and structure for the Mjølnir, Chicxulub, and Bosumtwi craters demonstrates the long‐term subsidence and differential compaction that takes place between the crater and the outside platform region, and laterally within the crater structure. At Mjølnir, the central high developed as a prominent feature during post‐impact burial, the height of the peak ring was enhanced, and the cumulative throw on the rim faults was increased. The original Chicxulub crater exhibited considerably less prominent peak‐ring and inner‐ring/crater‐rim features than the present crater. The original relief of the peak ring was on the order of 420–570 m (currently 535–575 m); the relief on the inner ring/crater rim was 300–450 m (currently ?700 m). The original Bosumtwi crater exhibited a central uplift/high whose structural relief increased during burial (current height 101–110 m, in contrast to the original height of 85–110 m), whereas the surrounding western part of the annular trough was subdued more that the eastern part, exhibiting original depths of 43–68 m (currently 46 m) and 49–55 m (currently 50 m), respectively. Furthermore, a quantitative model for the porosity change caused by the Chesapeake Bay impact was developed utilizing the modeled density distribution. The model shows that, compared with the surrounding platform, the porosity increased immediately after impact up to 8.5% in the collapsed and brecciated crater center (currently +6% due to post‐impact compaction). In contrast, porosity decreased by 2–3% (currently ?3 to ?4.5% due to post‐impact compaction) in the peak‐ring region. The lateral variations in porosity at Chesapeake Bay crater are compatible with similar porosity variations at Mjølnir crater, and are considered to be responsible for the moderate Chesapeake Bay gravity signature (annular low of ?8 mGal instead of ?15 mGal). The analysis shows that the reconstructions and the long‐term alterations due to post‐impact burial are closely related to the impact‐disturbed target‐rock volume and a brecciated region of laterally varying thickness and depth‐varying physical properties. The study further shows that several crater morphological and structural parameters are prone to post‐impact burial modification and are either exaggerated or subdued during post‐impact burial. Preliminary correction factors are established based on the integrated reconstruction and post‐impact deformation analysis. The crater morphological and structural parameters, corrected from post‐impact loading and modification effects, can be used to better constrain cratering scaling law estimates and impact‐related consequences.  相似文献   

10.
Tasmanian Darwin glass has a fusion age sensibly identical with that of Australasian tektites and it is reasonable to assume all were produced in the same event. Recently a number of new Darwin glass localities and an associated crater have been discovered. The glass stewnfield covers at least 400 km2 and there is a strong positive correlation between glass fragment size and abundance and proximity to the crater. The glass was distributed from some point near the crater, with the smallest pieces traveling furthest. This structure is apparently an impact crater of rather unusual configuration and fortuitous location. Our gravity survey reveals a closed sedimentary basin about 1000 meters in diameter. A centrally located drill hole penetrated 60 meters of lacustrine clays and 40 meters of mixed clay, sand and rock fragments. The hole was terminated at 100 meters in loose sand containing sand-sized fragments of Darwin glass and lechetelierite. The 100 meters of cored sediments accounts for only about half of the observed 3.5 milligal negative anomaly and there must be a substantial additional thickness of low density material at depth. Further drilling is essential to confirm an impact origin and to delineate the subsurface crater configuration. This information would be of great calibration value for theoretical modeling studies of explosive cratering. The Darwin strewnfield characteristics support the theory that the distribution of Australasian tektites was aided by an impact-generated, atmospheric blast wave (or waves). The stratigraphic position of glass below 100 meters of lake sediments is strong evidence that the postulated stratigraphic age of the Australian land tektites is incorrect.  相似文献   

11.
Single crystal (U‐Th)/He dating has been undertaken on 21 detrital zircon grains extracted from a core sample from Ocean Drilling Project (ODP) site 1073, which is located ~390 km northeast of the center of the Chesapeake Bay impact structure. Optical and electron imaging in combination with energy dispersive X‐ray microanalysis (EDS) of zircon grains from this late Eocene sediment shows clear evidence of shock metamorphism in some zircon grains, which suggests that these shocked zircon crystals are distal ejecta from the formation of the ~40 km diameter Chesapeake Bay impact structure. (U‐Th/He) dates for zircon crystals from this sediment range from 33.49 ± 0.94 to 305.1 ± 8.6 Ma (2σ), implying crystal‐to‐crystal variability in the degree of impact‐related resetting of (U‐Th)/He systematics and a range of different possible sources. The two youngest zircon grains yield an inverse‐variance weighted mean (U‐Th)/He age of 33.99 ± 0.71 Ma (2σ uncertainties n = 2; mean square weighted deviation = 2.6; probability [P] = 11%), which is interpreted to be the (U‐Th)/He age of formation of the Chesapeake Bay impact structure. This age is in agreement with K/Ar, 40Ar/39Ar, and fission track dates for tektites from the North American strewn field, which have been interpreted as associated with the Chesapeake Bay impact event.  相似文献   

12.
Abstract— Neodymium, strontium, and chromium isotopic studies of the LEW86010 angrite established its absolute age and the formation interval between its crystallization and condensation of Allende CAIs from the solar nebula. Pyroxene and phosphate were found to contain ~98% of its Sm and Nd inventory. A conventional 147Sm-143Nd isochron yielded an age of 4.53 ± 0.04 Ga (2 σ) and ?143 Nd = 0.45 ± 1.1. An 146Sm-142Nd isochron gives initial 146Sm/144Sm = 0.0076 ± 0.0009 and ?143 Nd = ?2.5 ± 0.4. The Rb-Sr analyses give initial 87Sr/86Sr (I87Sr) = 0.698972 ± 8 and 0.698970 ± 18 for LEW and ADOR, respectively, relative to 87Sr/86Sr = 0.71025 for NBS987. The difference, ΔI87Sr, between I87Sr for the angrites and literature values for Allende CAIs, corresponds to ~9 Ma of growth in a solar nebula with a CI chondrite value of 87Rb/86Sr = 0.91, or ~5 Ma in a nebula with solar photospheric 87Rb/86Sr = 1.51. Excess 53Cr from extinct 53Mn (t1/2 = 3.7 Ma) in LEW86010 corresponds to initial 53Mn/55Mn = 1.44 ± 0.07 × 10?6 and closure to Cr isotopic homogenization 18.2 ± 1.7 Ma after formation of Allende inclusions, assuming initial 53Mn/55Mn = 4.4 ± 1.0 × 10?5 for the inclusions as previously reported by the Paris group (Birck and Allegre, 1988). The 146Sm/144Sm value found for LEW86010 corresponds to solar system initial (146Sm/144Sm)o = 0.0080 ± 0.0009 for crystallization 8 Ma after Allende, the difference between Pb-Pb ages of angrites and Allende, or 0.0086 ± 0.0009 for crystallization 18 Ma after Allende, using the Mn-Cr formation interval. The isotopic data are discussed in the context of a model in which an undifferentiated “chondritic” parent body formed from the solar nebula ~2 Ma after Allende CAIs and subsequently underwent differentiation accompanied by loss of volatiles. Parent bodies with Rb/Sr similar to that of CI, CM, or CO chondrites could satisfy the Cr and Sr isotopic systematics. If the angrite parent body had Rb/Sr similar to that of CV meteorites, it would have to form slightly later, ~2.6 Ma after the CAIs, to satisfy the Sr and Cr isotopic systematics.  相似文献   

13.
Abstract— The osmium isotope ratios and platinum‐group element (PGE) concentrations of impact‐melt rocks in the Chesapeake Bay impact structure were determined. The impact‐melt rocks come from the cored part of a lower‐crater section of suevitic crystalline‐clast breccia in an 823 m scientific test hole over the central uplift at Cape Charles, Virginia. The 187Os/188Os ratios of impact‐melt rocks range from 0.151 to 0.518. The rhenium and platinum‐group element (PGE) concentrations of these rocks are 30–270x higher than concentrations in basement gneiss, and together with the osmium isotopes indicate a substantial meteoritic component in some impact‐melt rocks. Because the PGE abundances in the impact‐melt rocks are dominated by the target materials, interelemental ratios of the impact‐melt rocks are highly variable and nonchondritic. The chemical nature of the projectile for the Chesapeake Bay impact structure cannot be constrained at this time. Model mixing calculations between chondritic and crustal components suggest that most impact‐melt rocks include a bulk meteoritic component of 0.01–0.1% by mass. Several impact‐melt rocks with lowest initial 187Os/188Os ratios and the highest osmium concentrations could have been produced by additions of 0.1%–0.2% of a meteoritic component. In these samples, as much as 70% of the total Os may be of meteoritic origin. At the calculated proportions of a meteoritic component (0.01–0.1% by mass), no mixtures of the investigated target rocks and sediments can reproduce the observed PGE abundances of the impact‐melt rocks, suggesting that other PGE enrichment processes operated along with the meteoritic contamination. Possible explanations are 1) participation of unsampled target materials with high PGE abundances in the impact‐melt rocks, and 2) variable fractionations of PGE during syn‐ to post‐impact events.  相似文献   

14.
The Fe oxidation state and coordination number of 29 impact glass spherules recently recovered from the Transantarctic Mountains (Antarctica) have been determined by X‐ray absorption near edge structure (XANES) spectroscopy. Based on geochemical, isotopic, and fission track data, these spherules are considered as microtektites from the Australasian tektite/microtektite strewn field. Their find location is the farthest so far discovered from the possible source crater region, and their alkali content is the lowest compared with other published data on Australasian microtektite glasses. The Fe3+/(Fe2++Fe3+) ratio, determined from the analysis of the pre‐edge peak energy position and integrated intensity, is below 0.1 (±0.04) for all the samples, and is comparable to that of most tektites and microtektites from the Australasian strewn field. Also, the pre‐edge peak integrated intensity, which is sensitive to the average Fe coordination geometry, is comparable to that of other Australasian microtektites reported in the literature. The agreement of the Fe oxidation state and coordination number, between the Transantarctic Mountain microtektites (TAM) and the Australasian tektites and microtektites, further confirms the impact origin of these glass spherules and provides an independent suggestion that they represent a major extension southeastward of the Australasian strewn field. The fact that similar redox conditions are observed in tektites and microtektites within the Australasian strewn field regardless of the distance from the source crater area (up to approximately 11000 km) could be an important constraint for better understanding the different processes affecting microtektite formation and transport. The fact that the Fe oxidation state of microtektites does not increase with distance, as in the case of North American microtektites, means that thermal and redox histories of Australasian and TAM microtektites could differ significantly from those of North American microtektites.  相似文献   

15.
Two irghizites, three zhamanshinites and one sample each of lechatelierite, vein-quartz, Palaeogene silty clay and Palaeogene quartzite were analyzed using neutron activation analysis. A silicate analysis of the Palaeogene silty clay has also been performed, as well as an incomplete analysis of the Palaeogene quartzite from the Zhamanshin impact crater. The REE abundances of irghizites resemble those of sedimentary rocks. On the Köhler and Raaz diagram all projection points of irghizites lie inside the field of tektites, and indicate that they were derived from terrestrial sedimentary rocks. The Zhamanshin impact glasses may be divided into three types: (a) silica-rich zhamanshinites (x?SiO2 = 73.89%), (b) zhamanshinites (x?SiO2 = 54.34%), and (c) silica-poor zhamanshinites (x?SiO2 = 39.64%). These are also characterized by varying proportions of alkalis and Al. Mn and Ca contents. Irghizites and silica-rich zhamanshinites display a depletion of Eu. Zhamanshinites do not show this Eu depletion. Partial melting is assumed to be an important process in the origin of zhamanshinites.  相似文献   

16.
Elgygytgyn crater (lat. 67–30 N, long. 172–00 E) in remote northeastern Siberia is proposed as the meteorite impact site from which the Australasian tektite strewnfield was splashed. The following points support this interpretation: 1, Elgygytgyn very likely is an impact crater and is of adequate size, 18 km across, to generate tektites; 2, the apex of the strewnfield points towards this crater; 3, the terrane is Mesozoic which fits the age of the tektite parental material from Sr/Rb data; 4, compositional and specific gravity lineations within the strewnfield are directed, in part, toward this crater; 5, the high velocity tektites, australites, are distal with respect to this crater while the low velocity tektites, splash forms and Muong Nong tektites, are proximal; 6, the loess deposits and mixed acid/basic rocks of the impact site provide a suitable subgraywacke-type source material; 7, the erosional state of Elgygytgyn suggests that its age may well be in accordance with that of the Australasian tektite event, i.e., 700,000 years.  相似文献   

17.
Abstract High-Ti basalts from the Apollo collections span a range in age from 3.87 Ga to 3.55 Ga. The oldest of these are the common Apollo 11 Group B2 basalts which yield evidence of some of the earliest melting of the lunar mantle beneath Mare Tranquillitatis. Rare Group D high-Ti basalts from Mare Tranquillitatis have been studied in an attempt to confirm a postulated link with Group B2 basalts (Jerde et al., 1994). The initial Sr isotopic ratio of a known Group D basalt (0.69916 ± 3 at 3.85 Ga) lies at the lower end of the tight range for Group B2 basalts (87Sr/86Sr = 0.69920 to 0.69921). One known Group D basalt and a second postulated Group D basalt yield indistinguishable initial ?Nd (1.2 ± 0.6 and 1.2 ± 0.3) and again lie at the lower end of the range for the Group B2 basalts from Apollo 11 (+2.0 ± 0.4 to +3.9 ± 0.6, at 3.85 Ga). A third sample has isotopic (87Sr/86Sr = 0.69932 ± 2; ?Nd = 2.5 ± 0.4; at 3.59 Ga; as per Snyder et al., 1994b) and elemental characteristics similar to the Group A high-Ti basalts returned from the Apollo 11 landing site. Ages of 40Ar-39Ar have been determined for one known Group D basalt and a second postulated Group D basalt using step-heating with a continuous-wave laser. Suspected Group D basalt, 10002, 1006, yielded disturbed age spectra on two separate runs, which was probably due to 39Ar recoil effects. Using the “reduced plateau age” method of Turner et al. (1978), the ages derived from this sample were 3898 ± 19 and 3894 ± 19 Ma. Three separate runs of known Group D basalt 10002, 116 yielded 40Ar/39Ar plateau ages of 3798 ± 9 Ma, 3781 ± 8 Ma, and 3805 ± 7 Ma (all errors 2σ). Furthermore, this sample has apparently suffered significant 40Ar loss either due to solar heating or due to meteorite impact. The loss of a significant proportion of 40Ar at such a time means that the plateau ages underestimate the “true” crystallization age of the sample. Modelling of this Ar loss yields older, “true” ages of 3837 ± 18, 3826 ± 16, and 3836 ± 14 Ma. These ages overlap the ages of Group B2 high-Ti basalts (weighted average age = 3850 ± 20 Ma; range in ages = 3.80 to 3.90 Ga). The combined evidence indicates that the Group D and B2 high-Ti basalts could be coeval and may be genetically related, possibly through increasing degrees of melting of a similar source region in the upper mantle of the Moon that formed >4.2 Ga ago. The Group D basalts were melted from the source first and contained 3–5×more trapped KREEP-like liquid than the later (by possibly only a few million years) Group B2 basalts. Furthermore, the relatively LREE- and Rb-enriched nature of these early magmas may lend credence to the idea that the decay of heat-producing elements enriched in the KREEP-like trapped liquid of upper mantle cumulates, such as K, U, and Th, could have initiated widespread lunar volcanism.  相似文献   

18.
Ralph B. Baldwin 《Icarus》1981,45(3):554-563
From estimates of the total masses of tektites in three strewnfields, calculations by Orphal et al. (1980) of the amount of melt that could be ejected from impact craters, and equations relating kinetic energy of impact to crater diameter, it is possible to calculate minimum diameters of lunar craters capable of ejecting the liquid masses that could have formed the various tektite strewnfields. No lunar craters of the requisite sizes have been found that are young enough to correlate with the dates of formations of the strewnfields and it seems clear that the Moon must be eliminated as a source of tektites on the Earth. It is concluded that the associations of the Ivory Coast tektites with the Bosumtwi crater and the moldavites with the Rieskessel are real and the tektites are of terrestrial origin. It follows that if the Ivory Coast tektites came from the 10.5-km-wide Bosumtwi crater, the larger masses in the Australasian and North American strewnfields came from craters 17 km in diameter and between 33 and 65 km in diameter, respectively. No crater has yet been proven to be the parent of the Australisian tektites. The large crater that formed the North American tektites may not yet have been found, although the Mistastin Lake Crater may eventually be proven to be the source.  相似文献   

19.
Abstract— Three samples of Darwin Glass, an impact glass found in Tasmania, Australia at the edge of the Australasian tektite strewn field were dated using the 40Ar/39Ar single‐grain laser fusion technique, yielding isochron ages of 796–815 ka with an overall weighted mean of 816 ± 7 ka. These data are statistically indistinguishable from those recently reported for the Australasian tektites from Southeast Asia and Australia (761–816 ka; with a mean weighted age of 803 ± 3 ka). However, considering the compositional and textural differences and the disparity from the presumed impact crater area for Australasian tektites, Darwin Glass is more likely to have resulted from a distinct impact during the same period of time.  相似文献   

20.
Since the discovery of shatter cones (SCs) near the village of Agoudal (Morocco, Central High Atlas Mountains) in 2013, the absence of one or several associated circular structures led to speculation about the age of the impact event, the number, and the size of the impact crater or craters. Additional constraints on the crater size, age, and erosion rates are obtained here from geological, structural, and geophysical mapping and from cosmogenic nuclide data. Our geological maps of the Agoudal impact site at the scales of 1:30,000 (6 km2) and 1:15,000 (2.25 km2) include all known occurrences of SCs in target rocks, breccias, and vertical to overturned strata. Considering that strata surrounding the impact site are subhorizontal, we argue that disturbed strata are related to the impact event. Three types of breccias have been observed. Two of them (br1‐2 and br2) could be produced by erosion–sedimentation–consolidation processes, with no evidence for impact breccias, while breccia (br1) might be impact related. The most probable center of the structure is estimated at 31°59′13.73?N, 5°30′55.14?W using the concentric deviation method applied to the orientation of strata over the disturbed area. Despite the absence of a morphological expression, the ground magnetic and electromagnetic surveys reveal anomalies spatially associated with disturbed strata and SC occurrences. The geophysical data, the structural observations, and the area of occurrence of SCs in target rocks are all consistent with an original size of 1.4–4.2 km in diameter. Cosmogenic nuclide data (36Cl) constrain the local erosion rates between 220 ± 22 m Ma?1 and 430 ± 43 m Ma?1. These erosion rates may remove the topographic expression of such a crater and its ejecta in a time period of about 0.3–1.9 Ma. This age is older than the Agoudal iron meteorite age (105 ± 40 kyr). This new age constraint excludes the possibility of a genetic relationship between the Agoudal iron meteorite fall and the formation of the Agoudal impact site. A chronolgy chart including the Atlas orogeny, the alternation of sedimentation and erosion periods, and the meteoritic impacts is presented based on all obtained and combined data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号