首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Matthias Jakob  Steven Lambert   《Geomorphology》2009,107(3-4):275-284
Antecedent rainfall and short-term intense rainfall both contribute to the temporal occurrence of landslides in British Columbia. These two quantities can be extracted from the precipitation regimes simulated by climate models. This makes such models an attractive tool for use in the investigation of the effect of global warming on landslide frequencies.In order to provide some measure of the reliability of models used to address the landslide question, the present-day simulation of the antecedent precipitation and short-term rainfall using the daily data from the Canadian Centre for Climate Modelling and Analysis model (CGCM) is compared to observations along the south coast of British Columbia. This evaluation showed that the model was reasonably successful in simulating statistics of the antecedent rainfall but was less successful in simulating the short-term rainfall.The monthly mean precipitation data from an ensemble of 19 of the world's global climate models were available to study potential changes in landslide frequencies with global warming. Most of the models were used to produce simulations with three scenarios with different levels of prescribed greenhouse gas concentrations during the twenty-first century. The changes in the antecedent precipitation were computed from the resulting monthly and seasonal means. In order to deal with models' suspected difficulties in simulating the short-term precipitation and lack of daily data, a statistical procedure was used to relate the short-term precipitation to the monthly means.The qualitative model results agree reasonably well, and when averaged over all models and the three scenarios, the change in the antecedent precipitation is predicted to be about 10% and the change in the short-term precipitation about 6%. Because the antecedent precipitation and the short-term precipitation contribute to the occurrence of landslides, the results of this study support the prediction of increased landslide frequency along the British Columbia south coast during the twenty-first century.  相似文献   

2.
ABSTRACT

An attempt is made to explain the relationship of landslides to litho-tectonic and precipitation regimes. The possible influence of these factors on the dimensional pattern of landslides is also inferred. The Yamuna River valley, NW Himalaya, which traverses the Higher Himalaya (HH) and Lesser Himalaya (LH) rock mass, endures disastrous landslides and hence is taken as the case for study. To achieve the objectives, proxies like stream length gradient, topographic profile, steepness index, and ratio of valley floor width to valley height were used to infer a spatially varying tectonic regime, whereas rainfall data and Normalized Difference Vegetation Index were used to determine spatial differences in precipitation and vegetation variability, respectively. Dimensional patterns of landslides utilized the landslide area and volume. The higher reaches of the HH and lowest part of the LH show rockfall dominance associated with relatively high tectonic activity, whereas most of the debris slides coincide with regional thrusts. Total area and volume occupied by the landslides are ~1.5 ± 0.16 × 106 m2 and ~4.7 ± 1.2 × 106 m3, respectively. Dimensions of debris slides were found to be less influenced by the litho-tectonic and precipitation regimes, whereas the dimensions of rockfalls were found to be more sensitive to these conditions.  相似文献   

3.
Landslide hazard mapping is a fundamental tool for disaster management activities in mountainous terrains. The main purpose of this study is to evaluate the predictive power of weights-of-evidence modelling in landslide hazard assessment in the Lesser Himalaya of Nepal. The modelling was performed within a geographical information system (GIS), to derive a landslide hazard map of the south-western marginal hills of the Kathmandu Valley. Thematic maps representing various factors (e.g., slope, aspect, relief, flow accumulation, distance to drainage, soil depth, engineering soil type, landuse, geology, distance to road and extreme one-day rainfall) that are related to landslide activity were generated, using field data and GIS techniques, at a scale of 1:10,000. Landslide events of the 1970s, 1980s, and 1990s were used to assess the Bayesian probability of landslides in each cell unit with respect to the causative factors. To assess the accuracy of the resulting landslide hazard map, it was correlated with a map of landslides triggered by the 2002 extreme rainfall events. The accuracy of the map was evaluated by various techniques, including the area under the curve, success rate and prediction rate. The resulting landslide hazard value calculated from the old landslide data showed a prediction accuracy of > 80%. The analysis suggests that geomorphological and human-related factors play significant roles in determining the probability value, while geological factors play only minor roles. Finally, after the rectification of the landslide hazard values of the new landslides using those of the old landslides, a landslide hazard map with > 88% prediction accuracy was prepared. The methodology appears to have extensive applicability to the Lesser Himalaya of Nepal, with the limitation that the model's performance is contingent on the availability of data from past landslides.  相似文献   

4.
Rainfall thresholds for landsliding in the Himalayas of Nepal   总被引:5,自引:0,他引:5  
Landsliding of the hillslope regolith is an important source of sediment to the fluvial network in the unglaciated portions of the Himalayas of Nepal. These landslides can produce abrupt increases of up to three orders of magnitude in the fluvial sediment load in less than a day. An analysis of 3 years of daily sediment load and daily rainfall data defines a relationship between monsoonal rainfall and the triggering of landslides in the Annapurna region of Nepal. Two distinct rainfall thresholds, a seasonal accumulation and a daily total, must be overcome before landslides are initiated. To explore the geomorphological controls on these thresholds, we develop a slope stability model, driven by daily rainfall data, which accounts for changes in regolith moisture. The pattern of rainfall thresholds predicted by the model is similar to the field data, including the decrease in the daily rainfall threshold as the seasonal rainfall accumulation increases. Results from the model suggest that, for a given hillslope, regolith thickness determines the seasonal rainfall necessary for failure, whereas slope angle controls the daily rainfall required for failure.  相似文献   

5.
At the end of March 2006, the Czech Republic (CZ) witnessed a fast thawing of an unusually thick snow cover in conjunction with massive rainfall. Most watercourses suffered floods, and more than 90 shallow landslides occurred in the Moravian region of Eastern CZ, primarily in non-forested areas. This region, geologically part of the Outer Western Carpathians, is prone to landslides because the bedrock is highly erodible Mesozoic and Tertiary flysch.The available meteorological data (depth of snow, water equivalent of the snow, cumulative rainfall, air and soil temperatures) from five local weather stations were used to construct indices quantitatively describing the snow thaw. Among these, the Total Cumulative Precipitation (TCP) combines the amount of water from both thawing snow and rainfall. This concurrence of rain and runoff from snow melt was the decisive factor in triggering the landslides in the spring.The TCP index was applied to data of snow thaw periods for the last 20 years, when no landslides were recorded. This was to establish the safe threshold of TCP without landslides. The calculated safe threshold value for the region is ca. 100 mm of water delivered to the soil during the spring thaw (corresponding to ca. 11 mm day− 1). In 2006, 10% of the landslides occurred under or at 100 mm of TCP. The upper value of 155 mm covered all of the landslides.  相似文献   

6.
7.
8.
Debris flows generated during rain storms on recently burned areas have destroyed lives and property throughout the Western U.S. Field evidence indicate that unlike landslide-triggered debris flows, these events have no identifiable initiation source and can occur with little or no antecedent moisture. Using rain gage and response data from five fires in Colorado and southern California, we document the rainfall conditions that have triggered post-fire debris flows and develop empirical rainfall intensity–duration thresholds for the occurrence of debris flows and floods following wildfires in these settings. This information can provide guidance for warning systems and planning for emergency response in similar settings.Debris flows were produced from 25 recently burned basins in Colorado in response to 13 short-duration, high-intensity convective storms. Debris flows were triggered after as little as six to 10 min of storm rainfall. About 80% of the storms that generated debris flows lasted less than 3 h, with most of the rain falling in less than 1 h. The storms triggering debris flows ranged in average intensity between 1.0 and 32.0 mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for floods and debris flows sufficiently large to pose threats to life and property from recently burned areas in south-central, and southwestern, Colorado are defined by: I = 6.5D 0.7 and I = 9.5D 0.7, respectively, where I = rainfall intensity (in mm/h) and D = duration (in hours).Debris flows were generated from 68 recently burned areas in southern California in response to long-duration frontal storms. The flows occurred after as little as two hours, and up to 16 h, of low-intensity (2–10 mm/h) rainfall. The storms lasted between 5.5 and 33 h, with average intensities between 1.3 and 20.4 mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for life- and property-threatening floods and debris flows during the first winter season following fires in Ventura County, and in the San Bernardino, San Gabriel and San Jacinto Mountains of southern California are defined by I = 12.5D0.4, and I = 7.2D0.4, respectively. A threshold defined for flood and debris-flow conditions following a year of vegetative recovery and sediment removal for the San Bernardino, San Gabriel and San Jacinto Mountains of I = 14.0D0.5 is approximately 25 mm/h higher than that developed for the first year following fires.The thresholds defined here are significantly lower than most identified for unburned settings, perhaps because of the difference between extremely rapid, runoff-dominated processes acting in burned areas and longer-term, infiltration-dominated processes on unburned hillslopes.  相似文献   

9.
The Mw 7.6 October 8, 2005 Kashmir earthquake triggered several thousand landslides throughout the Himalaya of northern Pakistan and India. These were concentrated in six different geomorphic–geologic–anthropogenic settings. A spatial database, which included 2252 landslides, was developed and analyzed using ASTER satellite imagery and geographical information system (GIS) technology. A multi-criterion evaluation was applied to determine the significance of event-controlling parameters in triggering the landslides. The parameters included lithology, faults, slope gradient, slope aspect, elevation, land cover, rivers and roads. The results showed four classes of landslide susceptibility. Furthermore, they indicated that lithology had the strongest influence on landsliding, particularly when the rock is highly fractured, such as in shale, slate, clastic sediments, and limestone and dolomite. Moreover, the proximity of the landslides to faults, rivers, and roads was also an important factor in helping to initiate failures. In addition, landslides occurred particularly in moderate elevations on south facing slopes. Shrub land, grassland, and also agricultural land were highly susceptible to failures, while forested slopes had few landslides. One-third of the study area was highly or very highly susceptible to future landsliding and requires immediate mitigation action. The rest of the region had a low or moderate susceptibility to landsliding and remains relatively stable. This study supports the view that (1) earthquake-triggered landslides are concentrated in specific zones associated with event-controlling parameters; and (2) in the western Himalaya deforestation and road construction contributed significantly to landsliding during and shortly after earthquakes.  相似文献   

10.
11.
Landslides triggered by rainfall are the cause of thousands of deaths worldwide every year. One possible approach to limit the socioeconomic consequences of such events is the development of climatic thresholds for landslide initiation. In this paper, we propose a method that incorporates antecedent rainfall and streamflow data to develop a landslide initiation threshold for the North Shore Mountains of Vancouver, British Columbia. Hydroclimatic data were gathered for 18 storms that triggered landslides and 18 storms that did not. Discriminant function analysis separated the landslide-triggering storms from those storms that did not trigger landslides and selected the most meaningful variables that allow this separation. Discriminant functions were also developed for the landslide-triggering and nonlandslide-triggering storms. The difference of the discriminant scores, ΔCS, for both groups is a measure of landslide susceptibility during a storm. The variables identified that optimize the separation of the two storm groups are 4-week rainfall prior to a significant storm, 6-h rainfall during a storm, and the number of hours 1 m3/s discharge was exceeded at Mackay Creek during a storm. Three thresholds were identified. The Landslide Warning Threshold (LWT) is reached when ΔCS is −1. The Conditional Landslide Initiation Threshold (CTLI) is reached when ΔCS is zero, and it implies that landslides are likely if 4 mm/h rainfall intensity is exceeded at which point the Imminent Landslide Initiation Threshold (ITLI) is reached. The LWT allows time for the issuance of a landslide advisory and to move personnel out of hazardous areas. The methodology proposed in this paper can be transferred to other regions worldwide where type and quality of data are appropriate for this type of analysis.  相似文献   

12.
On April 27, 1993, a large landslide in the Tully Valley, Onondaga County, NY, destroyed three houses and resulted in the evacuation of four others; it also triggered a loss of potable drinking water for about 15 homes north of the slide area and affected a total of 20 ha of land. In the 7 years following this slide, several studies have been conducted by federal and state environmental agencies and by local universities. The goal of these investigations has been to determine what caused this slide, document the history of past landslides in the region, and establish whether future slides are likely to occur. This paper reports on the results of these investigations and examines their effect on the Tully Valley community.  相似文献   

13.
An integrated model for predicting rainfall-induced landslides   总被引:2,自引:0,他引:2  
This study proposes a novel method that combines a deterministic slope stability model and a statistical model for predicting rainfall-induced landslides. The method first uses the deterministic model to derive the rainfall rate critical to induce slope failure for each land unit. Then it calculates the difference between the critical rainfall threshold and estimated rainfall intensity. Using the difference and estimated rainfall duration as explanatory variables, the method derives a logit (integrated) model to compute landslide occurrence probabilities. To demonstrate the effectiveness of this method, the study used radar rainfall estimates and landslides associated with a typhoon (tropical cyclone) to develop the integrated model and the same types of data associated with another typhoon to validate the model. The model had a modified success rate of 84.0% for predicting landslides and stable areas, and model validation yielded a modified success rate of 87.4%. Both rates were better than those from the critical rainfall model. The main advantage of the integrated model lies in its use of rainfall variables that are not included in calculating the critical rainfall. Also, as a probabilistic model, the integrated model is better suited for decision-making in watershed management. This study has advanced the method for predicting rainfall-triggered landslides.  相似文献   

14.
TRMM数据在中国降雨侵蚀力计算中的应用   总被引:1,自引:0,他引:1  
王凯  陈璐  马金辉  刘飞 《干旱区地理》2015,38(5):948-959
长时间序列降雨过程资料的获取一直是降雨侵蚀力计算中的一个难题。尝试利用地面实测站点数据分别对TRMM(Tropical Rainfall Measuring Mission)卫星的3B43和3B42数据进行回归建模和订正,并采用订正后的3 h平均降雨强度代替30 min最大降雨强度,同时基于TRMM数据的EI180的降雨侵蚀力算法,计算出了全国南北纬50°范围(TRMM覆盖区)内2013年月、季和年降雨侵蚀力;最后分别计算了省域和区域尺度下的降雨侵蚀力对全国尺度下的结果进行对比验证。结果表明:(1) TRMM降水数据比地面站点观测的降水量略大,但与实测站点数据具有很好的线性回归关系,其季尺度决定系数R2均较高,由此也说明了TRMM数据可以很好地反映全国范围内降雨的季节性变化。(2)利用订正后的TRMM3B42数据计算出研究区内的年均降雨侵蚀力为536.02 MJ·mm·hm-2·h-1·a-1,其降雨侵蚀主要集中在5~8月份。(3) 2013年全国降雨侵蚀变化趋势由东南向西北方向逐渐降低,且沿海省份较内陆省份降雨侵蚀较高。(4)通过对年降雨侵蚀力结果与实测站点降雨量以及订正的TRMM降水数据分析表明,降雨侵蚀力与降水之间存在着紧密的二次非线性关系。(5)通过尺度验证,其中省域尺度验证误差为8.34%,区域尺度误差仅为0.24%,由此说明了TRMM数据在不同尺度下均具有良好的适应性,同时也验证了方法在不同尺度下的有效性。该方法为有效解决土壤侵蚀中降雨强度计算资料缺乏的瓶颈,同时也为降雨侵蚀力的计算提供了一条有效的途径。  相似文献   

15.
Sedimentary impacts from landslides in the Tachia River Basin, Taiwan   总被引:1,自引:0,他引:1  
Chien-Yuan Chen   《Geomorphology》2009,105(3-4):355-365
A case study of coseismic landslides and post-seismic sedimentary impacts of landslides due to rainfall events was conducted in the Tachia River basin, Taichung County, central Taiwan. About 3000 coseismic landslides occurred in the basin during the ML 7.3 Chi-Chi earthquake in 1999. The deposits from these landslides provided material for numerous debris flows induced by subsequent rainfall events. The estimated 4.1 × 107 m3 of landslide debris produced in the upland area caused sediment deposition in riverbeds, and flash floods inundated downstream areas with sediment during torrential rains. The landslide frequency-size distributions for the coseismic landslides and the subsequent rainfall-induced landslides were analyzed to determine the sediment budgets of the post-seismic geomorphic response in the landslide-dominated basin. Both the coseismic and the rainfall-induced landslides show a power–law frequency-size distribution with a rollover. It was found that the rainfall-induced landslide magnitude was smaller than the coseismic one, and that both have comparable negative scaling exponents in cumulative form, of about − 2.0 for larger landslides (> 10− 2 km2). This may be attributed to ongoing movement or reactivation of old landslides, and a natural stabilisation of small landslides between 10− 4 and 10− 2 km2. It is proposed that the characteristics of geological formations and rainfall as well as changes in landslide area are reflected in the power–law distribution.  相似文献   

16.
The work aims at identifying susceptible areas and pluviometric triggering scenarios at a regional scale in Calabria (Italy), with reference to shallow landsliding events. The proposed methodology follows a statistical approach and uses a database linked to a GIS that has been created to support the various steps of spatial data management and manipulation. The shallow landslide predisposing factors taken into account are derived from (i) the 40-m digital terrain model of the region, an  15,075 km2 extension; (ii) outcropping lithology; (iii) soils; and (iv) land use. More precisely, a map of the slopes has been drawn from the digital terrain model. Two kinds of covers [prevalently coarse-grained (CG cover) or fine-grained (FG cover)] were identified, referring to the geotechnical characteristics of geomaterial covers and to the lithology map; soilscapes were drawn from soil maps; and finally, the land use map was employed without any prior processing.Subsequently, the inventory maps of some shallow landsliding events, totaling more than 30,000 instabilities of the past and detected by field surveys and photo aerial restitution, were employed to calibrate the relative importance of these predisposing factors.The use of single factors (first level analysis) therefore provides three different susceptibility maps. Second level analysis, however, enables better location of areas susceptible to shallow landsliding events by crossing the single susceptibility maps.On the basis of the susceptibility map obtained by the second level analysis, five different classes of susceptibility to shallow landsliding events have been outlined over the regional territory: 8.9% of the regional territory shows very high susceptibility, 14.3% high susceptibility, 15% moderate susceptibility, 3.6% low susceptibility, and finally, about 58% very low susceptibility.Finally, the maps of two significant shallow landsliding events of the past and their related rainfalls have been utilized to identify the relevant pluviometric triggering scenarios. By using 205 daily rainfall series, different triggering pluviometric scenarios have been identified with reference to CG and FG covers: a value of 365 mm of the total rainfall of the event and/or 170 mm/d of the rainfall maximum intensity and a value of 325 mm of the total rainfall of the event and/or 158 mm/d of the rainfall maximum intensity are able to trigger shallow landsliding events for CG and FG covers, respectively.The results obtained from this study can help administrative authorities to plan future development activities and mitigation measures in shallow landslide-prone areas. In addition, the proposed methodology can be useful in managing emergency situations at a regional scale for shallow landsliding events triggered by intense rainfalls; through this approach, the susceptibility and the pluviometric triggering scenario maps will be improved by means of finer calibration of the involved factors.  相似文献   

17.
我国喜马拉雅山区冰湖扩张特征及其气候意义   总被引:4,自引:1,他引:4  
分析冰湖扩张特征和扩张方式及其气候意义,有利于认识冰川-冰湖-气候三者的变化关系和冰湖溃决灾害危险性程度。基于大比例尺地形图、DEM、ASTER影像等数据,分析近30年来我国喜马拉雅山区不同海拔高度冰湖变化的特征及冰湖-母冰川的相对位置的变化关系,探讨其气候效应。结果显示:(1) 存在冰湖的面积增大是冰湖面积扩张的主要贡献者,占总面积净增量的67%,新增湖的面积占总面积净增量的33%;(2) 不同高度带冰湖面积多呈扩张态势,净增面积在5000~5300 m出现峰值,指示气候变化的垂直差异性;(3) 在2000s 母冰川-冰湖距离为0 的冰湖,数量占扩张冰湖总数的19%,而其冰湖面积增量却占了总面积增量的60%,为冰湖扩张的主体,反映出冰湖与母冰川关系越紧密,气候效应越强烈,冰湖面积增加越显著。  相似文献   

18.
19.
20.
黄河三角洲造陆过程中的陆域水沙临界条件研究   总被引:26,自引:5,他引:26  
许炯心 《地理研究》2002,21(2):163-170
黄河三角洲发育是河口区河流动力及陆域物质通量与海洋动力及海域物质通量相互作用的产物 ,三角洲造陆速率取决于上述两方面的对比关系。当上述两方面处于平衡时 ,三角洲造陆处于临界状态 ,即净造陆速率为零 ,与之相联系的入海泥沙量和径流量可视为黄河三角洲造陆过程的临界水沙条件。运用经验统计方法估算出 :当入海年沙量Qs为 2 78亿t/a、入海年水量Qw为 76 7亿m3时 ,或者当关系式 3 1934Qs+ 0 0 85 6Qw=17 94得到满足时 ,黄河三角洲造陆过程处于临界平衡状态。在黄河流域的环境管理中 ,应将上述两项临界值作为约束条件。黄河流域生态用水量的内涵应予以扩展 ,维持三角洲造陆平衡所必须的入海径流量 ,应作为黄河流域的生态用水量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号