首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
2.
This study explores the microphysical responses to a cloud seeding operation in the Sanjiangyuan region, China. The cloud seeding was performed using a zigzag flight pattern, while the detection phase was accomplished using a back-and-forth flight pattern through the top of a stratocumulus layer. Global Position System(GPS) and Particle Measuring System(PMS) data obtained during the operation are used to determine the efective cloud area before and after the operation, diferentiate the phase states of cloud particles, and analyze changes in the concentrations of liquid cloud particles and ice crystals, the evolution of the cloud particle spectrum, and the content of supercooled water. The median diameter of liquid cloud particles in the area of the cloud-seeding operation was 3.5–18.5 μm, most cloud particles observed in the 21.5–45.5-μm size regime were ice crystals, while all particles of size 50 μm and above were in the ice phase. Changes in the concentration and typical diameter of cloud particles within 36 km downwind of the cloudseeding operation did not exceed natural fluctuations in the cloud area before the operation; however, the concentration of liquid cloud particles decreased substantially in areas with high concentrations of supercooled water(concentrations of supercooled water exceeding 0.01 g m 3). The concentration of ice crystals within the measuring range of the Forward Scattering Spectrometer Probe(FSSP) increased substantially, the water content of ice-phase particles increased, and the average supercooled water content in the cloud decreased from(68.3± 23.1)% before the operation to(34.2± 12.4)%. The efects of cloud seeding were more pronounced in parts of the cloud where the content of supercooled water was higher. Little to no efects were observed in parts of the cloud with low concentrations of supercooled water.  相似文献   

3.
A case of hailstorm process occurring on 24 June 2006 in northwestern China was studied using satellite retrieval methodology. The particle effective radius (re) in the cloud tops was calculated by the reflectance in the 3.7μm channel, and cloud-top microphysical properties were vividly represented using the RGB visual multispectral classification scheme. The microphysical zones of clouds and the processes of hail formation and development are inferred using the relations of cloud-top temperature (T) versus re for the tops of convective clouds. The results show that particle effective radius was smaller near the cloud base of hailstorm. There was a deep zone of diffusional droplet growth at the low level where the particles grew slowly with height, and there existed an evident area of small ice particles in the cloud top, suggesting the existence of a strong updraft in the clouds. The low glaciated temperature indicated a great depth from the cloud base to the glaciation height, which provided a deep layer of supercooled water for hail growth.  相似文献   

4.
Cloud microphysical data observed with PMS probes have been combined with radar and other in-situdata collected by a NOAA P-3 aircraft that flew through the stratiform and transition regions of a mesoscaleconvective complex(MCC).The combined data have been analyzed with respect to the mescscale structureof the storm systems.The characteristics of ice particles in the transition and stratiform regions were quitediffereat.The ice particle concentrations in the transition region were about 4 to 6 times that found in thestratiform region,and the size of ice particles in the stratiform region was about twice that in the transitionregion.The relatively lower radar reflectivity in the transition region is a result of smaller particle sizes.Themain precipitation particle growth mechanisms are riming and aggregation in the transition region ard theaggregation process predominates in the stratiform region referred from the microphysical structures.The ag-gregation starts in the upper,colder lev(?)ls but becomes more efficient as the particles approach the melting layer.  相似文献   

5.
In order to improve understanding of deep convective clouds over the Tibetan Plateau, characteristics of vertical structure of a deep strong convective cloud over Naqu station and a deep weak convective cloud approximately 100 km to the west of Naqu station, which occurred over 1300-1600 Beijing Time (BT) 9 July 2014 during the Third Tibetan Plateau Atmospheric Science Experiment (TIPEX-Ⅲ), are analyzed, based on multi-source satellite data from TRMM, CloudSat, and Aqua, and radar data from ground-based vertically pointing radars (C-band frequency-modulated continuous-wave radar and KA-band millimeter wave cloud radar). The results are as follows.(1) The horizontal scales of both the deep strong and deep weak convective clouds were small (10-20 km), and their tops were high[15-16 km above sea level (ASL)]. Across the level of 0℃ isotherm in the deep strong convective cloud, the reflectivity increased rapidly, suggesting that the melting process of solid precipitation particles through the 0℃ level played an important role. A bright band located at 5.5 km ASL (i.e., 1 km above ground level) appeared during the period of convection weakening.(2) The reflectivity values from TRMM precipitation radar below 11 km were found to be overestimated compared to those derived from the C-band frequency-modulated continuous-wave radar.(3) Deep convective clouds were mainly ice clouds, and there were rich small ice particles above 10 km, while few large ice particles were found below 10 km. The microphysical processes of deep strong and deep weak convective clouds mainly included mixed-phase process and glaciated process, and the mixed-phase process can be divided into two types:one was the rimming process below the level of -25℃(deep strong convective cloud) or -29℃(deep weak convective cloud) and the other was aggregation and deposition process above that level. The latter process was accompanied with fast increase in ice particle effective radius. The above evidence from space-based and ground-based observational data further clarify the characteristics of vertical structure of deep convective clouds over the Tibetan Plateau, and provide a basis for the evaluation of simulation results of deep convective clouds by cloud models.  相似文献   

6.
An extraordinary rainstorm that occurred in Beijing on 21 July 2012 was simulated using the Weather Research and Forecasting model. The results showed that:(1) The two precipitation phases were based on a combination of cold cloud processes and warm cloud processes. The accumulated conversion amount and conversion rate of microphysical processes in the warm-area phase were all much larger than those in the cold front phase.(2) 72.6% of rainwater was from the warm-area phase. Rainwater mainly came from the melting of graupel and the melting of snow, while the accretion of cloud water by rain ranked second.(3) The net heating rate with height appeared as an overall warming with two strong heating centers in the lower and middle layers of the troposphere and a minimum heating center around the melting layer. The net heating effect in the warm-area phase was stronger than that in the cold front phase.(4) Warm cloud processes contributed most to latent heat release, and the thermal effect of cold cloud processes on the storm in the cold front phase was enhanced compared to that in the warm-area phase.(5) The melting of graupel and snow contributed most to latent heat absorption, and the effect of the evaporation of rainwater was significantly reduced in the cold front phase.  相似文献   

7.
宗蓉  刘黎平  银燕 《大气科学进展》2013,30(5):1275-1286
Cloud properties were investigated based on aircraft and cloud radar co-observation conducted at Yitong, Jilin, Northeast China. The aircraft provided in situ measurements of cloud droplet size distribution, while the millimeter-wavelength cloud radar vertically scanned the same cloud that the aircraft penetrated. The reflectivity factor calculated from aircraft measurements was compared in detail with simultaneous radar observations. The results showed that the two reflectivities were comparable in warm clouds, but in ice cloud there were more differences, which were probably associated with the occurrence of liquid water. The acceptable agreement between reflectivities obtained in water cloud confirmed that it is feasible to derive cloud properties by using aircraft data, and hence for cloud radar to remotely sense cloud properties. Based on the dataset collected in warm clouds, the threshold of reflectivity to diagnose drizzle and cloud particles was studied by analyses of the probability distribution function of reflectivity from cloud particles and drizzle drops. The relationship between reflectivity factor (Z) and cloud liquid water content (LWC) was also derived from data on both cloud particles and drizzle. In comparison with cloud droplets, the relationship for drizzle was blurred by many scatter points and thus was less evident. However, these scatters could be partly removed by filtering out the drop size distribution with a large ratio of reflectivity and large extinction coefficient but small effective radius. Empirical relationships of Z-LWC for both cloud particles and drizzle could then be derived.  相似文献   

8.
A three-dimensional(3D) charging-discharging cloud resolution model was used to investigate the impact of the vertical velocity field on the charging processes and the formation of charge structure in a strong thunderstorm. The distribution and evolution of ice particle content and charges on ice particles were analyzed in different vertical velocity fields. The results show that the ice particles in the vertical velocity range from 1 to 5 m s-1obtained the most charge through charging processes during the lifetime of the thunderstorm. The magnitude of the charges could reach 1014 n C. Before the beginning of lightning activity,the charges produced in updraft region 2(updraft speed 13 m s-1) and updraft region 1(updraft speed between 5 and 13 m s-1) were relatively significant. The magnitudes of charge reached 1013 n C, which clearly impacted upon the early lightning activity. The vertical velocity conditions in the quasi-steady region(updraft speed between –1 and 1 m s-1) were the most conducive for charge separation on ice particles on different scales. Accordingly, a net charge structure always appeared in the quasi-steady and adjacent regions. Based on the results, a conceptual model of ice particle charging, charge separation, and charge structure formation in the flow field was constructed. The model helps to explain observations of the"lightning hole" phenomenon.  相似文献   

9.
This paper outlines a one-dimensional,heightdependent bin model with detailed microphysical processes in which ice splinters are produced by a riming process.The model is then applied to simulate the shift of particle size distribution effected by the secondary ice production process within clouds with different generating cells and cloud top temperatures.The result of model simulations reveals the general effects of cloud updrafts on increasing ice particle concentration by extending the residence time of ice particles in clouds and providing sufficiently large supercooled water droplets.The rimesplintering mechanism is more effective in clouds with lower ice seeding rates than those with higher rates.Evolutions of hydrometeor size distribution triggered by the rime-splintering mechanism indicate that the interaction between large ice particles and supercooled water drops adds a "second maximum" to the primary ice spectra.  相似文献   

10.
Based on the satellite retrieval methodology, the spectral characteristics and cloud microphysical properties were analyzed that included brightness temperatures of Channels 4 and 5, and their brightness temperature difference (BTD), the particle effective radius of seeded cloud track caused by an operational cloud seeding and the microphysical effects of cloud seeding were revealed by the comparisons of their differences inside and outside the seeded track. The cloud track was actually a cloud channel reaching 1.5-km deep and 14-km wide lasting for more than 80 min. The effective radius of ambient clouds was 10-15μm, while that within the cloud track ranged from 15 to 26μm. The ambient clouds were composed of supercooled droplets, and the composition of the cloud within the seeding track was ice. With respect to the rather stable reflectance of two ambient sides around the track, the visible spectral reflectance in the cloud track varied at least 10%, and reached a maximum of 35%, the reflectance of 3.7μm in the seeded track relatively decreased at least 10%. As cloud seeding advanced, the width and depth were gradually increased. Simultaneously the cloud top temperature within the track became progressively warmer with respect to the ambient clouds, and the maximum temperature differences reached 4.2 and 3.9℃at the first seeding position for Channels 4 and 5. In addition, the BTD in the track also increased steadily to a maximum of 1.4℃, compared with 0.2-0.4℃of the ambient clouds. The evidence that the seeded cloud became thinner comes from the visible image showing a channel, the warming of the cloud tops, and the increase of BTD in the seeded track. The seeded cloud became thinner mainly because the cloud top descended and it lost water to precipitation throughout its depth. For this cloud seeding case, the glaciation became apparent at cloud tops about 22 min after seeding. The formation of a cloud track in the supercooled stratiform clouds was mainly because that the seeded cloud volume glaciated into ice hydrometeors that precipitated and so lowered cloud top height. A thin line of new water clouds formed in the middle of the seeded track between 38 and 63 min after seeding, probably as a result of rising motion induced by the released latent heat of freezing. These clouds disappeared in the earlier segments of the seeded track, which suggested that the maturation of the seeding track was associated with its narrowing and eventual dissipation due to expansion of the tops of the ambient clouds from the sides inward.  相似文献   

11.
利用2013~2016年的Aqua MODIS卫星和CloudSat卫星的二级产品资料,对发生在京津冀地区夏季的降水冰云和非降水冰云进行了统计。基于此,对比分析了两类冰云的云类型,研究了二者在云特征参数、云层数及垂直结构上的差异,并且探究了二者在不同通道下云特征参数的相对大小。结果表明:1)京津冀地区的降水冰云以深对流云和雨层云为主,分别占48.63%和34.65%,而非降水冰云以高层云和卷云为主,分别占55.62%和31.58%。2)降水冰云和非降水冰云的平均云顶温度、云顶高度、光学厚度、积分云水总量、有效粒子半径分别为230.99 K、10.90 km、53.26、937.98 g/m2、31.45m和236.17 K、10.10 km、12.81、209.00 g/m2、27.54 μm。3)降水冰云以单层云为主,占80.39%,双层云占18.75%;而非降水冰云仍以单层云为主,占85.35%,双层云则占14.38%,比降水冰云低。4)相较于非降水冰云,降水冰云中卷云和高积云云体位置较高,而高层云和深对流云位置较低。5)随高度变化,降水冰云冰水含量是双峰结构,而非降水冰云是单峰结构;二者的粒子数浓度则差异不大;非降水冰云的粒子有效半径在5~7.5 km随高度变化不大,而降水冰云则随高度减小。6)降水冰云的积分云水总量、光学厚度和粒子有效半径>模态[分别代表该云特征参数在1.6、2.1、3.7 μm通道中的数值,当n=1, 2, 3时,分别代表光学厚度(b1)、积分云水总量(b2)、有效半径这三种(b3)]的比例都高于非降水冰云,而二者在云参数模态的比例则有差异。  相似文献   

12.
利用NASA/CERES发布的2001~2015年云参数资料,选取高层云、雨层云、层积云的云水含量和云粒子有效半径,统计分析了西南地区云参数的时空分布特征和变化趋势。结果表明:从年均空间分布来看,西南地区液水和冰水含量均东部高于西部,海拔低的地区高于海拔高的地区;高层云和雨层云液相和冰相云粒子有效半径在川西高原最大。从数值大小来看,雨层云液水和冰水含量最多,分别介于90~230 g/m2和100~300 g/m2,层积云最少,分别介于0~80 g/m2和0~60 g/m2;冰相云粒子有效半径高于液相2~6 μm。从季节分布来看,雨层云液水和冰水含量秋季和冬季偏高,夏季和春季偏少,高层云和层积云季节差异较小;液相云粒子有效半径均夏季最大。从变化趋势来看,西南地区各地液水和冰水含量均呈减少趋势,液相和冰相云粒子有效半径有呈减少或增加趋势。  相似文献   

13.
A nondivergent barotropic model (Model 1) and a barotropic primitive equation vortex model (Model 2) are linearized respectively in this paper. Then their perturbation wave spectrums are computed with a normal mode approach to study the instability problem on an appointed tropical cyclone (TC)-like vortex, thereby, the dynamic instability properties of spiral cloud bands of TCs are discussed. The results show that the unstable mode of both models exhibits a spiral band-like structure that propagates away from the vortex outside the radius of maximum winds. The discrete modal instability of the pure vortex Rossby wave can account for the generation of the eyewall and the inner spiral band. The unstable mode in Model 2 has three parts, i.e., eyewall, inner and outer spiral bands. This mode can be interpreted as a mixed vortex Rossby-inertia gravitational wave. The unbalanced property of the wave outside the stagnation radius of the vortex Rossby wave is one of the important reasons for the formation of the outer spiral band in TCs. Accordingly, the outer spiral band can be identified to possess properties of an inertial-gravitational wave. When the formation of unstable inner and outer spiral bands is studied, a barotropic vortex model shall be used. In this model, the most unstable perturbation bears the attributes of either the vortex Rossby wave or the inertial-gravitational wave, depending on the vortex radius. So such perturbations shall be viewed as an unbalanced and unstable mixed wave of these two kinds of waves.  相似文献   

14.
通过飞机直接进入降雪云进行探测,并配合MICPAS(气象信息综合分析处理系统)、雷达和卫星等资料,对2011年11月29日山西一次降雪云宏、微观结构特征进行分析。研究发现:本次降雪过程的雷达回波以10~20 dBZ大片层状云回波为主,镶嵌了超过30 dBZ的块状强回波,雷达径向速度零线呈较强的“S”型弯曲,出现“牛眼”结构,从低层到高层有较强的风垂直切变。液态水含量主要位于3.2 km以下,最大值为0.0697 g m?3,N50(粒子直径大于50 μm的冰雪晶数浓度)、N200(粒子直径大于200 μm的冰雪晶数浓度)和冰水含量主要产生于层积混合降雪云的上部,极大值出现在?9.3°C附近,分别为188.4 L?1、33.5 L?1和0.121 g m?3。?14.4°C~?19.7°C冰晶图像以针状、柱状和不规则状为主,以冰晶的凝华增长为主。?9.3°C附近冰雪晶图像以辐枝状、不规则状为主,辐枝状冰晶的聚并碰撞和折裂繁生可能是造成此处冰雪晶高浓度的主要原因。利用指数形式能较好地拟合冰雪晶谱分布,谱拟合参数可以用幂函数Nos=1.021λ1.684表示(其中,Nos、λ分别表示截距和斜率,Nos越大表示小粒子数浓度越大,λ越大表示小粒子数浓度占总粒子数浓度比例越高),相关系数R2为0.86。3.2 km以下存在三次逆温,逆温层的出现使云微物理特征量和拟合参数Nos减小,抑制了云内凇附增长和凝华增长,导致本次观测谱拟合参数Nos、λ随温度的变化规律与以往的观测不一致,逆温强度越大抑制作用越大。  相似文献   

15.
利用2013年10月13日机载粒子测量系统(PMS)在张家口涞源地区对积层混合云中上部进行的增雨探测数据,分析了云的垂直微物理结构、云区的可播性和作业前后液态云粒子、冰晶及降水粒子的微物理变化。结果表明,此次降水性积层混合云的垂直结构由冷、暖两层云配置,云层发展厚实,冷云区云粒子浓度平均为62 cm-3,液态水含量最大0.05 g/m3;2DC和2DP探测的冰晶及降水粒子平均浓度分别为1.9和2.2 L-1;暖云内云粒子数浓度集中在300 cm-3左右,液态水含量约0.1 g/m3。探测区域云粒子数浓度的水平分布不均匀。利用云内过冷水含量和冰晶浓度等参数判断,该降水性积层混合云的播撒作业层具有强可播性。对比作业前后云中粒子浓度及平均直径发现,云粒子在作业前时段内的平均浓度为31 cm-3,远高于作业后平均浓度(17.6 cm-3);但平均直径变化不大。作业后冰晶粒子通过贝吉龙过程消耗过冷水长大,浓度由之前的0.86 L-1增至4.27 L-1,平均直径也增至550 μm。冰晶粒子逐渐长大形成降水,降水粒子浓度也相应有所升高,谱明显变宽。   相似文献   

16.
在假设冰云粒子呈球形以及粒子谱服从对数正态分布的条件下,利用离散偶极子近似法(DDA),计算出太赫兹频段(220 GHz)冰云粒子的雷达反射率因子,及其与瑞利假设下雷达反射率因子的比值。忽略衰减和多次散射的影响,根据太赫兹波段冰云的雷达反射率因子,基于最优估计理论反演冰云的微物理参数,并验证该算法的可靠性。反演结果表明,当冰云粒子大小在设定的尺度范围内时,有效粒子半径(re)的反演误差小于4%,粒子谱宽(σ)的误差小于2.5%、粒子数密度(NT)的误差小于1%,冰水含量(IWC)的误差小于5%。还分析了当NT和σ为定值时,反演结果随粒子尺寸的变化情况,当冰云粒子尺寸在模拟计算设定的范围内时,re的反演误差小于0.04%,σ的反演误差小于0.02%,NT的反演误差小于0.50%,IWC的反演误差小于0.08%,如果冰云粒子大小超出模拟计算设置的范围,反演误差随着re增加而增大。该结果证明了基于最优估计理论反演得到的冰云微物理参数与模拟设定值有良好的一致性,说明该方法可应用于太赫兹频段云雷达的冰云观测及云微物理参数的反演和研究。   相似文献   

17.
Cloud microphysical properties of a mixed phase cloud generated by a typical extratropical cyclone in the Tongliao area, Inner Mongolia on 3 May 2014, are analyzed primarily using in situ flight observation data. This study is mainly focused on ice crystal concentration, supercooled cloud water content, and vertical distributions of fit parameters of snow particle size distributions (PSDs). The results showed several discrepancies of microphysical properties obtained during two penetrations. During penetration within precipitating cloud, the maximum ice particle concentration, liquid water content, and ice water content were increased by a factor of 2-3 compared with their counterpart obtained during penetration of a nonprecipitating cloud. The heavy rimed and irregular ice crystals obtained by 2D imagery probe as well as vertical distributions of fitting parameters within precipitating cloud show that the ice particles grow during falling via riming and aggregation process, whereas the lightly rimed and pristine ice particles as well as fitting parameters within non-precipitating cloud indicate the domination of sublimation process. During the two cloud penetrations, the PSDs were generally better represented by gamma distributions than the exponential form in terms of the determining coefficient (R2). The correlations between parameters of exponential /gamma form within two penetrations showed no obvious differences compared with previous studies.  相似文献   

18.
The microphysical "three-layer" model for stratiform clouds over a midlatitude location in Northwest China is investigated by combining in situ airborne Particle Measuring Systems, Inc. (PMS), radar measurements, and the NCAR/Penn State Mesoscale Model Version 5 (MM5) simulation with a two-moment microphysics scheme. The coexistence of measured supercooled liquid water and small ice particles produces snow particles below the cloud top in the second layer. Peak number concentration and mean diameter of cloud water and raindrop appear in the third warm layer. A thin dry layer just below the melting layer is also observed. The predicted precipitation is tested by equitable threat score. The melting layer is clearly defined in the radar image and model radar reflectivity output is agreement with the observations. The model results provide features of the microphysical structure for every layer of "three-layer" model at Yan'an station. For both observation and model simulation, the "three-layer" model explains the stratiform precipitation formation completely and comprehensively.  相似文献   

19.
一次新型液态CO2播撒效果的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
利用三维积层混合云人工增雨数值模式对2002年7月11日的一次天气过程进行了由播撒液态CO2引起的微物理量变化及云动力影响的数值模拟。结果表明:播撒后,云中最大上升气流速度增大,由未播撒时的0.37 m/s增大到播撒后的0.54 m/s,播撒使云中出现最大上升速度W的时间比未播撒提前了4 min,表明播撒液态CO2影响了云的动力过程。同时与未播撒相比:云中雨水含量最大值由1.04 g/kg增加到1.40 g/kg;冰粒子含水量的出现提前了88 min,最大值的出现提前了76min;冰粒子浓度的出现提前了72 min,最大值的出现提前了72 min;雪粒子含水量的出现提前了72 min,最大值的出现提前了128 min;云水含量最大值由1.21 g/kg减小到0.87 g/kg。证明了播撒液态CO2后可影响云的微物理过程,从而导致地面降水的增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号