首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variability of dissolved organic carbon (DOC) over days to a multi-year time span has been investigated in the Gulf of Trieste (northern Adriatic Sea) over a period of 5 years (January 1999 to December 2003). Samples were collected in a grid of 9 to 12 stations on monthly frequency and in one station on weekly (2003) and daily (1-month) frequency. DOC samples were analyzed by the HTCO method. DOC concentration varied over the five years in the range of 50 to 194 μM with annual median values ranging from 88 to 98 μM. Over the years 1999–2002, DOC showed a clear annual periodicity with winter minima and late summer maxima, higher in 1999 and 2000. During 2003 no seasonality was detected. The absence of DOC seasonality and the lower DOC concentrations during 2003 are most likely related to the drought that characterized the whole year. Accumulation was calculated as the difference between averaged winter minima (59 ± 7 μM) and the monthly averaged integrated value. DOC that had accumulated from spring to summer totally disappeared from the water column in winter when DOC concentrations reached the background value. The Gulf of Trieste, as with the rest of the Northern Adriatic each year, seems to be able to bring back DOC concentrations at low levels despite the significant external (mainly Isonzo River inputs) and internal organic matter loads. DOC concentration exhibited quite wide fluctuations weekly and daily, suggesting there might be DOC of different turnover time through production, consumption, migration and accumulation.  相似文献   

2.
Coastal eutrophication, manifested as hypoxia and anoxia, is a global problem. Only a few empirical models, however, exist to predict bottom oxygen concentration and percentage saturation from nutrient load or morphometry in coastal waters, which are successfully used to predict phytoplankton biomass both in lakes and in estuaries. Furthermore, hardly any empirical models exist to predict bottom oxygen from land-use. A data set was compiled for 19 estuaries in the northern Baltic Sea, which included oxygen concentration and percentage saturation, water chemistry, estuary morphometry, and land-use characteristics. In regression analyses, bottom oxygen was predicted both as a function of the percentage of watershed under agriculture and of mean depth. These models accounted for ca. 55% of the variation in oxygen. Additionally, oxygen was linked to fetch (diameter of the area in the direction of the prevailing wind), which accounted for 30% of the variation in oxygen. This suggests that shallow Finnish estuaries are wind-sensitive. In ‘pits’ (sub-thermocline waters of deep basins), near-bottom total nitrogen strongly correlated with oxygen percentage saturation (R2=0.81). Neither chlorophyll a, total phosphorus nor nutrient loading explained oxygen variation in entire estuaries or in ‘pits’, probably mainly due to annual sedimentation/sediment–water flux dynamics. On the basis of the results of cross-validation, the models have general applicability among Finnish estuaries.  相似文献   

3.
As part of a broader study on benthic-pelagic coupling in the southern North Sea, specimens of the common heart urchin Echinocardium cordatum were sampled for analyses on phytopigments and fatty acids in their guts. Results were interpreted in the context of feeding and ecological functioning of the heart urchins in the benthic system. Ingestion selection factors for both component groups were relatively high, 5 to 9 for chlorophyll a and 9 to 130 for total fatty acids. The data point to at least partially different sources of the pigments and of the fatty acids. Next to algal detritus, small infauna relatively rich in fatty acids might be preferentially co-ingested with the detritus. Due to digestive breakdown and absorption, the concentrations of pigments and fatty acids were importantly decreased, indicating a rather high digestion efficiency for this subsurface deposit feeder, up to 80%. The results indicate that E. cordatum increases its energy acquisition by strong selectivity and a high digestive efficiency. Optimal foraging is likely to apply on deposit-feeding invertebrates in relatively food-rich coastal environments as much as it does in the food-poor deep-sea environment. Using chlorophyll a as a proxy for carbon, the contribution of the urchin population to the momentary benthic carbon budget was calculated at 7% to 42%.  相似文献   

4.
The distribution of chlorophyll a(Chl a) and its relationships with physical and chemical parameters in different regions of the Bering Sea were discussed in July 2010. The results showed the seawater column Chl a concentrations were 13.41–553.89 mg/m2 and the average value was 118.15 mg/m2 in the study areas. The horizontal distribution of Chl a varied remarkably from basin to shelf in the Bering Sea. The regional order of Chl a concentrations from low to high was basin, slope, outer shelf, inner shelf, and middle shelf. The vertical distribution of Chl a was grouped mainly from single-peak type in basin, slope, outer shelf, and middle shelf, where the deep Chl a maxima(DCM) layer was observed at 25–50 m, 30–35 m, 36–44 m, and 37–47 m, respectively. The vertical distribution of Chl a mainly had three basic patterns: standard single-peak type, surface maximum type, and bottom maximum type in the inner shelf. The analysis also showed that the transportation of ocean currents may control the distribution of Chl a, and the effects were not simple in the basin of the Bering Sea. There was a positive correlation between Chl a and temperature, but no significant correlation between Chl a and nutrients. The Bering Sea slope was an area deeply influenced by slope current. Silicate was the factor that controlled the distribution of Chl a within parts of the water in the slope. Light intensity was an important environmental factor in controlling seawater column Chl a in the shelf, where Chl a was limited by nitrate rather than phosphate within the upper water. Meanwhile, there was a positive relationship between Chl a and salinity. Algal blooms broke out at Sta. B6 of the southwestern St. Lawrence Island and Stas F6 and F11 in the middle of the Bering Strait.  相似文献   

5.
6.
Distribution of cyanobacteria cannot be evaluated using chlorophyll a (Chla) in vivo fluorescence, as most of their Chla is located in non-fluorescing photosystem I. Phycobilin fluorescence, in turn, is noted as a useful tool in the detection of cyanobacterial blooms. We applied phycocyanin (PC) fluorometer in the monitoring of the filamentous cyanobacterial bloom in the Baltic Sea. For the bloom forming filamentous cyanobacteria Aphanizomenon flos-aquae and Nodularia spumigena, PC fluorescence maximum was identified using the excitation–emission fluorescence matrix. Consequently, the optical setup of our instrument was noted to be appropriate for the detection of PC, and with minor or no interference from Chla and phycoerythrin fluorescence, respectively.During summer 2005, the instrument was installed on a ferryboat commuting between Helsinki (Finland) and Travemünde (Germany), and data were collected during 32 transects providing altogether 200 000 fluorescence records. PC in vivo fluorescence was compared with Chla in vivo fluorescence and turbidity measured simultaneously, and with Chla concentration and biomass of the bloom forming filamentous cyanobacteria determined from discrete water samples.PC fluorescence showed a linear relation to the biomass of the bloom forming filamentous cyanobacteria, and the other sources of PC fluorescence are considered minor in the open Baltic Sea. Estimated by PC fluorescence, cyanobacterial bloom initiated late June at the Northern Baltic Proper, rapidly extended to the central Baltic Proper and the Gulf of Finland, and peaked in the mid-July with values up to 10 mg l−1 (fresh weight). In late July, bloom vanished in most areas.During single transects, or for the whole summer, the variability in Chla concentrations was explained more by PC fluorescence than by Chla fluorescence. Thus, filamentous cyanobacteria dominated the overall variability in phytoplankton biomass. Consequently, we show that during the cyanobacterial blooms, the estimation of Chla concentration using only Chla in vivo fluorescence is not applicable, but PC in vivo fluorescence is required as a predictor as well.  相似文献   

7.
Concentrations of biogenic silica(BSi) in the southern Yellow Sea were determined during four cruises(spring:April–May 2014; autumn: November 2014; summer: August–September 2015; winter: January 2016). Samples of BSi were measured using the double extraction method. Seasonal and spatial variations of BSi and the potential correlation between chlorophyll a(Chl a) content and BSi in four seasons were measured in this study. Significant spatial variability was observed in seawater BSi concentrations. The average concentration of BSi was highest in winter and lowest in spring. Furthermore, the relationships between concentrations of BSi and hydrological parameters were also discussed. There was a significant positive correlation between Chl a and BSi. The concentrations of BSi showed significant relationships with temperature and the concentrations of silicates, total inorganic nitrogen and total inorganic phosphorus, indicating that distribution of BSi was affected by temperature and nutrient level.  相似文献   

8.
南黄海夏季微微型浮游植物丰度的分布   总被引:1,自引:1,他引:0  
2008年8月中韩合作对南黄海生态系统进行了整体调查,调查站位共计37个。利用流式细胞仪测定了南黄海微微型浮游植物丰度,结合理化环境因子,分析了它们在夏季南黄海的分布特征。所测微微型真核浮游植物丰度平均值为1.9×103个/mL,最大值为2.4×104个/mL;聚球藻丰度平均值为5.3×104个/mL,最大值为5.1×105个/mL;从河口近岸到南黄海中部的宽阔海域,随着环境因子的变化,微微型浮游植物在各海区的分布明显不同,表现为河口近岸区域丰度大,离岸丰度小的特点;各站位丰度垂直分布主要趋势是上大下小,在跃层突出。根据分布趋势,聚球藻可分为两种垂直分布类型,微微型真核浮游植物分为三种。这些分布差异源于长江冲淡水和黄海冷水团的影响。  相似文献   

9.
To investigate feeding habits of juvenile flounder (Platichthys flesus) and turbot (Psetta maxima) in relation to habitat characteristics a field survey with push net sampling was conducted in nursery areas with different ecological characteristics in the northern Baltic proper. Sampling sites were stratified to cover several different habitat types defined by substrate and wave exposure. Apart from flatfishes and epifauna, samples of macrofauna, meiofauna and hyperbenthic planktons were collected from each site together with data on vegetation, depth, salinity, temperature and turbidity. The diet differed between species where flounder diet was dominated by chironomids, copepods and oligochaetes while turbot apart from chironomids had a high incidence of amphipods, gobies and mysids. In both species there was a shift in diet with size, although this shift was influenced by the habitat. Among the environmental variables investigated, wave exposure was found to significantly influence flounder diet. Food preference in the most exposed areas was dominated by oligochaetes and copepods instead of chironomids, which dominated in sheltered areas. This study shows that habitat characteristics can have a major influence on feeding habits of juvenile flatfish.  相似文献   

10.
Temporal distributions of dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) were studied in the southern Yellow Sea(SYS) during April and September 2010. The mean concentrations(range) of DMS, dissolved and particulate DMSP(DMSPd and DMSPp) in the surface waters in spring are 1.69(0.48–4.92), 3.18(0.68–6.75)and 15.81(2.82–52.33) nmol/L, respectively, and those in autumn are 2.80(1.33–5.10), 5.45(2.19–11.30) and 30.63(6.24–137.87) nmol/L. On the whole, the distributions of DMS and DMSP in spring are completely different from those in autumn. In the central part of the SYS, the concentrations of DMS and DMSP in spring are obviously higher than those in autumn, but the opposite situation is found on the south of 34°N, which can be attributed to the differences in nutrients and phytoplankton biomass and composition between spring and autumn. Besides,the seasonal variations of water column stability and the Changjiang diluted water also have significant impact on the distributions of DMS and DMSP in spring and autumn on the south of 34°N. DMS and DMSPp concentrations coincide well with chlorophyll a(Chl a) levels in the spring cruise, suggesting that phytoplankton biomass may play an important role in controlling the distributions of DMS and DMSPp in the study area. Annual DMS emission rates range from 0.015 to 0.033 Tg/a(calculated by S), respectively, using the equations of Liss and Merlivat(1986) and Wanninkhof(1992). This result implies a significant relative contribution of the SYS to the global oceanic DMS fluxes.  相似文献   

11.
12.
The chlorophyll a specific absorption coefficient of phytoplankton, aφ(λ) is an important parameter to determine for primary production models and for the estimation of phytoplankton physiological condition. Knowledge of this parameter at high latitudes where nutrient rich cold water submitted to low incident light is a common environment is almost nonexistent. To address this issue, we investigated the light absorption properties of phytoplankton as a function of irradiance, temperature, and nutrients using a large data set in the southern Beaufort Sea during the open water to ice cover transition period. The aφ(λ) tended to increase from autumn when open water still existed to early winter when sea ice cover was formed, resulting from a biological selection of smaller-size phytoplankton more efficient to absorb light. There was no significant correlation between aφ(λ) and irradiance or temperature for both seasons. However, aφ(λ) showed a significant positive correlation with NO3 + NO2. Implications of the results for phytoplankton community adaptation to changing light levels are discussed.  相似文献   

13.
Rose Bengal stained benthic foraminifera were studied from 11 cores collected along two depth transects off southern Portugal: one in the Lisbon-Setúbal Canyon and the other along the canyon edge. The total standing stocks and distribution of foraminifera were investigated in relation to sediment and pore water geochemistry. Nitrate was used as a redox indicator, sedimentary chlorophyll a and CPE (chloroplastic pigment equivalents) contents as a measure of labile organic matter, and total organic carbon as a measure of bulk organic matter availability.The canyon sediments were enriched in organic carbon and phytopigments at all water depths in comparison with the canyon edge. Water depth seemed to control sedimentary phytopigment content, but not total organic carbon. No significant correlation was seen between pigment and total organic carbon content.The abundance of calcareous foraminifera correlated with the phytodetritus content, whereas a weaker correlation was observed for the agglutinated taxa. Therefore, calcareous foraminifera appear to require a fresher food input than agglutinated taxa. The foraminiferal species composition also varied with pigment content and nitrate penetration depth in the sediment, in line with the TROX concept. Phytopigment-rich (surficial CPE content >20 μg/cm3) sediments with a shallow nitrate penetration depth (∼1 cm depth) were inhabited by generally infaunal species such as Chilostomella oolina, Melonis barleeanus and Globobulimina spp. As the nitrate penetration increased to ∼2 cm depth in sediment and the pigment content remained relatively high (>15 μg/cm3), Uvigerina mediterranea and Uvigerina elongatastriata became dominant species. With declining CPE content and increasing nitrate penetration depth, the foraminiferal assemblages changed from the mesotrophic Cibicides kullenbergi-Uvigerina peregrina assemblage to the oligotrophic abyssal assemblage, mainly consisting of agglutinated taxa.  相似文献   

14.
2010-2011年胶州湾叶绿素a与环境因子的时空变化特征   总被引:1,自引:1,他引:1  
王玉珏  刘哲  张永  汪岷  刘东艳 《海洋学报》2015,37(4):103-116
2010年4、6、8、10月和2011年1、3月在胶州湾开展了6个航次的综合调查,研究了表层海水温度、盐度、营养盐和叶绿素a浓度的时空变化特征。调查期间,总无机氮(DIN)、磷酸盐(PO4)和硅酸盐(SiO3)多呈现东北部湾边缘高,而湾内和湾口低的空间分布特征。季节变化表明,DIN和PO4主要受养殖排放、河流径流输入和浮游植物生长消耗的影响,呈现初夏和秋季高,夏末和冬季低的特点;而SiO3主要受河流径流输入和浮游植物消耗的影响,呈现夏、秋高,而冬、春低的特点。营养盐浓度和结构分析表明,胶州湾存在PO4和SiO3的绝对和相对限制;SiO3限制尤其严重,是控制胶州湾浮游植物生长的主要环境因子。SiO3和PO4的限制主要表现在冬季,几乎遍布整个海湾;夏季降水可有效缓解海域的SiO3限制。叶绿素a浓度呈现春、夏季高,秋、冬季低的季节分布,温度、营养盐浓度与结构和季节性贝类养殖活动是控制胶州湾叶绿素a浓度时空分布的关键因素。  相似文献   

15.
利用2008年大洋环球航次,研究了热带、亚热带太平洋和南印度洋中束毛藻丰度的大尺度分布特征,结果表明:在亚热带西北太平洋和热带东南亚海域束毛藻藻丝平均丰度较高,分别为25.2×103和33.3×103m-3,在热带中太平洋、热带东太平洋和南印度洋束毛藻平均丰度较低,分别为1.76×103,0.87×103和1.52×103m-3。各海区束毛藻丰度与水温无明显相关关系。总叶绿素a的分布特征与束毛藻不同,在太平洋呈西低、东高,在热带东南亚海域较高而在南印度洋较低,从总叶绿素a的粒级结构看,微微型浮游植物(0.2~2μm)所占比重最高,其次是微型浮游植物(2~20μm),小型浮游植物(20μm)所占比重最低。各海区束毛藻对总叶绿素a贡献的比例不同,在亚热带西北太平洋和热带东南亚海域较高,分别占总叶绿素a的7.79%和3.92%,在热带中太平洋、热带东太平洋和南印度洋占总叶绿素a的比例较低,均低于1%。在亚热带西北太平洋束毛藻固氮占真光层总新氮输入量的比例较高,这是该海域新氮的重要来源之一,而在热带中太平洋和热带东太平洋束毛藻固氮对真光层新氮的贡献比例则很低。  相似文献   

16.
Numerous studies suggest that floating macroalgae contribute to population connectivity of the algae themselves as well as of associated organisms. In order to evaluate the importance of floating macroalgae for population connectivity in southern Chile we analysed their spatial and temporal distributions. We estimated the abundance of floating kelp in the Interior Sea of Chiloé and the Los Chonos Archipelago via ship surveys conducted during austral spring (November) and winter (July) of the years 2002–2005. Highest densities of floating kelp (Macrocystis pyrifera and Durvillaea antarctica) were found during spring. Generally, the density of floating kelp was relatively low in areas with high supply of freshwater, and highest abundances were found in large channels opening to the open ocean. We suggest that this pattern is caused by the scarcity of natural kelp beds combined with rapid degradation of floating kelp in the interior fjords and by seaward surface outflow. The maximum densities of floating kelps were found in an area known to be an extensive convergence zone (i.e. estuarine front), which appears to act as a retention zone. In accordance with this distribution pattern, we propose that connectivity between local populations via floating kelp is higher in the outer channels with oceanic influence than in the inner fjords with high freshwater influx.  相似文献   

17.
赤道东北太平洋沉积物间隙水中溶解有机碳的分布特征   总被引:3,自引:0,他引:3  
沉积物间隙水中的溶解有机碳(DOC)是沉积物有机质矿化过程中的中间产物[1],沉积物中的有机质通过微生物水解和(厌氧)发酵等方式溶解成各类具有不同分子量的有机化合物,通常总称为溶解有机碳,并释放到沉积物间隙水中.而溶解有机碳又进一步被细菌等微生物所利用,最终被氧化为溶解无机碳,完成有机质的矿化过程.因此,沉积物间隙水中DOC的浓度是消耗和生成之间平衡的结果[1].已有的研究表明,沉积物间隙水中DOC的含量显著高于底层水体中DOC的含量,导致其向底层水体的扩散;近期的研究也表明,来自海底沉积物的DOC通量是底层水体中DOC的重要来源,是海洋有机碳储库中的重要组成之一[2~4].  相似文献   

18.
对中国南海表层叶绿素a季节内变化的研究有助于深入认识其海洋特征,满足渔情预报等实际应用需求。利用卫星观测资料分析南海表层叶绿素a不同季节的季节内变化特征,结果表明南海表层叶绿素a季节内振荡强度冬季最高。冬季和春季的季节内振荡最强区域都位于吕宋岛西北侧海区,夏季和秋季振荡较强的区域偏向菲律宾群岛一侧。分析表明研究海区表层温度和表层叶绿素a 存在负相关,冬强夏弱,北强南弱。大部分海区海面高度和叶绿素a 相关性不显著,但南海东南边缘海区海面高度和叶绿素a在季节内存在正相关。冬季海盆尺度逆时针旋转的环流结构应是这些现象产生的原因。除南海东南边缘海区、海南岛东南海区和吕宋岛西侧海区之外,风应力大小和热通量均与叶绿素a 在季节内呈正相关。这显示非局地风场和海流等因素、海洋动力调整过程可能在吕宋海峡以西和南海东南边缘的表层叶绿素a 季节内变化中起到重要作用。  相似文献   

19.
The South China Sea(SCS) and the Arabian Sea(AS) are both located roughly in the north tropical zone with a range of similar latitude(0°–24°N). Monsoon winds play similar roles in the upper oceanic circulations of the both seas. But the distinct patterns of chlorophyll a(Chl a) concentration are observed between the SCS and the AS.The Chl a concentration in the SCS is generally lower than that in the AS in summer(June–August); the summer Chl a concentration in the AS shows stronger interannual variation, compared with that in the SCS; Moderate resolution imaging spectroradiometer(MODIS)-derived data present higher atmospheric aerosol deposition and stronger wind speed in the AS. And it has also been found that good correlations exist between the index of the dust precipitation indicated by aerosol optical thickness(AOT) and the Chl a concentration, or between wind and Chl a concentration. These imply that the wind and the dust precipitation bring more nutrients into the AS from the sky, the sub-layer or coast regions, inducing higher Chl a concentration. The results indicate that the wind velocity and the dust precipitation can play important roles in the Chl a concentration for the AS and the SCS in summer. However aerosol impact is weak on the biological productivity in the west SCS and wind-induced upwelling is the main source.  相似文献   

20.
基于1998-2013年SeaWiFS和MODIS传感器的叶绿素浓度资料,本文分析了夏季南海西部叶绿素浓度高值带的年际变化规律。夏季,叶绿素及营养盐在海流的作用下离岸输送,从而在南海西部形成叶绿素浓度高值带,其分布与东向急流的流向一致。分析结果显示,高值带分布主要受13°N以南海域风场的调控,且滞后风场1周。当13°N以南海域受异常东北风(西南风)控制时,高值带位于其多年平均位置以北(南)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号