首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《Coastal Engineering》1987,11(1):57-86
A numerical model has been refined and used to predict the depth-averaged tide-induced flow patterns around Rattray Island, northeast Australia. Rattray Island is approximately 1.5 km long, 300 m wide and is inclined at about 60° into the direction of the dominant semi-diurnal tidal currents in a well-mixed sea. The local depth around Rattray Island is approximately 25 m and a large horizontal eddy has been observed and measured in the island's wake during the flooding tide. This eddy has been modelled using a semi-empirical turbulence model for the Reynolds stresses, with reasonable agreement being obtained between the numerically predicted and the field-measured velocities recorded at 26 sites in the southern lee of the island. An analysis of the vorticity equation has been undertaken to establish the relative importance of the various terms in generating and maintaining this eddy, with numerical simulations being reproduced to confirm the significance of the advective accelerations, bed- and free-shear-generated turbulence, bottom friction and geostrophic effects. The effects of the bathymetry on the characteristics of the leeward eddy have been studied, with numerical simulations for the actual bathymetry, a horizontal bed and sloping beds indicating a marked difference in the vorticity structure and the shear stress distributions.  相似文献   

2.
This paper describes the water circulation in the Kuril Basin and its role in the formation and seasonal variation in intensity of the large anticyclonic eddies which occur in the basin. Oceanographic data for the period June 1977 through June 1979 suggest that these eddies develop in summer and decay in winter. In summer, the eddy development is associated with a deepening of the isopycnals caused by the surface flow of the Soya Warm Current over the basin, and the deep advection of cold, less saline, oxygen-rich water from Terpenia Bay and the eastern continental shelf of Sakhalin Island. In winter, the eddy decay is caused by surface cooling and convective mixing downward of the warm, saline surface water, which causes the isopycnals to rise and leads to an attenuation of the eddies. This combination of the summer influx of water into the region, and the fall and winter cooling of the eddies leads to the annual variation in eddy intensity.  相似文献   

3.
The behavior of isolated meso-scale eddies near the coastal boundary is studied by numerical experiments based on the quasi-geostrophic equation in a basin on an f-plane. First, Bachelor-modon type eddies are investigated as an idealized model of isolated eddies close to the wall. The first-mode Bachelor-modon type eddy is found to be robust enough to recover its original form even after it turns a corner of the basin. In contrast, the second mode is unstable; it tends to move away from the wall and finally splits into two eddies proceeding in opposite directions along the wall. An initially Gaussian eddy a little distant from the boundary interacts with a Bachelor-modon type eddy translating along the boundary, sometimes resulting in vortex merging and pairing just as in the head-on collision of two modons on a beta-plane. It is found that an initially Gaussian eddy located moderately close to the coast rapidly settles down to a steadily translating eddy, which can be approximated remarkably well by a first-mode Bachelor-modon type eddy not only in appearance but also in translation velocity within an error of about 20%.  相似文献   

4.
High-resolution (1.8 km) simulations of the shelf seas west of Great Britain with the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) demonstrate the formation of an intense field of baroclinic eddies in open stratified waters such as the Celtic Sea. These eddies are most likely to be the result of an inverse energy cascade resulting from tidal flow over rough topography, as demonstrated by a series of idealised model experiments. They are shown to possess many of the properties of eddies identified in idealised laboratory and numerical simulations. Namely, they are predominantly anticyclonic and they merge to increase their size up to a limit set by the internal Rossby radius. An investigation of satellite sea surface temperature observations provides indirect evidence that these model eddies are too energetic, long-lived and frequent. The inclusion of a horizontal diffusion term with a shear dependent diffusivity is shown to significantly reduce the eddy kinetic energy and improve the simulation, without significantly affecting the results in other regions. An optimal parameter value is suggested for this resolution, but the need to put the treatment of horizontal turbulence in such models on a sounder theoretical or empirical footing is identified.  相似文献   

5.
In recent years, large anticyclonic eddies have been observed quasi-annually in the region seaward of Kodiak Island, Alaska. In situ sampling in 3 of these eddies was undertaken in 2002, 2003, and 2004. Satellite altimetry data showed that these 3 eddies had 3 different formation regions but their translation pathways were similar near Kodiak Island. Eddies in this region can persist for several years, moving southwestward along the Alaskan Peninsula to the Aleutian Archipelago. Water properties in the cores of the 2003 and 2004 eddies were significantly different from each other, probably because the 2003 eddy formed on the shelf near Yakutat while the 2004 eddy formed farther out in the basin in the northern Gulf of Alaska. Calculation of heat, salinity, and nutrient anomalies associated with the eddies showed that, in their subsurface core waters, the eddies carry excess heat, salt, nitrate and silicic acid seaward from the eddy formation regions.  相似文献   

6.
Numerical calculations carried out for tidal flow on a small region of the New Zealand coast near Mana Island (41° 5 S, 174° 47 E) solved a finite difference form of the tidal equations, and assumed that the velocity boundary conditions could be approximated by a modified Kelvin wave formula. The results were exponentially smoothed in time at each step in the calculation to remove spurious modes.

The main results are shown as plots of tidal velocity vectors around Mana Island at equally spaced time intervals over a tidal cycle for one run commencing at low tide. The flow becomes very complex, with eddy shedding occurring in the wake of Mana Island, and a tidal rip developing across the shallow connection between Mana Island and the mainland.  相似文献   

7.
Eddies in the Gulf of Alaska are important sources of coastal water and associated nutrients, iron, and biota to the high-nutrient, low-chlorophyll central Gulf of Alaska. Three primary eddy formation regions along the eastern boundary of the gulf have been identified, (from south to north, Haida, Sitka, and Yakutat). In the spring of 2005, three eddies (one of each type) were sampled soon after their formation. The subsurface eddy core water in all three eddies was defined by high iron concentrations and low dissolved oxygen compared with surrounding basin water. The Sitka and Yakutat core waters also exhibited a subsurface temperature maximum (mesothermal water) coincident in depth with the iron maximum, suggesting that eddies may play a role in the formation of temperature inversions observed throughout the Gulf of Alaska. The data suggest different formation regions, with the Yakutat eddy forming in shallow shelf water with riverine input, while the Sitka and Haida eddies appear to form in deeper water.  相似文献   

8.
We have investigated the three-dimensional Lagrangian motion of water particles related with tidal exchange between two basins with a constant depth connected through a narrow strait and the effects of density stratification on the exchange processes by tracking a number of the labeled particles. Tide-induced transient eddies (TITEs), which are similar to those in two-dimensional basin, are generated behind the headlands. Upwelling appears around the center of the eddy and sinking around the boundary. When the basins are filled with homogeneous water, a pair of vortices are produced in the vertical cross section of the strait due to bottom stress, with upwellings along the side walls of the strait and sinking in the center of the strait. These circulations form the horizontally convergent field in the cross-strait direction in the upper layers while the horizontal divergence takes place in the bottom layer. These vertical water-motions produce the three-dimensional distribution of velocity shear and phase lag of the tidal current around the strait, and the Lagrangian drifts of water particles become large. As a result, water exchange through the strait is greatly enhanced: The water exchange rate reaches 94.1% which is much larger than that obtained in the vertically integrated two-dimensional model. When the basins are stratified, the stable stratification suppresses the vertical motion so that a pair of vertical vortices are confined in the lower layers. This leads to a decrease in the exchange rate, down to 88.6%. Our numerical results show that the three-dimensional structure of tidal currents should be taken into account in tidal exchange through a narrow strait.  相似文献   

9.
The treatment of diffusion due to the tidal current in the near-shore ocean, and the similitude in the hydraulic model experiment are studied.In broad and shallow tidal bays and in the coastal seawaters near irregular boundaries, horizontal eddy-currents induced geometrically and turbulence caused by their cascading have predominant effect on dispersion of river and waste waters. These turbulent diffusion processes are similarly reproduced in the Froude models of turbulent resume, by adding the similitude for the self-similar structure of the spectral density of turbulence, or the eddy diffusivity. The similitude means to take the scale ratios of the time and the vertical length as the two-thirds power of the scale ratio of the horizontal length.Similitudes are also derived for the system of the gravitational circulation, the stratification and the salt-mass transport in partially and well-mixed estuaries. Generally, the vertical eddy diffusivity must be exaggerated by a half power of the model distortion externally by some methods of agitation. When the tidal bay is broad and very shallow, the Rayleigh number and the Hansen number are small, and the effect of density current and stratification on the flushing is small. Instead the effect of local eddies, geometrically induced tidal residual circulations become predominant. In this special case, there is no need to satisfy the similitude for density difference and vertical shear effects on dispersion.  相似文献   

10.
桑沟湾邻近海域潮余流对该海域物质输运具有重要作用,但由于观测资料不足的限制,该海域潮余流的整体分布状况尚不明确。本文利用22套锚系海流观测资料和高分辨率数值模拟资料,分析了桑沟湾邻近海域潮余流的整体分布特征,并探讨了其产生机理。桑沟湾内潮余流总体上较弱,其邻近海域的潮余流在3个岬角(俚岛,寻山和楮山)附近呈现出显著的潮余流涡对结构,每个岬角的北面存在气旋式潮余流涡,南面存在反气旋式潮余流涡。无论是流速大小还是涡覆盖范围,俚岛和楮山外海潮余流涡对均大于寻山外海的涡对。动力诊断分析表明,岬角附近3对潮余流涡的主要形成机制都是由侧边界摩擦引起的水平剪切作用,底摩擦应力旋度的作用只影响俚岛附近的潮余流涡对,位势涡度守恒的作用都不显著。  相似文献   

11.
Nan Wan is a 20 km wide tidally-dominated embayment situated between two headlands on the south coast of Taiwan. During spring tides, sudden sea-surface temperature drops occur twice each tidal cycle in the western and central regions of the bay, but only once in the eastern region. Shipboard ADCP surveys, moored measurements and numerical modelling results demonstrate that the headlands on either side of the bay generate strong tidally-induced eddies within the bay on each phase of the tide. The geometry of the region leads to considerable difference in size between the flood and ebb eddies. The flood eddy fills the entire basin, while the ebb eddy fills the western and central region only. The strong (relative vorticity ≈10–16 f) cyclostrophic eddies are only weakly affected by Earth's rotation, and thus upwelling occurs within each eddy, causing two temperature drops per tidal cycle in the western and central region, while only one drop in the eastern region.  相似文献   

12.
The eddy tracking approach is developed using the global nearest neighbor filter(GNNF) to investigate the evolution processes and behaviors of mesoscale eddies in the South China Sea(SCS). Combining the Kalman filter and optimal data association technologies, the GNNF algorithm is able to reduce pairing errors to 0.2% in tracking synthetic eddy tracks, outperforming other existing methods. A total of 4 913 eddy tracks that last more than a week are obtained by the GNNF during 1993–2012. The analysis of a growth and a decay based on 3 445 simple eddy tracks show that eddy radius, amplitude, and vorticity smoothly increase during the first half of lifetime and decline during the second half following a parabola opening downwards. The genesis of eddies mainly clusters northwest and southwest of Luzon Island whereas the dissipations concentrate the Xisha Islands where the underwater bay traps and terminates eddies. West of the Luzon Strait, northwest of Luzon Island, and southeast of Vietnam are regions where eddy splits and mergers are frequently observed. Short disappearances mainly distribute in the first two regions. Moreover, eddy splits generally result in a decrease of the radius and the amplitude whereas eddy mergers induce growing up. Eddy intensity and vorticity, on the contrary, are strengthened in the eddy splits and diminished in mergers.  相似文献   

13.
A three-dimensional finite element model is used to investigate the formation of shallow-water eddies in the wake of Rattray Island (Great Barrier Reef, Australia). Field measurements and visual observations show that stable eddies develop in the lee of the island at rising and falling tides. The water turbidity downstream of the island suggests the existence of strong upwelling that would be responsible for carrying bed sediments up to the sea surface. We first propose to look at the upwelling velocity and then use the theory of the age to diagnose vertical transport. The water age is defined as the time elapsed since particles of water left the sea bottom, where the age is prescribed to be zero. Two versions of this diagnosis are considered. Although the model predicts upwelling within the eddies, it is not sufficiently intense to account for vertical transport throughout the water column during the life span of the eddies. As mesh resolution increases, this upwelling does not intensify. However, strong upwelling is then resolved off the island's tips, which is confirmed by the results obtained with the age. This study also shows that the finite element method, together with unstructured meshes, performs well for representing three-dimensional flow past an island.  相似文献   

14.
Close interactions among vertically stacked pairs of counter-rotating eddies under sea ice were investigated in numerical experiments. The numerical model contains a stratified ocean capped by an ice layer. Under the ice layer, a shallow brine source produces a top cyclone and a submerged anticyclone, while a shallow freshening source generates a top anticyclone and a submerged cyclone. Ice-exerted friction would dissipate the top eddy, leaving the submerged one in lone existence. In this work the winning vorticity is sought from group settings. Arrays of equally spaced salinity sources and sinks, alternate in sign but equal in strength, are employed to produce rows of vertically stacked eddy pairs. Fission occurs when adjacent vortex centers are separated by less than one Rossby radius. This process ejects parcels of density anomalies to the ambient ocean in upper depths. Low salinity anomalies are quickly dispersed into a thin surface layer and are unable to regenerate submerged eddies. High salinity parcels, being difficult to disperse, often maintain or regenerate submerged anticyclones below. Fission is particularly effective if a single row of salinity forcing is used. With multiple rows, fission is active only in the outer rows. The strong interaction among closely packed eddies operates in time scales of tens of days, helping explain the predominance of submerged anticyclones under Arctic sea ice.  相似文献   

15.
A three-dimensional (3-D) finite volume coastal ocean model (FVCOM) was used for the study of water cir culation and seawater exchange in the Benoa Bay, Bali Island. The M2 tidal component was forced in open boundary and discharge from six rivers was included in the numerical calculation. The M2 tidal elevation produced by the FVCOM has a good agreement with the observation data. The M2 tidal current is also suc cessfully calculated under the ebb tide and flood tide conditions. The non-linear M2 tidal residual current was produced by the coastline geometry, especially surrounding the narrow strait between the Serangan Is- land and the Benoa Peninsula. The tidal residual current also generated two small eddies within the bay and one small eddy in the bay mouth. The salinity distribution influenced by river discharge could be success- fully calculated, where the numerical calculation and the observation results have a good correlation (r2) of 0.75. Finally in order to examine the seawater exchange in the Benoa Bay, the Lagrangian particle tracking method and calculation of residence time are applied. The mechanism of particle transport to the flushing of seawater is depicted clearly by both methods.  相似文献   

16.
为了探究东海黑潮周边涡旋分布、形成机理及运动规律,基于法国国家空间研究中心(CNES)卫星海洋学存档数据中心(AVISO)的中尺度涡旋数据集展开了研究。首先,统计了近27年东海黑潮周边的涡旋分布,发现在黑潮弯曲海域产生了650个涡旋,在黑潮中段海域产生了271个涡旋,其中直径100~150 km之间的涡旋数量最多,涡旋振幅主要集中在2~6 cm。其次,分析了东海黑潮的运动路径和涡运动过程,结果表明,黑潮气旋式弯曲海域内侧易产生气旋涡,且移动路径较长,如台湾东北海域黑潮流轴气旋式弯曲处产生的涡旋,其平均位移达到了87.6 km;当反气旋式弯曲海域内侧产生反气旋涡时,涡旋往往做徘徊运动。黑潮中段海域的涡旋呈现出气旋涡在黑潮主轴西侧、反气旋涡在黑潮主轴东侧的极性对称分布特征,两类涡都沿黑潮主轴向东北方向移动。最后,结合再分析的流场、海面高度数据,讨论了涡旋运动规律和生成机制。黑潮弯曲处涡旋的生成与黑潮流体边界层分离有关,奄美大岛南部到冲绳岛西侧的黑潮逆流对黑潮中段海域涡的极性对称分布起到了关键作用,涡旋在运动过程中通常经历生长、成熟和衰变三个阶段。  相似文献   

17.
张宇  陈旭  刘娟  宁珏 《海洋与湖沼》2024,55(2):306-317
南海北部吕宋海峡是内潮最为活跃的区域之一,且涡旋种类繁多,不同特性的涡旋对内潮的影响不同。基于近岸与区域海洋共同模式(coastal and regional ocean community model,CROCO),模拟探究理想涡旋存在时,涡旋位置、极性、峰值流速和半径对内潮的影响。结果表明:涡旋位置是影响内潮的直接因素,位于涡旋区域内的内潮是主要影响对象,涡旋中心以西内潮方向变化的角度是以东的3倍。气旋涡和反气旋涡分别使潮能通量的方向向南和向北偏转,最大偏转角度超过12°,当涡旋所致背景流与内潮传播方向一致时,内潮群速度增强,反之减弱。涡旋对内潮的影响范围和幅度随着涡旋的半径和峰值流速的增大而变大。当涡旋峰值速度变大时,反气旋涡心以北的潮能通量增长量超过15 kW/m。当涡旋半径增大时,涡旋峰值速度的位置发生变化,涡旋的峰值流速和半径共同影响潮能通量水平分布结构,使其呈现纬向单峰或多峰结构。  相似文献   

18.
Water motion in estuarine waters is the result of the action of various dynamic factors. Firstly, based on the hydro-dynamic characteristics in estuarine waters, neglecting the nonlinear effects of various flow hydrodynamic factors, the logarithm velocity profile of tidal current and the cubic velocity profile of Hansen and Rattray (1965) made for linear superposition at a sense of first order, a new model for velocity profile in estuarine waters is established. Then, by introducing the least square method combination of enumeration, the velocity profile data of wind-driven current measured in the laboratory and that observed at the North and the South Branches of the Yangtze Estuary are verified and compared with other formulas, all with satisfactory results. The results show that the new model not only considers the influences of various dynamic factors, such as tide, wind force, run-off and density pressure with high accuracy, but also provides reasonable boundary conditions on the bottom for hydrodynamics numerical simulation in estuarine waters. Thereby, the accuracy and credibility of numerical computation and prediction of water flow are improved. The research is theoretically important for the estuarine hydrodynamics.  相似文献   

19.
Zooplankton from coastal/continental margin environments can be transported long distances seaward into the subarctic North Pacific by the large (100–200 km diameter) anticyclonic eddies that form annually in late winter along the eastern margin of the Alaska Gyre. One recurrent region for eddy formation is off the southern tip of the Queen Charlotte Islands (near 52°N 132°W). Eddies from this source region (termed ‘Haida eddies’) propagate westward into open ocean waters during the subsequent 1–3 years, often to about 140°W, occasionally to mid gyre. Each eddy contains a core of anomalously low density water, and produces an upward doming of the sea surface detectable by satellite altimetry, thereby aiding repeated ship-based sampling. The zooplankton community in the eddies is a mixture between shelf/slope species (transported from the nearshore formation region) and subarctic oceanic species (which colonize the eddy from the sides and below). This paper reports sequential observations (late winter, early summer and fall seasons of 2000, and early summer and fall of 2001) of the abundance and distribution of continental-margin zooplankton in the Haida eddies that formed in late winters of 2000 and 2001. Shelf-origin species declined in abundance over time. Species that appeared to have a continental slope origin sometimes declined but sometimes persisted and flourished. Transport and retention within the eddy appeared to be especially effective for species that undergo diel vertical migration. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
This study focuses on the comparison of oceanic and coastal cold-core eddies with inner-shelf and East Australian Current (EAC) waters at the time of the spring bloom (October 2008). The surface water was biologically characterised by the phytoplankton biomass, composition, photo-physiology, carbon fixation and by nutrient-enrichment experiments. Marked differences in phytoplankton biomass and composition were observed. Contrasted biomarker composition suggests that biomarkers could be used to track water masses in this area. Divinyl chlorophyll a, a biomarker for tropical Prochlorophytes, was found only in the EAC. Zeaxanthin a biomarker for Cyanophytes, was found only within the oceanic eddy and in the EAC, whereas chlorophyll b (Chlorophytes) was only present in the coastal eddy and at the front between the inner-shelf and EAC waters.This study showed that cold-core eddies can affect phytoplankton, biomass, biodiversity and productivity. Inside the oceanic eddy, greater phytoplankton biomass and a more complex phytoplankton community were observed relative to adjacent water masses (including the EAC). In fact, phytoplankton communities inside the oceanic eddy more closely resembled the community observed in the inner-shelf waters. At a light level close to half-saturation, phytoplankton carbon fixation (gC d−1) in the oceanic eddy was 13-times greater than at the frontal zone between the eddy and the EAC and 3-times greater than in the inner-shelf water. Nutrient-enrichment experiments demonstrated that nitrogen was the major macronutrient limiting phytoplankton growth in water masses associated with the oceanic eddy. Although the effective quantum yield values demonstrate healthy phytoplankton communities, the phytoplankton community bloomed and shifted in response to nitrogen enrichments inside the oceanic eddy and in the frontal zone between this eddy and the EAC. An effect of Si enrichment was only observed at the frontal zone between the eddy and the EAC. No response to nutrient enrichment was observed in the inner-shelf water where ambient NOx, Si and PO4 concentrations were up to 14, 4 and 3-times greater than in the EAC and oceanic eddy. Although results from the nutrient-enrichment experiments suggest that nutrients can affect biomass and the composition of the phytoplankton community, the comparison of all sites sampled showed no direct relationship between phytoplankton biomass, nutrients and the depth of the mixed layer. This is probably due to the different timeframe between the rapidly changing physical and chemical oceanography in the separation zone of the EAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号