首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A survey within the French National Programme of Ecotoxicology was carried out in 2002, 2003 and 2004 to study the response of Nereis diversicolor populations (Polychaeta, Nereididae) to the impact of pollution in the Authie estuary (non-contaminated site) and in the Seine estuary (contaminated site). In the period studied, the density varied from 672 ind. m−2 to 3584 ind. m−2 in the Authie estuary and from 80 ind. m−2 to 920 ind. m−2 in the Seine estuary. Biomass varied from 3.94 g m−2 (dry weight) in February 2004 to 38.0 g m−2 in August 2003 in the Authie estuary and from 3.4 g m−2 in February 2002 to 0.6 g m−2 in February 2004 in the Seine estuary. Density and biomass of the populations of N. diversicolor were consistently lower in the Seine estuary than in the Authie estuary. Size frequency histograms permit the analysis of the cohorts as well as the elaboration of the growth curves. For the individuals from the Authie estuary, the relation between dry weight (DW) and length L3 (prostomium, peristomium and chaetiger 1) was DW = 4.2205 L32.9832. For those from the Seine estuary, the relation between dry weight and L3 was DW = 0.4697e1.7209L3. The individuals of N. diversicolor should belong to eight cohorts in Authie estuary (two cohorts each year) instead of six cohorts for those from the Seine estuary. These differences can be attributed to the effect of pollution on the population of N. diversicolor.  相似文献   

2.
A comparative account of primary productivity (PP), in the characteristically turbid and highly dynamic waters of Ariake Bay, measured by 13C uptake and fast repetition rate fluorometer (FRRF) was conducted to ensure compatibility between the two methods. Estimates from both methods depicted strong linearity for both short-term (r2 > 0.90) and daily (r2 = 0.42–0.93) measurements, except in the near-surface (∼0 m) layer. 13C-based short-term (1 h; in situ) PP estimates showed similar magnitudes and trend with the instantaneous PP measured by FRRF concurrently. Whereas, unlike short-term measurements, the daily PP estimates from both methods showed large difference, with FRRF-based time integrated daily PP resulting in 1.09–1.82 times higher than the carbon-based daily (24 h; simulated in situ) PP. This difference between daily PP estimates was mainly due to: (1) the temporal variation of water column chlorophyll a (Chl a) because of frequent moving of water mass, and (2) the dissimilarity in ambient light field conditions between the two methods. Results revealed that considering the above two environmental factors invariable over a daylength, fairly close approximation of daily PP, compared to 13C-based daily PP, could be obtained from FRRF. Hence, FRRF-based daily PP can be considered as more realistic in this highly dynamic water body like Ariake Bay where water column parameters are subjected to strong temporal variation. The relationship between Chl a-specific photosynthetic rate (PB) and the corresponding photosynthetically active radiation (PAR) in the water column (PAR–PB relationship) was found to be linear for FRRF and curvilinear for 13C-based measurements in the near-surface layer, for the same intensities of incident PAR, and this is thought to be the primary basis for the higher difference in PP estimates at the near-surface layer. Considering the minor variations in FRRF-based time series of PAR–PB relationships, a combined and/or instantaneous PAR–PB relationship in combination with incubation Chl a and light field condition was used to obtain fairly close estimates of daily water column integrated PP from FRRF.  相似文献   

3.
The SAGE iron addition experiment was conducted from R.V. Tangaroa east of South Island, New Zealand, in late March-early April 2004. A desktop survey of climatological data was completed before the experiment, providing information to inform site selection and experiment design. The desktop survey is presented here in updated and enhanced form in order to explain the site selection and describe the conditions expected at the site during the experiment in comparison with those actually encountered.The experiment site was in Subantarctic waters between the Subtropical and Subantarctic Fronts. These waters are characterised by high surface macronutrient concentration, low iron concentration and low chlorophyll. The preferred site based on the desktop survey was in the vicinity of 173.5°E, 47.5°S, in Southern Bounty Trough. The actual release location was chosen immediately before the release and was 112 km to the northwest of this at 172°32′E, 46°44′S. The surface water here has typically come from the southwest (over the northern Campbell Plateau) or the southeast (through Pukaki Gap) and the mean current is directed towards ENE at ∼0.1 m s−1. The release location is well removed from regions of high eddy kinetic energy to the east (where the Subantarctic Front reaches its northern limit) and the west (where fine-scale instabilities develop on the Southland Front, which flows along the continental shelf). Typical conditions at the release site at the end of March are: surface temperature 12 °C; mixed layer depth 40 m; surface chlorophyll concentration ∼0.3 mg m−3; surface photosynthetically active radiation (PAR) 23 E m−2 d−1; surface nutrient concentrations 8-10 mmol m−3 (nitrate), 0.5-0.8 mmol m−3 (phosphate), 1-2 mmol m−3 (silicate) and 0.1-0.5 nM (iron); 99th percentile wind speed 19-21 m s−1. At this time of year, surface PAR is well below its summer maximum, the mixed layer is beginning its seasonal deepening and the silicate concentration is at its seasonal minimum. These factors may have limited the phytoplankton response to iron addition and were compounded in March-April 2004 by strong winds early in the experiment (substantially exceeding the 99th percentile in speed), lower than the average SST, larger than the average mixed layer depth, silicate concentration at the bottom end of the expected range and initially low PAR.  相似文献   

4.
The influence of prolonged mouth closure on the population dynamics of the caridian shrimp, Palaemon peringueyi and the estuarine isopod, Exosphaeroma hylocoetes, in the littoral zone of temporarily open/closed Kasouga Estuary located on the south-eastern coastline of southern Africa was assessed monthly over the period October 2007 to September 2008. Prolonged mouth closure of the estuary contributed to hypersaline conditions (psu > 35) prevailing throughout the estuary for the last four months of the study. The high salinities coincided with a decrease in the areal extent (up to 80%) of the submerged macrophytes, mainly Ruppia maritima, within the littoral zone of the estuary. Total abundance and biomass values of the shrimp and isopod over the period of investigation ranged from 0 to 14.6 ind m−2, from 0 to 13.3 mg dwt m−2, from 12 to 1540 ind m−2 and from 0.1 to 2.16 mg dwt m−2, respectively. Maximum values of both the shrimp and isopod were recorded in the upper reaches of the estuary in close association with R. maritima. Over the course of the investigation, both the abundance and biomass values of the shrimp decreased significantly (P < 0.05 in both cases) which could be related to reduced habitat availability, R. maritima, that acts as a refuge against fish predation. Additionally, the decrease in abundance and biomass values could be attributed to reduced recruitment opportunities for the shrimp and the cessation of reproduction in the estuarine isopod. The establishment of a link to the marine environment following an overtopping event in September 2008 contributed to a decrease in salinity within the system although no recruitment of either the isopod or shrimp was recorded.  相似文献   

5.
To assess the potential of stable isotope ratios as an indicator of fish migration within estuaries, stable isotope ratios in important zooplankton species were analyzed in relation to estuarine salinity gradients. Gut contents from migratory juveniles of the euryhaline marine fish Lateolabrax japonicus were examined along the Chikugo River estuary of the Ariake Sea, which has the most developed estuarine turbidity maximum (ETM) in Japan. Early juveniles in March and April preyed primarily on two copepod species; Sinocalanus sinensis at lower salinities and Acartia omorii at higher salinities. Late juveniles (standard length > 40 mm) at lower salinities preyed exclusively on the mysid Acanthomysis longirostris until July and complementarily on the decapod Acetes japonicus in August. These prey species were collected along the estuary during the spring–summer seasons of 2003 and 2004, and their carbon and nitrogen stable isotope ratios (δ13C and δ15N) were evaluated. The δ13C values of prey species were distinct from each other and were primarily depleted within and in close proximity to the ETM (salinity < 10); S. sinensis (−26.6‰) < Acanthomysis longirostris (−23.3‰) < Acartia omorii (−21.1‰) < Acetes japonicus (−18.5‰). The overall gradient of δ13C with salinity occurred for all prey species and showed minor temporal fluctuations, while it was not directly influenced by the δ13C values in particulate organic matter along the estuary. In contrast to δ13C, the δ15N values of prey species did not exhibit any clear relationship with salinity. The present study demonstrated that δ13C has the potential for application as a tracer of fish migration into lower salinity areas including the ETM.  相似文献   

6.
The structure and functioning of nanoplanktonic assemblages in coastal upwelling areas have usually been overlooked in explorations of the productivity of these areas. As part of a multidisciplinary, time-series station in the coastal area off Concepción, seasonal variations (upwelling and non-upwelling) in the abundance and biomass of these assemblages were investigated. Hydrographic measurements and biological samples were taken monthly over a 2-year period (18 August 2004-28 July 2006). Nanoflagellates dominated the total integrated abundance (3-317 × 109 cells m−2; 0-80 m). Diatoms and dinoflagellates usually contributed to a lesser degree (<20%) but sporadically made important contributions to the total integrated nanoplankton biomass (0.02-10.6 g C m−2). Most of the nanoplankton was concentrated in surface waters (<30 m) during all the samplings and no seasonal differences in abundance or biomass were found in this layer, although the mean values and dispersions around them were highest during the upwelling period along with maximum integrated (0-80 m) chlorophyll-a values, as total or in the <20 μm fraction. Changes in nanoplankton abundance were significantly but weakly (r < 0.4) correlated with changes in the hydrographic variables; the highest correlation values were positive for temperature and oxygen, factors that varied with depth and date. The potential grazing rates of heterotrophic nano-predators (flagellates and dinoflagellates) on prokaryotic prey, estimated with a generic model, ranged from 3 to 242 bacterioplankton predator−1 h−1 and from 0.1 to 14 cyanobacteria predator−1 h−1. Our results imply a small impact of seasonal hydrographic variability on the abundance and biomass of nanoplanktonic assemblages and suggest that grazing by nanoheterotrophs might control the prokaryotic picoplankton populations in the upwelling area off Concepción.  相似文献   

7.
Based on measurements of the 18O isotope composition of 247 samples collected over a 3-year period we have assessed the oxygen isotope composition of water masses in the North Sea. This is the first δ18O data set that covers the entire North Sea basin. The waters lie on a mixing line: δ18O (‰VSMOW) = −9.300 + 0.274(S) with North Atlantic sub-polar mode water (SPMW) and surface waters, and Baltic Sea water representing the saline and freshwater end members respectively. Patterns exhibited in surface and bottom water δ18O distributions are representative of the general circulation of the North Sea. Oxygen-18 enriched waters from the North Atlantic enter the North Sea between Scotland and Norway and to a lesser extent through the English Channel. In contrast, oxygen-18 depleted waters mainly inflow from the Baltic Sea, the rivers Rhine and Elbe, and to a lesser degree, the Norwegian Fjords and other river sources. Locally the δ18O–salinity relationship will be controlled by the isotopic composition of the freshwater inputs. However, the range of local freshwater compositions around the North Sea basin is too narrow to characterise the relative contributions of individual sources to the overall seawater composition. This dataset provides important information for a number of related disciplines including biogeochemical research and oceanographic studies.  相似文献   

8.
The aim of this study was to distinguish between sources of the complex variety of Marennes-Oléron Bay suspended particulate organic matter (SPOM) contributing to the tropho-dynamics of the Marennes-Oléron oyster farming bay. Basic biomarkers (Chl a, C/N and POC/Chl a ratios), carbon and nitrogen stable isotopes from SPOM were analyzed and the microalgae community was characterized. The sampling strategy was bimonthly from March 2002 to December 2003; samples were taken from an intertidal mudflat. Four main sources contributed to the SPOM pool: terrigenous input from rivers, neritic phytoplankton, resuspended microphytobenthos and periodic inputs from intertidal Zostera noltii meadows. Seasonal fluctuations were observed in both years of the study period: (1) SPOM collected in the spring of 2002 (δ13C = −25‰ to −23‰) was mainly composed of fresh estuarine inputs; (2) SPOM from the summer and fall of 2002 and 2003 was predominantly neritic phytoplankton (δ13C = − 22‰ to −19‰); (3) SPOM from the winter of 2002, spring of 2003 and winter of 2003 (δ13C = −21 to −23‰) was composed of a mixture of decayed terrigenous river inputs and pelagic phytoplankton, which was predominantly resuspended microphytobenthos. In the summer of 2003—the warmest summer on record in southern France and Europe—SPOM was particularly enriched for 13C, with δ13C values ranging from −14‰ to −12‰. Pulses in δ13C values, indicative of 13C-enriched decaying materials, extended into the fall. These were attributed to benthic intertidal inputs, including both resuspended microphytobenthos and Z. noltii detritus. Changes in SPOM sources in Marennes-Oléron Bay may lead to differences in the quality of the trophic environment available for reared oysters.  相似文献   

9.
Moored sediment traps were deployed from January 2004 through December 2007 at depths of 550 and 800 m in San Pedro Basin (SPB), CA (33°33.0′N, 118°26.5′W). Additionally, floating sediment traps were deployed at 100 and 200 m for periods of 12-24 h during spring 2005, fall 2007, and spring 2008. Average annual fluxes of mass, particulate organic carbon (POC), ??13Corg, particulate organic nitrogen (PON), ??15N-PON, biogenic silica (bSiO2), calcium carbonate (CaCO3), and detrital material (non-biogenic) were coupled with climate records and used to examine sedimentation patterns, vertical flux variability, and organic matter sources to this coastal region. Annual average flux values were determined by binning data by month and averaging the monthly averages. The average annual fluxes to 550 m were 516±42 mg/m2 d for mass (sdom of the monthly averages, n=117), 3.18±0.26 mmol C/m2 d for POC (n=111), 0.70±0.05 mmol/m2 d for CaCO3 (n=110), 1.31±0.21 mmol/m2 d for bSiO2 (n=115), and 0.35±0.03 mmol/m2 d for PON (n=111). Fluxes to 800 and to 550 m were similar, within 10%. Annual average values of ??13Corg at 550 m were −21.8±0.2‰ (n=108), and ??15N averages were 8.9±0.2‰ (n=95). The timing of both high and low flux particle collection was synchronous between the two traps. Given the frequency of trap cup rotation (4-11 days), this argues for particle settling rates ≥83 m/d for both high and low flux periods. The moored traps were deployed over one of the wettest (2004-2005, 74.6 cm rainfall) and driest (2006-2007, 6.6 cm) rain years on record. There was poor correlation (Pearson's correlation coefficient, 95% confidence interval) of detrital mass flux with: Corg/N ratio (r=0.10, p=0.16); ??15N (r=−0.19, p=0.02); and rainfall (r=0.5, p=0.43), suggesting that runoff does not immediately cause increases in particle fluxes 15 km offshore. ??13Corg values suggest that most POC falling to the basin floor is marine derived. Coherence between satellite-derived chlorophyll a records from the trap location (±9 km2 resolution) and SST data indicates that productivity and export occurs within a few days of upwelling and both of these parameters are reasonable predictors of POC export, with a time lag of a few days to 2 weeks (with no time lag—SeaWiFS chlorophyll a and POC flux, r=0.25, p=0.0014; chlorophyll a and bSiO2 flux, r=0.28, p=0.0002).  相似文献   

10.
Recurrent coastal upwelling is recognized as one of the main factors promoting the exceptionally high productivity of the Humboldt Current System. Herein, we study time series data of gross primary production (2003-2006) and its fluctuation in relation to seasonal changes in the light and nutrient field of the Concepción upwelling ecosystem. Concurrent measurements of gross primary production, community respiration, bacterial secondary production, and sedimentation rates allowed a characterization of the main carbon fluxes and pathways in the study area. The integrated values of gross primary production were higher during the upwelling period (>1 g C m−2 d−1; October-April; that is, early spring to early austral fall). Seasonal changes in the system were also reflected in community respiration, organic matter sedimentation, and bacterial production rates, which varied along with the gross primary production. The significant correlation between gross primary production and community respiration (Spearman, r = 0.7; p < 0.05; n = 18) reflected an important degree of coupling between organic matter formation and its usage by the microplanktonic community during periods when gross primary production/community respiration were highly similar. Higher gross primary production values (>6 g C m−2 d−1) were consistently associated with maximum biomass levels of Skeletonema costatum and Thalassiosira subtilis. We observed a positive correlation between gross primary production and the sedimentation of intact diatom cells (Spearman, r = 0.5, p < 0.05, n = 17). Our data suggest that, in the Concepción upwelling ecosystem, bacteria utilize an important fraction of the gross primary production. If our interpretations are correct, they leave unanswered the question of how the system supports the extremely high fish biomass levels, therein pointing out the system’s limited capacity to buffer the evasion of CO2 following upwelling.  相似文献   

11.
The annual total and organic mercury bioaccumulation pattern of Scrobicularia plana and Hediste diversicolor was assessed to evaluate the potential mercury transfer from contaminated sediments to estuarine food webs. S. plana was found to accumulate more total and organic mercury than H. diversicolor, up to 0.79 mg kg−1 and 0.15 mg kg−1 (wet weight) respectively, with a maximum annual uptake of 0.21 mg kg−1 y−1, while for methylmercury the annual accumulation was similar between species and never exceeded 0.045 mg kg−1 y−1. The higher organic mercury fraction in H. diversicolor is related to the omnivorous diet of this species. Both species increase methylmercury exposure by burrowing activities and uptake in anoxic, methylmercury rich sediment layers. Integration with the annual biological production of each species revealed mercury incorporation rates that reached 28 μg m−2 y−1, and to extract as much as 11.5 g Hg y−1 (of which 95% associated with S. plana) in the 0.4 km2 of the most contaminated area, that can be transferred to higher trophic levels. S. plana is therefore an essential vector in the mercury biomagnification processes, through uptake from contaminated sediments and, by predation, to transfer it to economically important and exploited estuarine species.  相似文献   

12.
Fluxes of dissolved forms of iron and manganese across the sediment–water interface were studied in situ in the Gulf of Finland and the Vistula Lagoon (Baltic Sea), and in the Golubaya Bay (Black Sea) from 2001 to 2005. Fluxes were measured using chamber incubations, and sediment cores were collected and sliced to assess the porewater and solid phase metal distribution at different depths. Measured and calculated benthic fluxes of manganese and iron were directed out of sediment for all sites and were found to vary between 70–4450 and 5–1000 µmole m− 2 day− 1 for manganese and iron, respectively. The behavior of the studied metals at various redox conditions in the near-bottom water and in the sediment was the main focus in this study. Our results show the importance of bottom water redox conditions for iron fluxes. We measured no fluxes at oxic conditions, intermediate fluxes at anoxic conditions (up to 200 μmole m− 2 day− 1) and high fluxes at suboxic conditions (up to 1000 μmole m− 2 day− 1). Total dissolved iron fluxes were generally dominated by iron(II). Contribution of iron(III) to the total iron flux did not exceed 20%. Obtained fluxes of manganese at all studied regions showed a linear correlation (r2 = 0.97) to its concentration in the porewater of the top sediment layer (0–5 mm) and did not depend on dissolved oxygen concentrations of bottom water. Organically complexed iron and manganese were in most cases not involved in the benthic exchange processes.  相似文献   

13.
Size-fractionated bacterial production, abundance and α- and β- glucosidase enzyme activities were studied with respect to changes in hydrography, total suspended matter (TSM), chlorophyll a, particulate organic carbon and nitrogen ratio (POC:PON), 1.5 M NaCl-soluble and 10 mM EDTA-soluble carbohydrates (Sal-PCHO and CPCHO) and transparent exopolymeric particles (TEP) in the surface waters from July 1999–2000 at a shallow coastal station in Dona Paula Bay, west coast of India. The bulk of the total bacterial production and glucosidase activity were associated with particles (75% and >80%, respectively). Total bacterial production was linearly correlated to chlorophyll a (r = 0.513; p < 0.05) whereas enzyme activity was significantly correlated to TSM (α-glucosidase: r = 0.721 (p < 0.001); β-glucosidase: r = 0.596 (p < 0.01)). Both α-glucosidase (r = 0.514; p < 0.05) and β-glucosidase enzymes (r = 0.598; p < 0.01) appeared to be involved in the degradation of CPCHO and Sal-PCHO, respectively. Changes in α-glucosidase/β-glucosidase ratios highlighted the varying composition of particulate organic matter. The bacterial uptake of 14C-labeled bacterial extracellular carbohydrate measured over 11 days showed a strong linear correlation between 14C-uptake and bacterial production using tritiated thymidine. The turnover rate of 14C-labeled carbohydrate-C was 0.52 d−1, higher than the estimated annual mean potential carbohydrate carbon turnover rate of 0.33 ± 0.2 d−1. Our study suggests that carbohydrates derived from sediments may serve as an important alternative carbon source sustaining the bacterial carbon demand in the surface waters of Dona Paula Bay.  相似文献   

14.
During a cruise of r/v ‘Oceania’ in May 2006, seven vertical dissolved organic carbon (DOC) concentration profiles were produced against a background of CTD, chlorophyll a (chl a) and phaeopigment concentration profiles. The results indicate distinct vertical and spatial DOC fluctuations, ranging from 248 ± 7 μmol C dm−3 at 70 m depth at the westernmost station G/06 to 398 ± 5 μmol C dm−3 at 5 m depth at station A/06 in the western Gulf of Gdańsk. DOC concentrations were the highest at 10 m depth, where phytoplankton activity was relatively intensive, as reflected by the active chl a concentration distribution. DOC concentrations decreased towards the sea bottom.  相似文献   

15.
A cross-system analysis of bulk sediment composition, total organic carbon (TOC), atomic C/N ratio, and carbon isotope composition (δ13C) in 82 surface sediment samples from natural and planted mangrove forests, bank and bottom of tidal creeks, tidal flat, and the subtidal habitat was conducted to examine the roles of mangroves in sedimentation and organic carbon (OC) accumulation processes, and to characterize sources of sedimentary OC of the mangrove ecosystem of Xuan Thuy National Park, Vietnam. Sediment grain sizes varied widely from 5.4 to 170.2 μm (mean 71.5 μm), with the fine sediment grain size fraction (< 63 μm) ranging from 11 to 99.3% (mean 72.5%). Bulk sediment composition suggested that mangroves play an important role in trapping fine sediments from river outflows and tidal water by the mechanisms of tidal current attenuation by vegetation and the ability of fine roots to bind sediments. The TOC content ranged from 0.08 to 2.18% (mean 0.78%), and was higher within mangrove forests compared to those of banks and bottoms of tidal creeks, tidal flat, and subtidal sediments. The sedimentary δ13C ranged from − 27.7 to − 20.4‰ (mean − 24.1‰), and mirrored the trend observed in TOC variation. The TOC and δ13C relationship showed that the factors of microbial remineralization and OC sources controlled the TOC pool of mangrove sediments. The comparison of δ13C and C/N ratio of sedimentary OC with those of mangrove and marine phytoplankton sources indicated that the sedimentary OC within mangrove forests and the subtidal habitat was mainly composed of mangrove and marine phytoplankton sources, respectively. The application of a simple mixing model showed that the mangrove contribution to sedimentary OC decreased as follows: natural mangrove forest > planted mangrove forest > tidal flat > creek bank > creek bottom > subtidal habitat.  相似文献   

16.
Nitrification rates, as oxidation of 15N-labelled ammonium and loss of nitrite from N-Serve treated samples, were measured in Kochi backwaters during three seasons. Nitrification rates ranged from undetectable to 166 nmol N L−1 h−1 in the water column and up to 17 nmol N (g wet wt)−1 h−1 in sediments. Nitrification rates were higher in intermediate salinities than in either freshwater or seawater end. Within this salinity range, nitrification rates could be related to ammonium concentrations. As shown by the relation between ammonification and nitrification rates, it is also likely that nitrification is more regulated by renewal rates, rather than by in situ concentrations, of substrate. Among other environmental parameters, temperature and pH may have an influence on nitrification. Potential nitrification rates calculated from loss of nitrite from N-Serve treated, nitrite-enriched samples were about 800 nmol N L−1 h−1 in the water column and 40 nmol N (g wet wt)−1 h−1 in sediments. While these rates are in balance with those of biological ammonium production they may be inadequate to mitigate ammonium pollution in this estuary.  相似文献   

17.
The vertical flux of particulate matter from the surface of the Ross Sea, Antarctica, has been suggested as being large, with substantial seasonal and spatial variations. We conducted a study in which vertical flux was quantified using sediment traps deployed at 200 m and compared to estimates calculated from one-dimensional budgets of nutrients (nitrogen and silicon). Estimates of flux were collected at two locations in the southern Ross Sea from late December to early February during four years: 2001-2002, 2003-2004, 2004-2005, and 2005-2006. Phytoplankton biomass and vertical flux varied substantially seasonally and spatially between the two sites, and among years. The greatest flux was observed in 2001-2002, with a short-term maximum organic carbon flux of 3.13 mmol m−2 d−1, and the summer mean organic carbon flux equal to 0.93 mmol m−2 d−1. In contrast, the mean carbon flux at the same site in 2003-2004 was over an order of magnitude less, averaging 0.19 mmol m−2 d−1, despite the fact that productivity in that year was substantially greater. In 2005-206 the contribution of fecal pellets to flux was smallest among all years, and the pellet contribution ranged from <1 to more than 50% of organic flux. As the moorings also had surface layer fluorometers, the relationship between surface biomass and sediment trap flux was compared. Temporal lags between surface fluorescence and flux at 200 m maxima in 2003-2004 and 2004-2005 ranged from two to six days; however, in 2005-2006 the temporal offset between biomass and flux was much longer, ranging from 11 to 27 days, suggesting that fecal pellet production appeared to increase the coupling between flux and surface production. Estimates of export from the upper 200 m based on one-dimensional nutrient budgets were greater than those recorded by the sediment traps. Nutrient budgets also indicated that siliceous production averaged ca. 40% of the total annual production. The variations observed in the flux of biogenic matter to depth in the Ross Sea are large, appear to reflect different forcing among years, and at present are not adequately understood. However, such variability needs to be both understood and represented in biogeochemical models to accurately assess and predict the effects of climate change on biogeochemical cycles.  相似文献   

18.
Variations in abundance, biomass, vertical profile and cell size of heterotrophic dinoflagellates (HDFs) between summer and winter and its controlling factors were studied in the northern South China Sea (SCS). It was found that HDF abundance and carbon biomass were 4–102 × 103 cells L−1 and 0.34–12.3 mg C L−1 in winter (February 2004), respectively, while they were 2–142 × 103 cells L−1 and 0.22–31.4 μg C L−1 in summer (July, 2004), respectively, in the northern SCS. HDF abundance and carbon biomass decreased from the estuary to inshore and then offshore. Vertical profiles of HDF abundance were heterogeneous, which accorded well with that of chlorophyll a (Chl.a). Higher abundance of HDFs was often observed at a depth of 30–70 m offshore waters, matching well with the Chl.a maximum, while it showed high abundance at the surface in some coastal and estuary stations. Small HDFs (≤20 μm) dominated the assemblage in term of abundance accounting for more than 90%. However, large HDFs (>20 μm) generally contributed equally in terms of carbon biomass, accounting for 47% on average. HDFs showed different variation patterns for the different study regions; in the estuarine and continental shelf regions, abundance and biomass values were higher in summer than those in winter, while it was the reverse pattern for the slope waters. Hydrological factors (e.g. water mass, river outflow, monsoon and eddies) associated with biological factors, especially the size-fractionated Chl.a, seemed to play an important role in regulating HDF distribution and variations in the northern South China Sea.  相似文献   

19.
The Little Ice Age (∼1600–1900 AD) and 20th century sediment accumulation rates in Billefjorden, a subpolar fjord on Svalbard, were reconstructed by applying 210Pb, 137Cs and AMS 14C datings. The modern sediment accumulation rate decreases from more than 0.39 cm y−1 at the fjord head to 0.08 cm y−1 close to the fjord mouth. However, during the Little Ice Age the sediments accumulated at a much lower rate of 0.02 cm y−1 in the central fjord basin. This difference is most likely related to the rapid retreat of glaciers during the 20th century, when most of them withdrew up to 2 km. The post-Little Ice Age increases in temperature and a negative glacier mass balance resulted in a larger meltwater discharge transferring substantial amounts of sediments released from the glaciers, as well as those eroded from previously stored unconsolidated glacial sediments. A comparison of data from the subpolar fjords of Svalbard suggests that the increase in the sediment accumulation rate is a common trend, and further increases might be expected if climate warming continues. The properties of the fjord sediments (grain size, IRD, coarse-fraction composition, clay mineralogy) from the Little Ice Age and the 20th century showed no distinct differences. The change in the accumulation rate may be the most evident sedimentary record of this climatic change.  相似文献   

20.
We conducted studies of phytoplankton and hydrological variables in a semi-enclosed bay in northern China to understand the spatial–temporal variability and relationship between these variables. Samples were collected during seven cruises in Jiaozhou Bay from November 2003 to October 2004, and were analyzed for temperature, nutrients and phytoplankton pigments. Pigments from eight possible phytoplankton classes (Diatoms, Dinoflagellates, Chlorophyceae, Prasinophyceae, Chrysophyceae, Haptophyceae, Cryptophyceae and Caynophyceae) were detected in surface water by high performance liquid chromatography (HPLC). Phytoplankton pigment and nutrient concentrations in Jiaozhou Bay were spatially and temporally variable, and most of them were highest in the northern and eastern parts of the sampling regions in spring (May) and summer (August), close to areas of shellfish culturing, river estuaries, dense population and high industrialization, reflecting human activities. Chlorophyll a was recorded in all samples, with an annual mean concentration of 1.892 μg L−1, and fucoxanthin was the most abundant accessory pigment, with a mean concentration of 0.791 μg L−1. The highest concentrations of chlorophyll a (15.299 μg L−1) and fucoxanthin (9.417 μg L−1) were observed in May 2004 at the station close to the Qingdao Xiaogang Ferry, indicating a spring bloom of Diatoms in this area. Although chlorophyll a and other biomarker pigments showed significant correlations, none of them showed strong correlations with temperature and nutrients, suggesting an apparent de-coupling between the pigments and these hydrological variables. The nutrient composition and phytoplankton community composition of Jiaozhou Bay have changed significantly in the past several decades, reflecting the increasing nutrient concentrations and decline of phytoplankton cell abundance. The unchanged total chlorophyll a levels indicated that smaller species have filled the niche vacated by the larger species in Jiaozhou Bay, as revealed by our biomarker pigment analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号