首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In order to estimate submarine groundwater discharge (SGD) and SGD-driven nutrient fluxes, we measured the concentrations of nutrients, 224Ra, and 226Ra in seawater, river water, and coastal groundwater of Yeongil Bay (in the southeastern coast of Korea) in August 2004 and February 2005. The bottom sediments over the shallow areas of this bay are composed mainly of coarse sands. Large excess concentrations of 224Ra, 226Ra, and Si supplied from SGD were observed in August 2004, while these excess concentrations were not apparent in February 2005. Based on the mass balance for 224Ra, 226Ra, and Si, which showed conservative mixing behavior in seawater, SGD was estimated to be approximately 6 × 106 m3 day− 1 (seepage rate = 0.2 m day− 1) in shallow areas (< 9 m water depth) in August 2004, which is much higher than the SGD level typically found in other coastal regions worldwide. During the summer period, SGD-driven nutrients in this bay contributed approximately 98%, 12%, and 76% of the total inputs for dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi), respectively. Our study implies that the ecosystem in this highly permeable bed coastal zone is influenced strongly by SGD during summer, while such influences are negligible in winter.  相似文献   

2.
This work is the beginning of a coastal water quality monitoring program to establish the baseline for the implementation of an integrated coastal management of the Yucatán Peninsula tropical ecosystem. Coastal water quality is affected by the increasing economic development. This area has no rivers because of its karst geomorphology, and the coastal freshwater comes from springs or seeps. Coastal water quality was studied in four towns from January to December 2000. Statistically significant differences among water quality variables and processes are discussed. Along with groundwater discharge, domestic and shrimp farming sewage are the main sources of nutrients, predominantly of nitrogen and silica. Salinity dilution is used to estimate the groundwater fraction that influences each area in northwestern Yucatán.  相似文献   

3.
Radium isotopes (223Ra, 224Ra, 226Ra, and 228Ra) and water chemistry were used to identify two chemically distinct sources of submarine groundwater discharge (SGD) in Celestún Lagoon, Yucatán, Mexico. Low salinity groundwater discharging from springs within the lagoon has previously been identified and extensively sampled for nutrient concentrations. However, a second type of groundwater discharging into the lagoon was detected during this study using radium isotope activity measurements. This second type of groundwater is characterized by moderate salinities (within the range of lagoon salinities) and very elevated radium activities in comparison to the low salinity groundwater, mixed lagoon water, and seawater. Further analysis showed that the two types of groundwater also have distinct chloride, strontium, and sulfate ratios, along with slightly different nutrient concentrations. Groundwater discharge occurs through large and small springs scattered throughout the lagoon, and both types of groundwater were detected discharging from one of the larger springs. The relative proportions of low salinity groundwater and brackish high radium groundwater varied over the tidal cycle. In order to better understand the relative contributions of each type of groundwater to the lagoon, a three end-member mixing model based on the distinct chemical and isotopic compositions of both types of groundwater and of seawater was used to estimate the distribution of each water type throughout the lagoon in different seasons. This study suggests that substantial groundwater discharge to the lagoon can occur during both dry and rainy seasons. The presence of two groundwater sources has implications for monitoring and protection of the Celestún Lagoon Biosphere Reserve, since the two sources may have different susceptibilities to anthropogenic contamination depending on their respective recharge area and recharge rates.  相似文献   

4.
Abstract. The temporal variations of nutrients, chlorophyll a (chl a ), suspended particulate matter (SPM) and particulate organic carbon (POC) were measured over 12 months in three shallow coastal brackish water lagoons of the Amvrakikos Gulf, Ionian Sea. Two of the lagoons, Tsoukalio and Rodia, are interconnected but separated from Logarou by a narrow strip of land. Logarou has a better water exchange with the sea as indicated by the higher salinity and dissolved oxygen concentrations and the smaller variation of the above-mentioned parameters. Nitrate concentrations were largely the same in the three lagoons and higher than in the Amvrakikos Gulf. Phosphate concentrations in Logarou exceeded by far those of Tsoukalio/Rodia; the increased phosphate levels recorded in January caused an extended phytoplankton bloom with chl a concentrations higher than in the other two lagoons. Chl a in Tsoukalio was positively correlated with nitrate whereas in the most shallow lagoon, Logarou, it showed a positive correlation with light winds (force 4 and lower), probably caused by resuspension from the sediment. Increased phytoplankton biomass in Logarou coupled with the better water exchange may be related to the higher fish production in this lagoon.  相似文献   

5.
海底地下水排放对典型红树林蓝碳收支的影响   总被引:1,自引:0,他引:1  
海底地下水排放(Submarine Groundwater Discharge,SGD)是陆海相互作用的重要表现形式之一,其携带的物质对近岸海域生源要素的收支有重要影响。本文利用222Rn示踪技术估算了我国典型红树林海湾—广西珍珠湾在2019年枯季(1月)SGD携带的碳通量。调查发现,地下水中222Rn活度、溶解无机碳(DIC)和溶解有机碳(DOC)的平均浓度均高于河水和湾内表层海水。利用222Rn质量平衡模型估算得到珍珠湾SGD速率为(0.36±0.36) m/d,SGD输入到珍珠湾的DIC和DOC通量分别为(2.41±2.63)×107 mol/d和(1.96±2.20)×106 mol/d。珍珠湾溶解碳的源汇收支表明,SGD携带的DIC和DOC分别占珍珠湾总DIC和总DOC来源的91%和89%。因此,SGD携带的DIC和DOC是珍珠湾DIC和DOC的主要来源,是海岸带蓝碳收支和生物地球化学循环过程中的重要组成。  相似文献   

6.
The inflow of terrestrial groundwater into the ocean is increasingly recognized as an important local source of nutrients and pollutants to coastal ecosystems. Although there is evidence of a link between fresh submarine groundwater discharge (SGD)-derived nutrients and primary producer and primary consumer abundances, the effects of fresh SGD on the productivity of higher trophic levels such as ichthyofaunal communities remain unclear. To further investigate this relationship, we sampled three sites inside a coral reef lagoon in Mauritius: One site entailing six distinct groundwater springs, a site highly influenced by freshwater influx through the springs, and a strictly marine control site. Using remote underwater video surveys, we found that fish abundances were significantly higher at the groundwater springs than at the other two sampling sites.Principal component analyses showed that the springs and the spring-influenced part of the lagoon were best described by elevated water nutrient loadings, whereas the control site was characterized by higher water salinity and pH. Macroalgae cover was highest at the control site and the springs. Herbivores and invertivores dominated the fish community at the springs, in contrast to generalists at the control site. At the spring-influenced site, we mainly encountered high coral/turf algae cover and high abundances of associated fish feeding groups (territorial farmers, corallivores). Our results provide evidence of a fresh SGD-driven relationship between altered hydrography and distinct fish communities with elevated abundances at groundwater springs in a coral reef lagoon. These findings suggest that the management and assessment of secondary consumer productivity in tropical lagoons should take into account the effects of groundwater springs.  相似文献   

7.
We report the results of an experiment in which we measured 222Rn (15,000 observations), CH4 (40,000 observations), and associated variables in seawater nearly continuously at a coastal site in the Gulf of Mexico for almost two years. Significant correlations between 222Rn and CH4 imply that they are derived from a common source, most likely groundwater. However, we were unable to explain the overall tracer variability as a single function of groundwater table height, temperature, tidal range, and wind speed, indicating multiple, overlapping controls on SGD dynamics at this site. Methane and radon concentrations may vary 2-fold in a given well in the subterranean estuary over tidal time scales, demonstrating the complexity of determining SGD endmember concentrations and suggesting that unaccounted for temporal changes in groundwater may explain some of the patterns observed in seawater. Surprisingly, the variability of 222Rn and CH4 in seawater over short (e.g., hourly) time scales was generally comparable to or even more pronounced than fluctuations over much longer (e.g., monthly) scales. While high tracer concentrations usually occurred during low tide and low tracer concentrations during high tide, this pattern was occasionally inverted or absent indicating that no single model can be used to describe the entire data set. We also describe a sequence of events in which SGD tracers were depleted in coastal waters during storms and regenerated afterwards. We found no increase in radon activities immediately after the largest storm (75 mm rainfall) perhaps because of the short residence times of groundwater in contrast to the ingrowth time of radon. Marine controls appeared to be the most important SGD drivers with only minor influence relating to the shallow and deep aquifers. This implies that seasonal investigations of SGD tracers in the coastal ocean may be masked by short-term variability.  相似文献   

8.
During recent historical times the Adra river delta, a detrital coastal aquifer of nearly 32 km2 located in a semi-arid, mountainous area of SE Spain, has undergone different changes caused by human activity. Within this context, both the river dynamics in the plain and the geomorphology of the coastline have at various times resulted in the formation of small lagoons. At present only two small (<0.5 km2) lagoons exist, at the eastern edge of the aquifer, which, although closely surrounded by commercial market-garden greenhouses, are protected under international agreements. During the last 30 years of the twentieth century traditional agricultural irrigation techniques have undergone significant changes to improve their efficiency. Surface-water resources in the Adra river basin are regulated via the Beninar reservoir. In addition, the use of groundwater is increasing progressively. Both these factors affect the recharge of the coastal aquifer. To monitor these changes measurements of electrical conductivity and water level fluctuations have been recorded in these lagoons for the last 35 years (1975–2010). A comparison of the hydrochemical characteristics of the water in the lagoons and of the surrounding groundwater from 2003 to 2010 shows marked differences induced by the different hydrological dynamics in each lagoon, as well as by the hydrogeological impact of changes in land use in the delta. The increase in water demand is a consequence of the extension of irrigated areas from the fluvio-deltaic plain to its slopes, originally occupied by unirrigated crops. A reduction in irrigation return-flow is linked to the use of new irrigation techniques. These modifications affect both the recharge regime of the aquifer and its water quality. Moreover, extreme precipitation events, which are characteristic of Mediterranean semi-arid environments, can affect the lagoons’ hydrological dynamics to a considerable extent. One such example is the unusually rainy period from January to March 2010 (>600 mm). This event, along with other effects, has dramatically lowered the salinity of the water in both lagoons. This case study reveals the extreme vulnerability of deltaic environments and also how lagoons can reflect anthropogenic changes over the whole river basin.  相似文献   

9.
This paper considers the hypothesis that changes in community structure through the control of the larvae maintenance and of the biological traits of the species mostly contribute to the spatio-temporal community pattern. This is supported by the results of the study, the changes to the macrobenthic community pattern deriving from two sampling periods in Gialova lagoon (SW Greece), carried out on a seasonal basis for two yearly periods: 1994-95 and 1998-99. Cognetti’s hypothesis that populations of the tolerant species occupying coastal marine habitats may belong to different species is another alternative hypothesis still to be tested. The importance of alternative management plans aiming at the amelioration of the hydrodynamic conditions of the lagoons and supported by continuous scientific monitoring is highlighted. Two canals bringing fresh water were opened at the beginning of the second sampling period, an intervention among others, suggested by the management plan proposed after the end of the first sampling period. The results show considerable variations in the values of the key environmental variables, for instance long periods with negative Redox potential values, decreased salinity and increased concentrations of the particulate organic matter and of the nutrients. The variables were correlated with the spatio-temporal community pattern, characterized during the second sampling period by: (i) greater dissimilarities among stations/seasons; (ii) disruption of the periodic trend observed on the seasonal scale; (iii) larger relative dissimilarities among the patterns stemming from the macrobenthos and the most abundant groups (polychaetes, molluscs, crustaceans); (iv) significant decrease in abundance or even the disappearance of several marine origin species, along with increased abundance in a few brackish-water species. All of the above changes in the community pattern are considered as early warning signals leading towards degradation, which has not yet been registered in the phylogenetic/taxonomic structure of the macrobenthic community.  相似文献   

10.
海底地下水排泄(SGD)是近岸海洋化学和生态系统演化的重要驱动因素,其携带的大量物质对珊瑚礁发育和退化具有非常重要的影响。本文综述了珊瑚礁区的SGD特征及其对珊瑚礁发育和退化的潜在生态环境效应,SGD的珊瑚替代指标以及全球各海域SGD的高分辨率珊瑚记录研究进展,并以南海北部为例探讨珊瑚礁退化的主导因素及SGD的潜在影响。研究发现,目前珊瑚礁区,尤其是岸礁区长时间序列的SGD动态变化记录的研究极为薄弱;利用珊瑚骨骼的地球化学指标来重建局部海域的SGD通量的动态历史变化具有较强的可操作性;虽然SGD极有可能是以南海北部为代表的珊瑚礁区珊瑚礁退化的重要因素,但目前无论是政府机构还是公众对SGD的关注和重视相当有限。未来的研究应该聚焦于珊瑚礁区SGD及其携带物质通量的高分辨率珊瑚记录,进而探讨SGD对珊瑚礁发育和退化影响的关键过程与机制,并提出科学合理的应对建议。  相似文献   

11.
基于223Ra和224Ra的桑沟湾海底地下水排放通量   总被引:1,自引:0,他引:1  
海底地下水排放(SGD)是陆地向海洋输送水量和营养物质的重要通道之一,对沿海物质通量及其生物地球化学循环有重要的影响,对生态环境起着不可忽视的作用。本文运用天然放射性同位素223Ra和224Ra示踪估算了我国北方典型养殖基地桑沟湾的海底地下水排放通量。结果表明,海底地下水样尤其是间隙水中Ra活度[224Ra=(968±31)dpm/(100 L),223Ra=(31.4±4.9)dpm/(100 L),n=9]远高于表层海水[224Ra=(38.7±2.0)dpm/(100 L),223Ra=(1.70±0.50)dpm/(100 L), n=21]。假设稳态条件下,考虑Ra的各源、汇项,利用Ra平衡模型,估算出桑沟湾SGD排放通量为(0.23~1.03)×107 m3/d。潮周期内的观测结果显示,涨潮时,水力梯度较小,SGD排放变弱,落潮时,水力梯度较大,导致了相对较多的SGD排放。在一个潮周期间,基于223Ra和224Ra得到的SGD排放通量平均为0.39×107 m3/d。潮汐动力下的SGD排放平均占总SGD排放的61%,因此桑沟湾沿岸的地下水排放主要受潮汐动力的影响,并对海水组成及海陆间物质交换有显著贡献。  相似文献   

12.
海底地下水排放(SGD)是近海海域的一个重要的营养盐来源。本研究借助多种天然镭同位素对春季苏北浅滩海域的SGD及其携带入海的营养盐通量进行量化评估。研究发现:苏北浅滩海域的~(224)Ra、~(223)Ra和~(226)Ra等镭同位素的浓度水平较高,呈现近岸高、远岸低的分布趋势;根据~(224)Ra/~(226)Ra的"表观年龄模型"估算的水龄的分布情况推断,春季该海域表层水体主体流向为东北向,流速约为0.1m/s,这与前人物理海洋数值模拟结果一致;最终利用226Ra质量平衡模型发现海域的SGD通量为(46±29)cm/d,由其携带入海的溶解态无机氮、磷、硅营养盐(DIN、 DIP、 DSi)等的通量分别为(2.6±3.1)×1~09、(3.0±2.5)×10~6和(5.5±4.2)×10~8mol/d。  相似文献   

13.
The recreational uses of coastal lagoons (also known locally as salt ponds) contribute significantly to the important tourism economy of the southern part of the US state of Rhode Island. The lagoons are valued highly for the wide range of recreational services they provide, such as fishing, clamming, rowing, boating, or merely relaxing. Outdoors on or near the water, weather conditions may influence individual recreation decisions strongly. A changing climate is expected to affect weather conditions in Rhode Island, thereby potentially influencing when, how, and how much recreation will take place in the coastal areas of the state. Through direct observations of human activities on coastal lagoons, the sensitivity of coastal recreational uses to changes in weather conditions was assessed. If future changes in climate bring warmer temperatures and more intense wind and rain events, our results suggest that there may be a decrease in relaxing, rowing, and fishing on coastal lagoons when days are hotter and a decrease in rowing and fishing when days are windier. Nevertheless, warmer temperatures also may lengthen the summers, leading to an overall increase in the peak coastal recreation season. However, during the hottest periods, there may be a shift toward more motor boating and away from other uses, motor boaters were more resistant than other users to changes when temperatures increase. Understanding how weather and climate influence coastal recreation could help coastal managers and businesses better plan for the future in Rhode Island and other coastal environments worldwide.  相似文献   

14.
Coastal water bodies are a heterogeneous resource typified by high spatial and temporal variability and threatened by anthropogenic impacts. This includes saline lagoons, which support a specialist biota and are a priority habitat for nature conservation. This paper describes the biotic variation in coastal water bodies in Sussex, England, in order to characterise the distinctiveness of the saline lagoon community and elucidate environmental factors that determine its distribution. Twenty-eight coastal water bodies were surveyed for their aquatic flora and invertebrate fauna and a suite of exploratory environmental variables compiled. Ordination and cluster analyses were used to examine patterns in community composition and relate these to environmental parameters. Biotic variation in the coastal water body resource was high. Salinity was the main environmental parameter explaining the regional distribution of taxa; freshwater and saline assemblages were evident and related to sea water ingress. Freshwater sites were indicated by the plant Myriophyllum spicatum and gastropod mollusc Lymnaea peregra, while more saline communities supported marine and brackish water taxa, notably a range of chlorophytic algae and the bivalve mollusc Cerastoderma glaucum. Site community differences were also related to bank slope and parameters describing habitat heterogeneity. A saline lagoon community was discerned within the matrix of biotic variation consisting of specialist lagoonal species with associated typically euryhaline taxa. For fauna, the latter were the molluscs Abra tenuis and Hydrobia ulvae, and the crustaceans Corophium volutator and Palaemonetes varians, and for flora they were the algae Ulva lactuca, Chaetomorpha mediterranea, Cladophora spp. and Enteromorpha intestinalis. One non-native polychaete species, Ficopomatus enigmaticus, also strongly influenced community structure within the lagoonal resource. The community was not well defined as specialist and associated taxa were distributed throughout the spectrum of sites surveyed. Implications for the identification and conservation of saline lagoons are discussed.  相似文献   

15.
Salt marsh soils from the mean water level and from different levels above the mean water level at two Danish coastal lagoons, which differ in water pollution due to differences in the character of the surrounding land use, were analysed for EDTA extractable Pb, Cu, Zn and Ni and for organic matter and cation exchange capacity. From the results a positive correlation was apparent between the trace metal loading of the soils, expressed by the trace metal concentration in relation to the content of soil organic matter, and the mean trace metal concentration of the lagoon water, submerging the salt marsh at high water. This opens up the possibility of using analyses of salt marsh soils in the indication of trace metal pollution of protected coastal waters.  相似文献   

16.
A three-dimensional coupled physical and water quality model was developed and applied to the Jiaozhou Bay to study water quality involving nutrients, biochemical oxygen demand, dissolved oxygen, and phytoplankton that are closely related to eutrophication process. The physical model is a modified ECOM-si version with inclusion of flooding/draining processes over the intertidal zone. The water quality model is based on WASP5 which quantifies processes governing internal nutrients cycling, dissolved oxygen balance and phytoplankton growth. The model was used to simulate the spatial distribution and the temporal variation of water quality in the Jiaozhou Bay for the period of May 2005 to May 2006. In addition, the effect of reduction of riverine nutrients load was simulated and evaluated. The simulated results show that under the influence of nutrients discharged from river, the concentrations of nutrients and phytoplankton were higher in the northwest and northeast of the bay, and decreased from the inner bay to the outer. Affected by strong tidal mixing, the concentrations of all state variables were vertically homogeneous except in the deeper regions where a small gradient was found. Obvious seasonal variation of phytoplankton biomass was found, which exhibited two peaks in March and July, respectively. The variation of riverine waste loads had remarkable impact on nutrients concentration in coastal areas, but slightly altered the distribution in the center of the bay.  相似文献   

17.
Time-series observations were conducted off Visakhapatnam, central west coast of Bay of Bengal, from October 2007 to April 2009 to examine the influence of physical and atmospheric processes on water column nutrients biogeochemistry. The thermal structure displayed inversions of 0.5 to 1.0° C during winter and were weaker in summer. The water column was vertically stratified during the entire study period and was stronger during October–November 2007 and August–December 2008 compared to other study periods. High concentrations of chlorophyll-a and nutrients were associated with the extreme atmospheric events. The strong relationship of nutrients with salinity indicates that physical processes, such as circulation, mixing and river discharge, have a significant control on phytoplankton blooms in the coastal Bay of Bengal. Phosphate seems to be a controlling nutrient during winter whereas availability of light and suspended matter limits production in summer. Formation of low oxygen conditions were observed in the bottom waters due to enhanced primary production by extreme atmospheric events; however, re-oxygenation of bottom waters through sinking of oxygen-rich surface waters by a warm core (anticyclonic) eddy led to its near recovery. This study reveals that atmospheric and physical processes have significant impacts on the water column biogeochemistry in the coastal Bay of Bengal.  相似文献   

18.
Submarine groundwater discharge (SGD) into a coastal lagoon off Perth, Western Australia, contains nitrate and silicate in concentrations two orders of magnitude higher than those of the receiving waters. This discharge delivers enough nitrate to replace that dissolved in the lagoon water mass about every eight days and enough silicate to replace the lagoon silicate in about 48 days. The delivery rate of nitrate nitrogen by SGD is equal to about 48% of that required for observed growth rates of lagoon macrophytes. Surface salinity is lower close to the shore as a result of SGD. During calm conditions a salinity front was observed in the lagoon, with a nearshore pool of nutrient-enriched water floating above the more saline ocean water.  相似文献   

19.
Submarine groundwater discharge(SGD) has received increasing attention by studies on coastal areas; however,its effects on biogeochemical zonation have not been investigated to date. The Huanghe River Estuary(HRE) is a world class river estuary with high turbidity, and heavy human regulation. This study investigated how SGD is related to the benthic biogeochemistry of the HRE. Based on the distribution of several parameters(e.g., salinity,temperature, dissolved oxygen(DO) levels, p H, radium iso...  相似文献   

20.
The role of the hydrological regime in the nutrients and zooplankton composition and dynamics has been analysed in five lagoons of La Pletera salt marshes (NE Iberian Peninsula) during a complete hydrological cycle (2002–2003). Two of the lagoons have their origin in the old river mouths while the other three were recently created in the framework of a Life Restoration project. This fact has also allowed us to study the effect of the lagoon age on nutrient and zooplankton composition and dynamics. The salt marsh hydrology is determined by a prolonged period of confinement without water inputs, irregularly interrupted by sudden water inputs due to flooding events (sea storms or intense rainfalls). While the dynamics of oxidized nitrogen compounds in the lagoons depends on the water inputs variability within each hydrological cycle, the internal load of phosphorus, total nitrogen and organic matter is related more to the cumulative mechanisms during the confinement periods. Accumulation processes may be easily related to lagoon age, since old lagoons have higher content of nutrients and organic matter, suggesting that these lagoons progressively accumulate nutrients during the successive confinement events. This is the usual case for most Mediterranean salt marshes without an artificially manipulated water regime. The zooplankton community in La Pletera integrates the effects of both the hydrological regime and the lagoon age since the former determines the temporal pattern of the main zooplankton species and the latter explains differences in composition and structure between old and new lagoons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号