首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The results of evolutionary computations for massive binary systems (initial masses of the primary 10M ) with mass ratios between 0.3 and 0.8 are summarized and compared with observations in order to verify how far one can go with the conservative assumption of mass exchange. It is found that conservative mass exchange leads to acceptable first-order models of W-R and massive X-ray binaries. However, the comparison between this theory and observation reveals that for the observed systems (W-R and X-ray binaries) a preference exists for low intial mass ratios; moreover, the X-ray luminosities of the theoretical models are systematically too low, though this may be due to the adopted wind model. In addition, the influences of several parameters (distance between the components, chemical composition, primary mass, mass ratio and atmosphere) are examined. These parameters influence the remnant mass and any further evolution only marginally. Attention is also given to the effect on the system parameters of a supernova explosion of the remnant of the mass-losing component. For a large range of systems a disruption probability smaller than 25% is found.  相似文献   

2.
Taeil Bai 《Solar physics》1979,62(1):113-121
The X-ray line at 6.4 keV has been observed from solar flares. It is found that K-fluorescence of neutral iron in the photosphere due to thermal (T 107 K) X-rays of the gradual phase is its dominant production mechanism. For a given flux and energy spectrum of incident X-rays, the flux at 1 AU of iron K-photons depends on the photospheric iron abundance, the height of the X-ray source, and the helio-centric angle between the flare and the observer. Therefore, the flux of iron K-photons, when measured simultaneously with the flux and energy spectrum of the X-ray continuum and the flare location, can give us information on the height of the X-ray source and the photospheric iron abundance. Here we present our Monte Carlo calculations of iron K-fluorescence efficiencies, so that they might be useful for interpretations of future measurements of the 6.4 keV line (e.g., by a detector to be flown on the Solar Maximum Mission).  相似文献   

3.
We evaluate the relationship between the hard X-ray photon spectrum and the flux of iron K emission in a thick-target electron bombardment model. Results are presented for various power-law hard X-ray spectra. We then apply these results to two events observed with the Hard X-Ray Burst Spectrometer and the K channel of the X-Ray Polychromator Bent Crystal Spectrometer on the Solar Maximum Mission satellite. For one of the events, on 29 March, 1980, at 09:18 UT, the K flux predicted for a thick-target non-thermal process is significant compared to the background fluorescent component, and the data are indeed consistent with an enhancement of the predicted amount. For the other event, on 14 October, 1980 at 06:09 UT, the hard X-ray spectrum is so steep that no significant Ka flux is predicted for this process, and no enhancement is seen. We conclude that the agreement between the predicted K flux and the observed magnitude of the K enhancement above the fluorescent background at the time of the large hard X-ray bursts lends support to a thick-target non-thermal interpretation of impulsive hard X-ray emission in solar flares.  相似文献   

4.
Results from wind ionization calculations are presented which show how the P-Cygni profiles of superionized species such as O VI can provide information about the X-ray source characteristics of early-type stars. Using detailed radiative and atomic physics models, we find that a significant source of X-ray emission from Pup (O4 If) comes from a region in the wind located within roughly 1 to 2 stellar radii of the photosphere. Our results suggest that X-rays sources in which emission occurs exclusively at large radii (r a fewR * ) are inconsistent with UV P-Cygni profiles for O VI. Instead, we find that X-ray emission from shocks distributed throughout the lower regions of the wind (r 1 – 2R * ) is consistent with both X-ray and UV data, as well as mass loss rates deduced from radio andH observations.  相似文献   

5.
A study is made of X-ray line emission observed during the developing stages of a set of post-flare loop prominences. The time behaviour of the line emission can be described by a model consisting of two flux tubes containing plasma heated impulsively at the flash phase; the plasma cools by radiation and by conduction to the chromosphere. These ideas are extended to the possible formation of H prominences from low-lying hot loops.  相似文献   

6.
To determine the relationship between transient coronal (soft X-ray or EUV) sigmoids and erupting flux ropes, we analyse four events in which a transient sigmoid could be associated with a filament whose apex rotates upon eruption and two further events in which the two phenomena were spatially but not temporally coincident. We find the helicity sign of the erupting field and the direction of filament rotation to be consistent with the conversion of twist into writhe under the ideal MHD constraint of helicity conservation, thus supporting our assumption of flux rope topology for the rising filament. For positive (negative) helicity the filament apex rotates clockwise (counterclockwise), consistent with the flux rope taking on a reverse (forward) S shape, which is opposite to that observed for the sigmoid. This result is incompatible with two models for sigmoid formation: one identifying sigmoids with upward arching kink-unstable flux ropes and one identifying sigmoids with a current layer between two oppositely sheared arcades. We find instead that the observations agree well with the model by Titov and Démoulin (Astron. Astrophys. 351, 707, 1999), which identifies transient sigmoids with steepened current layers below rising flux ropes.  相似文献   

7.
The source positions of solar radio bursts of spectral types I, III(U) and III(J) and V observed by the Culgoora radioheliograph are found to lie almost radially above soft X-ray loops on pictures taken by the S-056 telescope aboard Skylab. The radio source positions and the X-ray loops occur near magnetic loops on computed potential field maps. However, the magnetic induction required to explain the radio observations is much greater than the computed potential field value at that height. Dense current-carrying magnetic flux tubes emanating from active regions on the Sun and extending to 1.5R above the photosphere provide a satisfactory model for the radio bursts.  相似文献   

8.
The burst component of the solar X-ray flux in the soft wavelength range 2 < < 12 Å observed from Explorer 33 and Explorer 35 from July 1966 to September 1968 was analyzed. In this period 4028 burst peaks were identified.The differential distributions of the temporal and intensity parameters of the bursts revealed no separation into more than one class of bursts. The most frequently observed value for rise time was 4 min and for decay time was 12 min. The distribution of the ratio of rise to decay time can be represented by an exponential with exponent -2.31 from a ratio of 0.3 to 2.7; the maximum in this distribution occurred at a ratio of 0.3. The values of the total observed flux, divided by the background flux at burst maximum, can be represented by a power law with exponent -2.62 for ratios between 1.5 and 32. The distribution of peak burst fluxes can be represented by a power law with exponent - 1.75 over the range 1–100 milli-erg (cm2 sec)–1. The flux time integral values are given by a power law with exponent -1.44 over the range 1–50 erg cm–2.The distribution of peak burst flux as a function of H importance revealed a general tendency for larger peak X-ray fluxes to occur with both larger H flare areas and with brighter H flares. There is no significant dependence of X-ray burst occurrence on heliographic longitude; the emission thus lacks directivity.The theory of free-free emission by a thermal electron distribution was applied to a composite quantitative discussion of hard X-ray fluxes (data from Arnoldy et al., 1968; Kane and Winckler, 1969; and Hudson et al., 1969) and soft X-ray fluxes during solar X-ray bursts. Using bursts yielding measured X-ray intensities in three different energy intervals, covering a total range of 1–50 keV, temperatures and emission measures were derived. The emission measure was found to vary from event to event. The peak time of hard X-ray events was found to occur an average of 3 min before the peak time of the corresponding soft X-ray bursts. Thus a changing emission measure during the event is also required. A free-free emission process with temperatures of 12–39 × 106K and with an emission measure in the range 3.6 × 1047 to 2.1 × 1050 cm–3 which varies both from event to event and within an individual event is required by the data examined.Now at Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey.  相似文献   

9.
It has become clear in recent years that relativistic beaming is a good explanation for the BL Lac phenomenon. Of studies based on the relativistic beaming model of BL Lac objects, we note that the orientation of jet's axis to the line-of-sight is very small and, therefore, the observed flux emitted from a rapidly moving source is orders of magnitude higher than the flux in its rest-frame:F obs = 3 + F intr, where is the bulk relativistic Doppler factor. Then the observed apparent magnitudem v must be corrected for this effect. For our 39 samples, the corrected apparent magnitudem v corr and logZ have a good correlation.  相似文献   

10.
Based on a 4-year REKLIP data-set of global solar radiation G, shortwavesurface albedo a, air temperature T a and net radiative flux R n,four types of regression models for the estimation of net radiative fluxfor three sites at different altitudes, located in the southern UpperRhine valley have been proposed. In order to make for the limitationassociated with the basic regression model (BRM) which relates netradiative flux over a surface to only incoming shortwave radiation, alongwave exchange coefficient has been introduced thus givingrise to the modified regression model (MRM). During daytime, the longwaveexchange coefficient is observed to be negative for all three sitesaveraging about –0.20. The suitability of MRM over BRM becomesparticularly obvious with respect to the mountainous site of Feldbergwhere the mean absolute error between measured and simulated R n usingMRM amounts to just half of that observed using BRM. Furthermore the roleof clearness index and air temperature in the estimation of the netradiative flux have each been examined. The incorporation of the former isto make up for the effect of cloudiness on the net radiative flux budget,while the latter is an independent variable arising from the effectiveterrestrial radiation which thus allow for the estimation of the netradiative flux during all hours of the day. The regression models beenproposed here have each been validated and their efficiency in reproducingactual measurements have been reported.  相似文献   

11.
The spectral analysis of the persistent X-ray flux from the bright galactic bulge X-ray source and an X-ray burster X1813–14=GX17+2 is presented. A model with a single thermal bremsstrahlung continuum plus iron emission line at 6.7 keV fits the lower and higher intensity state data reasonably well. The line feature observed here is reproduced by a single emission line at 6.7 keV with intrinsic line width less than 0.7 keV. The equivalent width of the line ranges between 52 and 43 eV, depending on the intensity state of the source. This implies that the observed line is mostly due to helium-like iron (Fexxv). The properties of the line suggest that line-emitting matter is located far outside the neutron star.  相似文献   

12.
The fluxes and spectra of galactic and extragalactic neutrinos at energy 1011–1019 eV are calculated. In particular, the neutrino flux from the normal galaxies is calculated taking into account the spectral index distribution. The only assumption that seriously affects the calculated neutrino flux atE v 1017 eV is the power-like generation spectrum of protons in the entire considered energy region.The normal galaxies with the accepted parameters generate the metagalactic equivalent electron component (electrons+their radiation) with energy density e8.5×10–7 eV cm–3, while the density of the observed diffuse X-ray radiation alone is 100 times higher. This requires the existence of other neutrino sources and we found the minimized neutrino flux under two limitations: (1) the power-law generation spectrum of protons and (2) production of the observed energy density of the diffuse X-an -radiation. These requirements are met in the evolutionary model of origin of the metagalactic cosmic rays with modern energy density M83.6×10–7 eV cm–3.The possibility of experiments with cosmic neutrinos of energyE v 3×1017 eV is discussed. The upper bound on neutrino-nucleon cross-section <2.2×10–29 cm2 is obtained in evolutionary model from the observed zenith angular distribution of extensive air showers.In Appendix 2 the diffuse X-and -ray flux arising together with neutrino flux is calculated. It agrees with observed flux in the entire energy range from 1 keV up to 100 MeV.  相似文献   

13.
An observation carried out with a balloon-borne detector of an additional flux of secondary X-rays (E 30 keV) at large depths in the atmosphere is described. This excess is attributed to the emission of very hard X-rays during the solar flare of August 7, 1972. The propagation in the atmosphere of the secondary photons resulting from their electromagnetic interactions in the air is computed by utilizing the Monte Carlo method. The computations agree with the observed flux when a very hard solar X-ray spectrum is assumed.  相似文献   

14.
Longcope  D. W.  Silva  A. V. R. 《Solar physics》1998,179(2):349-377
Observations of the flare on 7 January 1992 are interpreted using a topological model of the magnetic field. The model, developed here, applies a theory of three-dimensional reconnection to the inferred magnetic field configuration for 7 January. In the model field a new bipole ( 1021 Mx) emerges amidst pre-existing active region flux. This emergence gives rise to two current ribbons along the boundaries (separators) separating the distinct, new and old, flux systems. Sudden reconnection across these boundary curves transfers 3 ×1020 Mx of flux from the bipole into the surrounding flux. The model also predicts the simultaneous (sympathetic) flaring of the two current ribbons. This explains the complex two-loop structure noted in previous observations of this flare. We subject the model predictions to comparisons with observations of the flare. The locations of current ribbons in the model correspond closely with those of observed soft X-ray loops. In addition the footpoints and apexes of the ribbons correspond with observed sources of microwave and hard X-ray emission. The magnitude of energy stored by the current ribbons compares favorably to the inferred energy content of accelerated electrons in the flare.  相似文献   

15.
A two-component (core-halo) emission model has been applied reconciling hard and soft X-ray burst emissions with the microwave burst radiation. The core region is represented by a nonthermal energy distribution (Maxwellian+power law tail) and assumed to be surrounded by a thermal halo. Parameters characterizing the energy distribution and emission measures have been derived numerically from soft and hard X-ray measurements. Using an artificial magnetic field model the microwave flux spectrum has been calculated on the basis of gyro-synchrotron emission and absorption by solving the equation of radiation transfer along the ray trajectories. Open parameters were used to adapt the spectrum to the radio measurements.Thus probable informations about the most appropriate magnetic field parameters as well as about the time- and frequency- dependent source diameters (yielding growth velocities of the core region during the impulsive phase) are deduced for the burst of 1972 May 18 as an example. A fit of the observed spectrum at the burst maximum is consistent with a magnetic field of 150O G at the core centre decreasing up to about 40 G at the top of the halo at a height of 50 000 km above the centre, a core density of 1010 cm–3 decreasing to 109 cm–3 at the outer halo boundary, and a core diameter of 15 000 km (]20).Due to the simple geometry and emission process adopted,- the model refers primarily to special impulsive bursts. For the representation of broad band microwave bursts, e.g. type IV , events, a more complex source geometry and/or other variants of the emission mechanism must be invoked.  相似文献   

16.
Simultaneous observations of a solar limb flare in the X-ray and ultraviolet regions of the spectrum are presented. Temporal and spectral X-ray observations were obtained for the 25–300 keV range while temporal, spectral, and spatial X-ray observations were obtained for the 30–0.3 keV range. The ultraviolet observations were images with a 10 spatial resolution in the lines of O v (T e 2.5 × 105 K) and Fe xxi (T e 1.1 × 107 K). The hard X-ray and O v data indicate that the impulsive phase began in the photosphere or chromosphere and continued for several minutes as material was ejected into the corona. Impulsive excitation was observed up to 30 000 km above the solar surface at specific points in the flare loop. The Fe xxi observations indicate a preheating before the impulsive phase and showed the formation of hot post-flare loops. This later formation was confirmed by soft X-ray observations. These observations provide limitations for current flare models and will provide the data needed for initial conditions in modeling the concurrent coronal transient.  相似文献   

17.
Soft solar X-rays (8 gl 12 Å) were observed from OSO-III. An analysis of the X-ray enhancements associated with 165 solar flares revealed that there is a tendency for a weak soft X-ray enhancement to precede the cm- burst and H flare. The peak soft X-ray flux follows the cm- peak by about 4 min, on the average. Additionally, it was found that flare-rich active centers tend to produce flares which are stronger X-ray and cm- emitters than are flares which take place in flare-poor active centers.  相似文献   

18.
We propose an Abelian Higgs model for spiral galaxies in which the latter are treated as topologically stable magneticvorto-sources (-sinks). The model is characterized by the minimum coupling between the electromagnetic vector potential and a scalar, complex-valued Higgs field that results - for an idealized cylindrically symmetric case - in a perpendicular to the galaxy's plane distribution of magnetic field strength whose total flux is a discrete-valued quantity - aninteger multiple of the elementary flux unit. Adopting the hypothesis that spiral arms trace the curves of a constant phase of the Higgs field we demonstrate that, for an almost-everywhere divergence-free vector potential, the arms acquire the observationally well-established form of logarithmic spirals whose woundness is here of an electromagnetic origin in the sense that it depends on the ratio between the specific volume-divergence of a galaxy and its total magnetic flux. The hypothesis further implies that the number of spiral arms is justtwice as that of magnetic flux quanta a galaxy possesses; the observed preponderance of two-armed spirals then simply reflects the fact that most galaxies carry single flux quantum which is energetically favourable for the vorto-sources (-sinks) whose disk-to-bulge radius ratio > 1. The latter property also leads to the process of galaxyfragmentation in the sense that a galaxy endowed withp magnetic flux quanta should fission into the topologically equivalent configuration consisting ofp singly-quantized galaxies.A unique possibility to test our model is provided by physically paired galaxies. Considering the simplest configuration consisting of spirals lying in the same plane and having equal in magnitude fluxes and volume-divergences we distinguish four topologically different distributions of the Higgs field phase which fairly well capture observed morphologies exhibited by double galaxies; we find, in particular, that of most frequent occurrence seem to be couples with anti-parallel orientation of magnetic field.Finally, we address the question of the periodicity in the distribution of galaxy redshifts and show that a discrete-valuedness of themass of spiral galaxies resulting from our model may serve as a starting point to solve this puzzling effect.  相似文献   

19.
J. Roosen 《Solar physics》1969,7(3):448-462
The quiet component of the 9.1-cm solar radio emission is studied from the Stanford radioheliograms covering the period April–October 1964. The distribution of the brightness temperature in heliographic coordinates is not entirely uniform, but positive and negative departures from the average value appear at a number of stable locations. The most important negative departure crosses the central meridian 4 days before the maximum of the recurrent geomagnetic activity. Two out of three less important brightness depressions are connected with geomagnetic disturbances in the same manner. It is suggested that the brightness depressions are identical with M-regions.The result is confirmed by the construction of polytrope models for the solar wind, for various values of the parameters (the polytrope index) and T (the temperature in the inner corona). The velocities near the earth's orbit and in the inner corona are computed as functions of the model parameters, the density results from the observed proton flux at 1 AU. For quiet conditions the model with T = 1.26 × 106 K and = 1.10 is appropriate. The corresponding density and temperature in the corona lead to a value of 4000 K for the contribution of the corona to the 9-cm brightness. For disturbed conditions the suitable model has the parameters T 2.0 × 106 K, a 1.04. It being given that the proton flux at 1 AU is relatively constant, the equation of continuity leads to a low coronal density because of the high solar-wind velocity. The corresponding coronal contribution to the 9-cm brightness is of the order of 10 K. This confirms that the brightness temperature is considerably reduced in the regions where the enhanced solar wind originates. We suggest the name coronal depression for such regions.Papers II and III will appear in forthcoming issues of this journal.  相似文献   

20.
Thermal convection has considerable influence on the thermal evolution of terrestrial planets. Previous numerical models of planetary convection have solved the system of partial differential equations by finite difference methods, or have approximated it by parametrized methods. We have evaluated the applicability of a finite element solution of these equations. Our model analyses the thermal history of a self-gravitating spherical planetary body; it includes the effects of viscous dissipation, internal melting, adiabatic gradient, core formation, variable viscosity, decay of radioactive nucleides, and a depth dependent initial temperature profile. Reflecting current interest, physical parameters corresponding to the Moon were selected for the model.Although no initial basalt ocean is assumed for the Moon, partial melting is observed very early in its history; this is presumably related to the formation of the basalt maria. The convection pattern appears to be dominated by an L-2 mode. The present-day lithospheric thickness in the model is 600 km, with core-mantle temperatures close to 1600 K. Surface heat flux is 25.3 mW m–2, higher than the steady state-value by about 16%.The finite element method is clearly applicable to the problem of planetary evolution, but much faster solution algorithms will be necessary if a sufficient number of models are to be examined by this method.Notation coefficient of thermal expansion - ij Kronecker delta - absolute or dynamic viscosity - perturbation in temperature - thermal diffusivity - kinematic viscosity - density - stress tensor - B.P. before present - c specific heat at constant pressure or volume (Boussinesq approximation) - d depth of convection - E * activation energy for creep - g gravity - Ga billions of years - H(t) heat generation per unit mass per unit time at timet - k Boltzmann's constant - K mean thermal conductivity - Ma millions of years - p pressure - q heat flux - q ss steady-state heat flux - Ra Rayleigh number - S volumetric heat sources, includes radioactivity and viscous dissipation - t time - T temperature - u verocity vector - V * activation volume for creep  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号