首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coastal erosion and flooding are major threats to coastal dwellers, and the situation is predicted to worsen as a result of the impacts of climate change and associated sea level rise. In order to identify the level of vulnerability of various sections of Ghana's coastline for planning and future hazard management, a coastal vulnerability index approach was adopted for the creation of the relative vulnerability map. The coastal vulnerability variables used include geomorphology, coastal elevation, geology, local subsidence, sea level rise, shoreline change rates, mean tidal range, mean wave height and population density of the coastal areas. Risk factors were assigned to the various variables, and all the factors were combined to calculate the coastal vulnerability for the coastal front of each administrative district along the coast. The outcome was used to produce a vulnerability index map of coastal districts in Ghana. The results revealed that parts of the central coast and the eastern coasts of Ghana were the most vulnerable. It was identified that about 50% of the 540km shoreline of Ghana is vulnerable. This assessment will facilitate the long-term adaptation planning and hazard mitigation to inform the management of Ghana's coast.  相似文献   

2.
Coastal areas are vulnerable to the impacts of climate change and sea-level rise. These impacts will exacerbate the risks posed by the continuing environmental degradation confronting the coastal communities.Adopting a participatory research approach, the study examines the vulnerability of socioeconomic groups among the coastal population in Cavite City, Philippines, their current adaptation strategies and their adaptive capacity to cope with the impacts of climate variability and extremes and sea-level rise. Under a future scenario of a 1-m accelerated sea-level rise (ASLR), the study also looks into its potential effects on these urban coastal communities and ecosystems.In the context of poverty reduction and sustainable development, this study suggests a local framework for integrating adaptation strategies and actions into integrated coastal management (ICM) planning. It also recommends appropriate policy and institutional reform, capacity building and improved knowledge management towards increasing the resilience and adaptive capacity of these coastal communities to current and future climate risks.  相似文献   

3.
For coastal areas across the world, sea-level rise and problems of coastal erosion and coastal flooding are expected to increase over the next hundred years. At the same time political pressure for continued waterfront planning and development of coastal areas threatens to increase our societal vulnerability, and necessitating climate adaptation in coastal zone management. The institutional dimension has been identified as important for ensuring a more robust adaptation to both current climate variability and future climate change. In this paper, lessons regarding institutional constraints for climate adaptation are drawn from a Swedish case-study on local coastal zone management, illustrating the diverse and complex nature of institutional capacity-building. The aim of the paper is to illustrate critical factors that from an institutional perspective condition the capacity to achieve a more integrated, strategic and proactive climate adaptation and for turning “rules on paper” to working practice, based on case-study experiences from Coastby. Following and expanding a framework for analysing institutional capacity-building we learnt that a selective few key actors had played a critical role in building a strong external networking capacity with a flip-side in terms of a weak internal coordinating capacity and lack of mutual ownership of coastal erosion between sectoral units e.g. risk-management, planning and environment. We also found a weak vertical administrative interplay and lack of formal coherent policy, procedures and regulations for managing coastal erosion between local, regional and national administrations. Further, tensions and trade-offs between policy-agendas, values and political priorities posed a barrier for capacity-building in coastal zone management which calls for processes to mediate conflicting priorities in policy-making, planning and decision-making. The case-study suggests that the ability of the political administrative system to acknowledge and deal with institutional conflicts is a critical condition for ensuring an integrated and proactive climate adaptation in coastal zone management.  相似文献   

4.
The Mediterranean: vulnerability to coastal implications of climate change   总被引:1,自引:0,他引:1  
The Mediterranean is experiencing a number of immediate coastal problems which are triggering efforts to improve short-term coastal management. This paper shows that coastal management also needs to address long-term problems and, in particular, the likelihood of climate change. Regional scale studies suggest that the Mediterranean is particularly vulnerable to increased flooding by storm surges as sea levels rise—a 1-m rise in sea level would cause at least a six-fold increase in the number of people experiencing such flooding in a typical year, without considering population growth. Protection is quite feasible, however, this would place a greater burden on those Mediterranean countries in the south than those in the north. All coastal wetlands appear threatened. Case studies of coastal cities (Venice and Alexandria), deltas (Nile, Po, Rhone and Ebro), and islands (Cyprus) support the need to consider climate change in coastal planning. However, the critical issues vary from site to site and from setting to setting. In deltaic areas and low-lying coastal plains climate change, particularly sea-level rise, is already considered as an important issue, but elsewhere this is not the case. Therefore, there is a need for coastal management plans to explicitly address long-term issues, including climate change, and integrate this planning with short-term issues. This is entirely consistent with existing guidelines.1 Given the large uncertainty concerning the future, planning for climate change will involve identifying and implementing low-cost proactive measures, such as appropriate land use planning or improved design standards incorporated within renewal cycles, as well as identifying sectors or activities which may be compromised by likely climate change. In the latter case, any necessary investment can be seen as a prudent ‘insurance policy’.  相似文献   

5.
因气候变暖导致的海平面上升是全球面临的海洋问题。为加强海南岛的海洋防灾减灾工作,保障其沿海地区的生态环境和经济社会发展,文章在调查评估的基础上,分析海平面上升对海南岛沿海地区的影响,并提出对策建议。研究结果表明:我国沿海海平面总体呈波动上升趋势,海南岛沿海海平面的上升速率居全国之首;海平面上升对海南岛沿海地区的影响主要包括淹没滨海低地和减小旅游区沙滩面积,加重风暴潮、海岸侵蚀、海水入侵和土壤盐渍化、洪涝的灾害程度以及影响海岸防护设施等方面;在海南岛沿海地区发展中,应充分考虑海平面上升的因素,加强灾害风险抵御能力建设、城市科学规划、海平面观测和监测以及受损岸线整治修复等工作。  相似文献   

6.
《Marine Policy》2004,28(5):393-409
Expected effects of changes in global climate include warmer temperatures, rising sea levels, and potentially more frequent and severe extreme weather events such as hurricanes and tropical storms. Low-lying states in the Caribbean are especially vulnerable to these effects, posing significant risks to public safety and natural resources.This paper highlights expected trends in the Eastern Caribbean and examines the impacts of urbanization and supporting infrastructure, siting of major structures in high-hazard areas, and negative land-use practices on fragile coastal ecosystems. It focuses on the need to reduce the vulnerability of coastal infrastructure and land uses, arguing for effective linkages between climate change issues and development planning. The paper also provides general recommendations and identifies challenges for the incorporation of climate change impacts and risk assessment into long-term land-use national development plans and strategies.  相似文献   

7.
This research is based on the need to develop methodology for climate change vulnerability assessment in coastal cities. While there have been some studies on the development of methodologies for vulnerability assessment on a national scale, there have been few attempts to develop a method for local vulnerability assessment with application to coastal cities. The objective of this study was to develop a general methodology to assess vulnerability to climate change and to apply it to the metropolitan coastal city of Busan in South Korea. We followed the conceptual framework for assessing climate change vulnerability provided by the Intergovernmental Panel on Climate Change (IPCC), which is composed of climate exposure, sensitivity, and adaptive capacity. Sea level rises of 0.5 m, 1 m, 2 m, and 3 m were considered as the climate exposure. Sensitivity to sea level rise was measured based on the percentage of flooded area calculated using flood simulation with a GIS tool. The population density and the population at age 65 years and over were also included in the calculation of sensitivity index. Sensitivities to heat wave and heavy rainstorm were quantified using the expert opinions from the Delphi survey and information on land use classification. Adaptive capacity was assessed in three sections: economic capability, infrastructure, and institutional capabilities. By combining the adaptive capacity and three different sensitivities, vulnerability to sea level rise (SLR-V), vulnerability to heavy rainstorm (HR-V), and vulnerability to heat wave (HW-V) were separately evaluated in 16 counties of Busan. Using cluster analysis, we could classify four major groups of counties based on SLR-V, HR-V, HW-V, and reported damage cost. For clustered groups, different adaptation strategies were suggested based on the different vulnerability patterns. Application of our methodology to Busan indicated that our methodology is easy to use and provides concrete policy implications when setting up adaptation strategies. The methodology developed in this study could also be used in mainstreaming climate change into Integrated Coastal Management (ICM).  相似文献   

8.
本文系统梳理了IPCC 《气候变化中的海洋和冰冻圈特别报告》(SROCC)的主要结论,并对主要观点进行了解读。报告主要关注全球变暖背景下高山、极地、海洋和沿海地区现在和未来的变化及其对人类和生态系统的影响,以及实现气候适应发展路径的方案。在全球变暖背景下,冰冻圈大面积萎缩,冰川冰盖质量损失,积雪减少,北极海冰范围和厚度减小,多年冻土升温,全球海洋持续增温,1993年以来,海洋变暖和吸热速度增加了一倍以上。同时,海洋表面酸化加剧,海洋含氧量减少。全球平均海平面呈加速上升趋势,2006—2015年全球海平面上升速率为3.6 mm/yr,是1901—1990年的2.5倍,但存在区域差异。高山、极地和海洋的生态系统的物种组成、分布和服务功能均发生变化,并对人类社会产生了显著负面影响。极端海洋气候事件发生频率增多,强度加大。1982年以来,全球范围内海洋热浪的发生频率增加了一倍,且范围更广,持续时间更长。海平面持续上升加剧了洪涝、海水入侵、海岸侵蚀等海岸带灾害,并影响沿海生态系统。海洋及冰冻圈的变化及其影响在未来一定时期仍将持续,应对这些影响而面临的挑战,应加强基于生态系统的适应和可再生能源管理,强化海岸带地区的海平面上升综合应对,打造积极有效、可持续和具有韧性的气候变化应对方案。  相似文献   

9.
全球气候变化对我国海岸和近海工程的影响   总被引:1,自引:0,他引:1  
全球气候变暖导致北半球中高纬度海冰冰情变化、海平面上升以及台风和风暴潮等自然灾害强度和频率加大等事件的发生。在全球气候变暖的大背景下,我国渤海和北黄海的冰情持续偏轻,2006年中国海域平均海平面上升速度高于全球水平。从我国海岸和近海工程安全与未来规划和建设的角度论述了全球气候变化及其伴生事件可能带来的各种影响,并提出了相应的应对措施。  相似文献   

10.
气候变化背景下海平面上升、强台风和风暴潮对我国东南沿海地区的洪涝灾害影响日益严重,为应对气候变化的影响,本文以位于我国东南沿海的厦门地区为例,应用多种海洋大气观测资料和数理统计及模拟方法,分析了历史上9914号和1614号两次台风对厦门海域极端海面高度(极值水位)的影响,预估了未来海平面上升情景下厦门海域极值水位的变化及其危险性。结果表明:(1) 9914号台风期间,天文大潮、风暴增水和强降水的同时出现造成了厦门沿海地区超警戒极值水位(732 cm)的出现;(2) 风(向岸强风)、雨(强降水)、浪(巨浪)、潮(高潮位)、流(急流)等多致灾因子的共同作用是厦门沿海地区发生严重灾情的重要原因;(3) 在温室气体中等和高排放(RCP4.5和RCP8.5)情景下,到2050年(2100年),当前百年一遇的极值水位将分别变为30年(2年)一遇(RCP4.5)和25年(低于1年)一遇(RCP8.5)的频繁极端事件。这表明未来厦门沿海极值水位的危险性将显著上升,应采取充分的适应措施降低洪涝灾害风险。  相似文献   

11.
海岸带脆弱性评估方法研究进展   总被引:15,自引:0,他引:15  
海岸带脆弱性源于气候变化、海平面上升、人类活动的共同作用,而海岸带脆弱性评估的误差主要是来自海岸环境演化预案和社会经济发展预案的不确定性。为了提高评估精度,应确定海岸系统内、外部驱动力及其关键变量,研究自然和人类活动共同作用下的海岸系统演化过程、海岸系统风险发生的机制、以及海岸系统承载力和阈值,通过遥感和地理信息系统技术集成,建立适用的预案,用于脆弱性综合评估。  相似文献   

12.
Global climate models have predicted a rise on mean sea level of between 0.18 m and 0.59 m by the end of the 21st Century, with high regional variability. The objectives of this study are to estimate sea level changes in the Bay of Biscay during this century, and to assess the impacts of any change on Basque coastal habitats and infrastructures. Hence, ocean temperature projections for three climate scenarios, provided by several atmosphere–ocean coupled general climate models, have been extracted for the Bay of Biscay; these are used to estimate thermosteric sea level variations. The results show that, from 2001 to 2099, sea level within the Bay of Biscay will increase by between 28.5 and 48.7 cm, as a result of regional thermal expansion and global ice-melting, under scenarios A1B and A2 of the Intergovernmental Panel on Climate Change. A high-resolution digital terrain model, extracted from LiDAR, data was used to evaluate the potential impact of the estimated sea level rise to 9 coastal and estuarine habitats: sandy beaches and muds, vegetated dunes, shingle beaches, sea cliffs and supralittoral rock, wetlands and saltmarshes, terrestrial habitats, artificial land, piers, and water surfaces. The projected sea level rise of 48.7 cm was added to the high tide level of the coast studied, to generate a flood risk map of the coastal and estuarine areas. The results indicate that 110.8 ha of the supralittoral area will be affected by the end of the 21st Century; these are concentrated within the estuaries, with terrestrial and artificial habitats being the most affected. Sandy beaches are expected to undergo mean shoreline retreats of between 25% and 40%, of their width. The risk assessment of the areas and habitats that will be affected, as a consequence of the sea level rise, is potentially useful for local management to adopt adaptation measures to global climate change.  相似文献   

13.
Globally, coastal aquaculture particularly shrimp farming has been under huge criticism because of its environmental impacts including devastating effects on mangrove forests. However, mangroves are ecologically and economically important forests, and the most carbon-rich forests in the tropics that provide a wide range of ecosystem services and biodiversity conservation. Carbon emissions are likely to have been the dominant cause of climate change and blue carbon emissions are being critically augmented through mangrove deforestation. Because of mangrove deforestation, different climatic variables including coastal flooding, cyclone, drought, rainfall, salinity, sea-level rise, and sea surface temperature have dramatic effects on coastal aquaculture. Mangrove forests have been instrumental in augmenting resilience to climate change. The “Reducing Emissions from Deforestation and forest Degradation (REDD)” program can help to restore mangroves which in turn increases options for adaptation to climate change. However, technical and financial assistance with institutional support are needed to implement REDD+.  相似文献   

14.
Coastal environments are susceptible to a range of impacts arising from medium and long-term climate change. However, as Ireland's population and industrial centres are concentrated in coastal locations, Ireland's coastal communities will be particularly vulnerable to the impacts of climate change. Therefore, making the best use of existing knowledge to inform the establishment of governance structures capable of facilitating the measures and actions which may soon be required is a national imperative. Coastal communities worldwide have turned to integrated coastal zone management (ICZM) as a process to deliver sustainable development. This paper explores how experience gained from ICZM implementation can be harnessed to inform the development and implementation of climate adaptation policies, with a particular focus on the coastal zone. Using the principles and conceptual basis of Earth System Governance – an emerging approach to analyse complexity of governance under global environmental change – the paper maps the architecture of ICZM and climate governance in Ireland. The research identifies the main barriers to, and opportunities for, integrated application of the two policy domains. Barriers include the fragmentation of governance structures and responsibilities of key stakeholders, a lack of coordinated support for ICZM implementation at the national level, and a relatively weak awareness of the specifics of adaptation at the local level. Opportunities include the availability of expertise gathered from phases of ICZM implementation in Ireland, which encompasses mechanisms for science-policy integration, and invaluable experience of stakeholder participation and interaction. Current political and scientific support at national and EU levels give an additional impetus to climate research and actions which may bring additional opportunities and resources to coastal governance in Ireland.  相似文献   

15.
The current study area is coastal zone of Cuddalore, Pondicherry and Villupuram districts of the Tamil Nadu along the southeast coast of India. This area is experiencing threat from many disasters such as storm, cyclone, flood, tsunami and erosion. This was one of the worst affected area during 2004 Indian Ocean tsunami and during 2008 Nisha cyclone. The multi-hazard vulnerability maps prepared here are a blended and combined overlay of multiple hazards those affecting the coastal zone. The present study aims to develop a methodology for coastal multi-hazard vulnerability assessment. This study was carried out using parameters probability of maximum storm surge height during the return period (mean recurrence interval), future sea level rise, coastal erosion and high resolution coastal topography with the aid of the Remote Sensing and GIS tools. The assessment results were threatening 3.46 million inhabitants from 129 villages covering a coastal area 360 km2 under the multi-hazard zone. In general river systems act as the flooding corridors which carrying larger and longer hinterland inundation. Multi-hazard Vulnerability maps were further reproduced as risk maps with the land use information. These risk caused due to multi-hazards were assessed up to building levels. The decision-making tools presented here can aid as critical information during a disaster for the evacuation process and to evolve a management strategy. These Multi-hazard vulnerability maps can also be used as a tool in planning a new facility and for insurance purpose.  相似文献   

16.
布容法则及其在中国海岸上的应用   总被引:12,自引:1,他引:11  
布容(Bruun)法则是预测海平面上升引起海岸侵蚀最早的方法也是最简单的方法。根据中国砂质和淤泥质海岸的情况,布容法则可定性地解释海平面上升与海岸侵蚀的关系,在满足它要求条件的海岸地段和发育时期,用它预测海岸侵蚀或许是可能的。但是,若不严格审查海岸环境和条件,把它作为海平面上升情况预测海岸侵蚀的普遍模式,有待更多的研究加以证明。  相似文献   

17.
Climate change poses a significant challenge for the future of Northern Ireland’s coast due to impacts that include, inter alia, mean sea level rise of between 13 cm and 74 cm by 2050. Whilst flooding is regarded as a major hazard in the United Kingdom (UK), to date Northern Ireland’s experiences of coastal flooding have been infrequent and less severe compared to those in England and Wales. Similarly, coastal erosion has historically been, and remains, only a minor concern in Northern Ireland. Partly as a result of this, Government administrative arrangements for Flood and Coastal Erosion Risk Management (FCERM) in Northern Ireland operate in the absence of any statutory provision for coastal erosion, as well as without formal or strategic shoreline management planning and any integrated flood and coastal erosion risk management policy. This paper provides a commentary on Northern Ireland’s approach to FCERM, comparing this with its UK counterparts, highlighting both congruence and divergence in policy evolution and development. It is noted that the recent EU Floods Directive has been a significant catalyst and that the current institutional landscape for FCERM is in flux.  相似文献   

18.
Human agglomerations in the coastal zone bring about unprecedented changes, the impacts of which are on the rise. A clear picture has emerged recently on the deterioration of the highly fragile and sensitive zone of the coastal ecosystem due to overexploitation of living and non-living resources. The formulation of “coastal regulation zones” (CRZ) in this context necessitates the proper management and conservation of these regions by identifying areas that require adequate attention for preservation and development. This paper critically reviews the planning and implementation of CRZ with emphasis on socio-economic aspects as well as traditional practices under Indian conditions. The study also incorporates management strategies for developing countries factually threatened by physical constraints and accelerated ecological changes.  相似文献   

19.
If the rising sea level due to climate change proceeds in the future with the rate observed in the past four decades, it could inundate some coastal lowlands. The aim of this paper is to assess future risk of sea-level rise (SLR) on the Nile delta of Egypt located along the Mediterranean Sea. Digital Elevation Models (DEMs) are verified, against ground control points, and used to identify areas susceptible to inundation due to future SLR. Analysis of DEMs maps and cross-shore profiles has identified locations that are vulnerable to SLR including coastal wetlands, agriculture areas, and urban neighborhoods. The results have revealed that about 7% of the Nile delta area is at risk of inundation due to future SLR. This information could be used by coastal zone managers in planning and protection of coastal areas.  相似文献   

20.
In Bangladesh, prawn (Macrobrachium rosenbergii) farming remains dependent on the capture of wild postlarvae as hatchery production is still inadequate. However, prawn postlarvae fishing has been accompanied by concerns over recent climate change. Different climatic variables including cyclone, salinity, sea level rise, water temperature, flood, rainfall, and drought have had adverse effects on coastal ecosystem, thus determining a decline in the availability of prawn postlarvae and thereby catch. The households of postlarvae fishers also face a variety of socioeconomic constraints due to climate change. Considering extreme vulnerability to the effects of climate change, an integrated approach needs to be introduced to cope with the challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号