首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Core 2011804‐0010 from easternmost Lancaster Sound provides important insights into deglacial timing and style at the marine margin of the NE Laurentide Ice Sheet (LIS). Spanning 13.2–11.0 cal. ka BP and investigated for ice‐rafted debris (IRD), foraminifera, biogenic silica and total organic carbon, the stratigraphy comprises a lithofacies progression from proximal grounding line and sub‐ice shelf environments to open glaciomarine deposition; a sequence similar to deposits from Antarctic ice shelves. These results are the first marine evidence of a former ice shelf in the eastern Northwest Passage and are consistent with a preceding phase of ice streaming in eastern Lancaster Sound. Initial glacial float‐off and retreat occurred >13.2 cal. ka BP, followed by formation of an extensive deglacial ice shelf during the Younger Dryas, which acted to stabilize the retreating margin of the NE LIS until 12.5 cal. ka BP. IRD analyses of sub‐ice shelf facies indicate initial high input from source areas on northern Baffin Island delivered to Lancaster Sound by a tributary ice stream in Admiralty Inlet. After ice shelf break‐up, Bylot Island became the dominant source area. Foraminifera are dominated by characteristic ice‐proximal glaciomarine benthics (Cassidulina reniforme, Elphidium excavatum f. clavata), complemented by advected Atlantic water (Cassidulina neoteretis, Neogloboquadrina pachyderma) and enhanced current indicators (Lobatula lobatula). The biostratigraphy further supports the ice shelf model, with advection of sparse faunas beneath the ice shelf, followed by increased productivity under open water glaciomarine conditions. The absence of Holocene sediments in the core suggests that the uppermost deposits were removed, most likely due to mass transport resulting from the site's proximity to modern tidewater glacier margins. Collectively, this study presents important new constraints on the deglacial behaviour of the NE Laurentide Ice Sheet, with implications for past ice sheet stability, ice‐rafted sediment delivery, and ice−ocean interactions in this complex archipelago setting.  相似文献   

2.
The palaeoceanographic evolution of the SW Svalbard shelf west of Hornsund over the last 14 000 years was reconstructed using benthic foraminiferal assemblages, stable oxygen and carbon isotopes, and grain‐size and ice‐rafted debris data. The results reveal the complexity of the feedbacks influencing the shelf environment: the inflow of Atlantic and Arctic waters (AW and ArW, respectively), and the influence of sea ice and tidewater glaciers. The inflow of subsurface AW onto the shelf gradually increased with the first major intrusion at the end of the Bølling‐Allerød. During the Younger Dryas, the shelf was affected by fresh water originating from sea ice and glacier discharge. Glaciomarine conditions prevailed until the earliest Holocene with the intense deliveries of icebergs and meltwater from retreating glaciers and the occasional penetration of AW onto the shelf. Other major intrusions of AW occurred before and after the Preboreal oscillation (early Holocene), which resulted in more dynamic and open‐water conditions. Between 10.5 and 9.7 cal. ka BP, the shelf environment transformed from glaciomarine to open marine conditions. Between c. 9.7 and 6.1 cal. ka BP the AW advection reached its maximum, resulting in a highly dynamic and productive environment. At c. 6.1 cal. ka BP, the inflow of AW onto the Svalbard shelf decreased due to the intensification of the Greenland Gyre and the subduction of AW under the sea‐ice‐bearing ArW. Bioproductivity decreased over the next c. 5500 years. During the Little Ice Age, bioproductivity increased due to favourable conditions in the marginal sea‐ice zone despite the effects of cooling. The renewed advection of AW after AD 1850 started the climate warming trend observed presently. Our findings show that δ18O can be used to reconstruct the dominances of different water‐masses and, with some caution, as a proxy for the presence of sea ice in frontal areas over the northwestern Eurasian shelves.  相似文献   

3.
Expansion of fresh and sea‐ice loaded surface waters from the Arctic Ocean into the sub‐polar North Atlantic is suggested to modulate the northward heat transport within the North Atlantic Current (NAC). The Reykjanes Ridge south of Iceland is a suitable area to reconstruct changes in the mid‐ to late Holocene fresh and sea‐ice loaded surface water expansion, which is marked by the Subarctic Front (SAF). Here, shifts in the location of the SAF result from the interaction of freshwater expansion and inflow of warmer and saline (NAC) waters to the Ridge. Using planktic foraminiferal assemblage and concentration data from a marine sediment core on the eastern Reykjanes Ridge elucidates SAF location changes and thus, changes in the water‐mass composition (upper ˜200 m) during the last c. 5.8 ka BP. Our foraminifer data highlight a late Holocene shift (at c. 3.0 ka BP) in water‐mass composition at the Reykjanes Ridge, which reflects the occurrence of cooler and fresher surface waters when compared to the mid‐Holocene. We document two phases of SAF presence at the study site: from (i) c. 5.5 to 5.0 ka BP and (ii) c. 2.7 to 1.5 ka BP. Both phases are characterized by marked increases in the planktic foraminiferal concentration, which coincides with freshwater expansions and warm subsurface water conditions within the sub‐polar North Atlantic. We link the SAF changes, from c. 2.7 to 1.5 ka BP, to a strengthening of the East Greenland Current and a warming in the NAC, as identified by various studies underlying these two currents. From c. 1.5 ka BP onwards, we record a prominent subsurface cooling and continued occurrence of fresh and sea‐ice loaded surface waters at the study site. This implies that the SAF migrated to the southeast of our core site during the last millennium.  相似文献   

4.
A new centennial scale benthic foraminiferal record of late Holocene climate variability and oceanographic changes off West Greenland (Disko Bugt) highlights substantial subsurface water mass changes (e.g. temperature and salinity) of the West Greenland Current (WGC) over the past 3.6 ka BP. Benthic foraminifera reveal a long-term late Holocene cooling trend, which may be attributed to increased advection of cold, low-salinity water masses derived from the East Greenland Current (EGC). Cooling becomes most pronounced from c. 1.7 ka BP onwards. At this point the calcareous Atlantic benthic foraminiferal fauna decrease significantly and is replaced by an agglutinated Arctic fauna. Superimposed on this cooling trend, centennial scale variability in the WGC reveals a marked cold phase at c. 2.5 ka BP, which may correspond to the 2.7 ka BP cooling-event recorded in marine and terrestrial archives elsewhere in the North Atlantic region. A warm phase recognized at c. 1.8 ka BP is likely to correspond to the ‘Roman Warm Period’ and represents the warmest bottom water conditions. During the time period of the ‘Medieval Climate Anomaly’ we observe only a slight warming of the WGC. A progressively more dominant cold water contribution from the EGC on the WGC is documented by the prominent rise in abundance of agglutinated Arctic water species from 0.9 ka BP onwards. This cooling event culminates at c. 0.3 ka BP and represents the coldest episode of the ‘Little Ice Age’.Gradually increased influence of cold, low-salinity water masses derived from the EGC may be linked to enhanced advection of Polar and Arctic water by the EGC. These changes are possibly associated with a reported shift in the large-scale North Atlantic Oscillation atmospheric circulation pattern towards a more frequent negative North Atlantic Oscillation mode during the late Holocene.  相似文献   

5.
Widespread molluscan samples were collected from raised marine sediments to date the last retreat of the NW Laurentide Ice Sheet from the western Canadian Arctic Archipelago. At the head of Mercy Bay, northern Banks Island, deglacial mud at the modern coast contains Hiatella arctica and Portlandia arctica bivalves, as well as Cyrtodaria kurriana, previously unreported for this area. Multiple H. arctica and C. kurriana valves from this site yield a mean age of 11.5 14C ka BP (with 740 yr marine reservoir correction). The occurrence of C. kurriana, a low Arctic taxon, raises questions concerning its origin, because evidence is currently lacking for a molluscan refugium in the Arctic Ocean during the last glacial maximum. Elsewhere, the oldest late glacial age available on C. kurriana comes from the Laptev Sea where it is < 10.3 14C ka BP and attributed to a North Atlantic source. This is 2000 cal yr younger than the Mercy Bay samples reported here, making the Laptev Sea, ~ 3000 km to the west, an unlikely source. An alternate route from the North Atlantic into the Canadian Arctic Archipelago was precluded by coalescent Laurentide, Innuitian and Greenland ice east of Banks Island until ~ 10 14C ka BP. We conclude that the presence of C. kurriana on northern Banks Island records migration from the North Pacific. This requires the resubmergence of Bering Strait by 11.5 14C ka BP, extending previous age determinations on the reconnection of the Pacific and Arctic oceans by up to 1000 yr. This renewed ingress of Pacific water likely played an important role in re-establishing Arctic Ocean surface currents, including the evacuation of thick multi-year sea ice into the North Atlantic prior to the Younger Dryas geochron.  相似文献   

6.
The impact of the Laurentide Ice Sheet (LIS) deglaciation on Northern Hemisphere early Holocene climate can be evaluated only once a detailed chronology of ice history and sea‐level change is established. Foxe Peninsula is ideally situated on the northern boundary of Hudson Strait, and preserves a chronostratigraphy that provides important glaciological insights regarding changes in ice‐sheet position and relative sea level before and after the 8.2 ka cooling event. We utilized a combination of radiocarbon ages, adjusted with a new locally derived ΔR, and terrestrial in‐situ cosmogenic nuclide (TCN) exposure ages to develop a chronology for early‐Holocene events in the northern Hudson Strait. A marine limit at 192 m a.s.l., dated at 8.1–7.9 cal. ka BP, provides the timing of deglaciation following the 8.2 ka event, confirming that ice persisted at least north of Hudson Bay until then. A moraine complex and esker morphosequence, the Foxe Moraine, relates to glaciomarine outwash deltas and beaches at 160 m a.s.l., and is tightly dated at 7.6 cal. ka BP with a combination of shell dates and exposure ages on boulders. The final rapid collapse of Foxe Peninsula ice occurred by 7.1–6.9 cal. ka BP (radiocarbon dates and TCN depth profile age on an outwash delta), which supports the hypothesis that LIS melting contributed to the contemporaneous global sea‐level rise known as the Catastrophic Rise Event 3 (CRE‐3).  相似文献   

7.
Nordaustlandet is located in the northeastern part of the Svalbard archipelago, within the northernmost reach of the West Spitsbergen Current. This current transports Atlantic water to the Arctic Ocean along the western and northern Svalbard margins. This region is well-suited for reconstructing the history of changing Atlantic water inflow to the Arctic Ocean. We studied the marine sediment core HH12-04-GC from Rijpfjorden. Benthic foraminiferal assemblages and sedimentological data are combined to reconstruct the palaeoenvironment of the fjord from the end of the last local deglaciation to the late Holocene. The local deglaciation, between 11.3 and 10.6 cal ka bp , was dominated by active glacier calving processes, associated with a strong inflow of Atlantic water. This led to the establishment of glaciomarine conditions. The Holocene was initially characterised by a relatively stable and warm environment associated with a strong contribution of Atlantic water. Glaciomarine influence progressively decreases after 9.7 cal ka bp and the Atlantic water contribution increases. The late Holocene displayed a similar environment to today, with the influence of glaciomarine conditions and limited Atlantic water inflow. These results confirm that Atlantic water inflows made a continuous contribution to northern Nordaustlandet throughout the postglacial period.  相似文献   

8.
The occurrence of till beds alternating with glaciomarine sediment spanning oxygen isotope stages 6 to 2, combined with morphological evidence, shows that the southwestern fringe of Norway was inundated by an ice stream flowing through the Norwegian Channel on at least four occasions, the last time being during the Late Weichselian maximum. All marine units are deglacial successions composed of muds with dropstones and diamictic intrabeds and a foraminiferal fauna characteristic of extreme glaciomarine environments. Land‐based ice, flowing at right angles to the flow direction of the ice stream, fed into the ice stream along an escarpment formed by erosion of the ice stream. Each time the ice stream wasted back, land‐based ice advanced into the area formerly occupied by the ice stream. During the last deglaciation of the ice stream (c. 15 ka BP), the advance of the land‐based ice occurred immediately upon ice stream retreat. As a result, the sea was prevented from inundating the upland areas, allowing most of the glacioisostatic readjustment to occur before the land‐based ice melted back at about 13 ka BP. This explains the low Late Weichselian sea levels in the area (10–20 m) compared with those of the Middle Weichselian and older sea‐level high stands (~200 m). Regional tectonic movements cannot explain the location of the observed marine successions. The highest sea level recorded (>200 m) is represented by glaciomarine sediments from the Sandnes interstadial (30–34 ka BP). Older interstadial marine sediments are found at somewhat lower levels, possibly as a result of subsequent glacial erosion in these deposits. Ice streams developed in the Norwegian Channel during three Weichselian time intervals. This seems to correspond to glacial episodes both to the south in Denmark and to the north on the coast of Norway, although correlations are somewhat hampered by insufficient dating control.  相似文献   

9.
A high-resolution record of Holocene deglacial and climate history was obtained from a 77 m sediment core from the Firth of Tay, Antarctic Peninsula, as part of the SHALDRIL initiative. This study provides a detailed sedimentological record of Holocene paleoclimate and glacial advance and retreat from the eastern side of the peninsula. A robust chronostratigraphy was derived from thirty-three radiocarbon dates on carbonate material. This chronostratigraphic framework was used to establish the timing of glacial and climate events derived from multiple proxies including: magnetic susceptibility, electric resistivity, porosity, ice-rafted debris content, organic carbon content, nitrogen content, biogenic silica content, and diatom and foraminiferal assemblages. The core bottomed-out in a stiff diamicton interpreted as till. Gravelly and sandy mud above the till is interpreted as proximal glaciomarine sediment that represents decoupling of the glacier from the seafloor circa 9400 cal. yr BP and its subsequent landward retreat. This was approximately 5000 yr later than in the Bransfield Basin and South Shetland Islands, on the western side of the peninsula. The Firth of Tay core site remained in a proximal glaciomarine setting until 8300 cal. yr BP, at which time significant glacial retreat took place. Deposition of diatomaceous glaciomarine sediments after 8300 cal. yr BP indicates that an ice shelf has not existed in the area since this time.The onset of seasonally open marine conditions between 7800 and 6000 cal. yr BP followed the deglacial period and is interpreted as the mid-Holocene Climatic Optimum. Open marine conditions lasted until present, with a minor cooling having occurred between 6000 and 4500 cal. yr BP and a period of minor glacial retreat and/or decreased sea ice coverage between 4500 and 3500 cal. yr BP. Finally, climatic cooling and variable sea ice cover occurred from 3500 cal. yr BP to near present and it is interpreted as being part of the Neoglacial. The onset of the Neoglacial appears to have occurred earlier in the Firth of Tay than on the western side of the Antarctic Peninsula. The Medieval Warm Period and Little Ice Age were not pronounced in the Firth of Tay. The breadth and synchroneity of the rapid regional warming and glacial retreat observed in the Antarctic Peninsula during the last century appear to be unprecedented during the Holocene epoch.  相似文献   

10.
Fifty‐six new radiocarbon dates from driftwood (mainly Larix, Picea and Populus spp.) collected from the modern and raised shorelines of Melville and Eglinton islands (western Canadian High Arctic) are presented and compared to other driftwood collections from the Canadian Arctic Archipelago (CAA) and Greenland. By documenting the species (provenance) and spatio‐temporal distribution of driftwood at various sites across the Arctic, regional characterizations of former sea‐ice conditions and changes in Arctic Ocean circulation patterns may be deduced. The earliest postglacial invasion of the Canadian Arctic Archipelago by driftwood is recorded on central Melville Island at c. 11 cal. ka BP, suggesting that the modern circulation pattern of Arctic Ocean surface water southeast through the archipelago was established >1000 years earlier than previously proposed. Throughout most of the Holocene until c. 1.0 cal. ka BP, the rate of driftwood delivery to the western Arctic islands was low (~1 recorded stranding event per 200 years) and intermittent, with the longest break in the record occurring between c. 3.0 and 5.0 cal. ka BP. This 2000‐year hiatus is attributed to a period of colder temperatures causing severe sea‐ice conditions and effectively making the coasts of the western Arctic islands inaccessible. After c. 1.0 cal. ka BP, driftwood incursion increased to maximum Holocene levels (~1 recorded stranding event every 20 years). Driftwood identified to the genus level as Larix that was delivered at this time suggests that the Trans Polar Drift current was regularly in its most southwestern position, related to a dominantly positive Arctic Oscillation mode. The Little Ice Age appears to have had little impact on driftwood entry to the western Canadian Arctic Archipelago, indeed the general abundance in the latest Holocene may record infrequent landfast sea ice.  相似文献   

11.
Evidence from terrestrial sections, ice cores, and marine cores are reviewed and used to develop a scenario for environmental change in the area of the extreme northwest North Atlantic during marine isotope stages 5 and 4. The critical physical link between the landbased glacial chronology and marine events in Baffin Bay is the presence of carbonate rich drift along the Baffin Bay coast of Bylot Island and a detrital carbonate facies (Facies B) in Baffin Bay sediments. Cores from Baffin Bay/Labrador Sea can be dated by means of oxygen isotope variations and by peaks in the abundance of volcanic glass shards. One occurrence of Facies B is dated between late stage 5 and stage 4 and we correlate this event with the Eclipse Glaciation of Bylot Island and the Ayr Lake stade of the Foxe Glaciation of Baffin Island (= Kogalu aminozone). In contrast on West Greenland, amino acid racemization evidence suggests that the Greenland Ice Sheet developed throughout stage 4 and reached a maximum in stage 3 (Svartenhuk advance >40 ka). The oxygen isotope record in the Devon Island Ice Cap (northwest Baffin Bay) indicates that Baffin Bay was largely open during marine isotope stage 5. Analyses of shallow water molluscan and foraminiferal assemblages, deep-water foraminifera, pollen from Iand sections and deep-sea cores, and dinoflagellates from marine cores indicate that interglacial conditions prevailed during much of the stage glaciation.  相似文献   

12.
The Baltic Sea (~393 000 km2) is the largest brackish sea in the world and its hydrographic and environmental conditions are strongly dependent on the frequency of saline water inflows from the North Sea. To improve our understanding of the natural variability of the Baltic Sea ecosystem detailed reconstructions of past saline water inflow changes based on palaeoecological archives are needed. Here we present a high‐resolution study of benthic foraminiferal assemblages accompanied by sediment geochemistry (loss on ignition, total organic carbon) and other microfossil data (ostracods and cladocerans) from a well‐dated 8‐m‐long gravity core taken in the Bornholm Basin. The foraminiferal diversity in the core is low and dominated by species of Elphidium. The benthic foraminiferal faunas in the central Baltic require oxic bottom water conditions and salinities >11–12 PSU. Consequently, shell abundance peaks in the record reflect frequent saline water inflow phases. The first appearance of foraminiferal tests and ostracods in the investigated sediment core is dated to c. 6.9 cal. ka BP and attributed to the first inflows of saline and oxygenated bottom waters into the Bornholm Basin during the Littorina Sea transgression. The transgression terminated the Ancylus Lake phase, reflected in the studied record by abundant cladocerans. High absolute foraminiferal abundances are found within two time intervals: (i) c. 5.5–4.0 cal. ka BP (Holocene Thermal Maximum) and (ii) c. 1.3–0.75 cal. ka BP (Medieval Climate Anomaly). Our data also show three intervals of absent or low saline water inflows: (i) c. 6.5–6.0 cal. ka BP, (ii) c. 3.0–2.3 cal. ka BP and (iii) c. 0.5–0.1 cal. ka BP (Little Ice Age). Our study demonstrates a strong effect of saline and well‐oxygenated water inflows from the Atlantic Ocean on the Baltic Sea ecosystem over millennial time scales, which is linked to the major climate transitions over the last 7 ka.  相似文献   

13.
A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300–11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c . 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling.  相似文献   

14.
Exceptionally high sedimentation rates in Arctic fjords provide the possibility to reconstruct environmental conditions in high temporal resolution during the (pre‐)Holocene. The unique geographical location of Svalbard at the intersection of Arctic and Atlantic waters offers the opportunity to estimate local (mainly glacier‐related) vs. regional (hydrographic) variabilities. Sedimentological, micropalaeontological and geochemical data from the very remote, glacier‐surrounded Wahlenbergfjord in eastern Svalbard provides information on glacier dynamics, palaeoceanographic and sea‐ice conditions during the Holocene. The present study illustrates a high meltwater discharge during the summer insolation maximum (c. 11.3–7.7 ka) when the intrusion of upwelled relatively warm Atlantic‐derived waters led to an almost open fjord situation with reduced sea ice in summer. Around 7.7 ka, a rapid hydrographic shift occurred: the dominance of inflowing Atlantic‐derived waters was replaced by a stronger influence of Arctic Water reflecting regional palaeoceanographic conditions evident in the benthic foraminiferal fauna also at Svalbard's margins. Neoglacial conditions characterized the late Holocene (c. 3.1–0.2 ka), when glaciers probably advanced as cold atmospheric temperatures were decoupled from the advection of relatively warm intermediate waters probably caused by an extending sea‐ice coverage. Accordingly, our data show that even a remote, glacier‐proximal study site reflects rapid as well as longer‐term regional changes.  相似文献   

15.
Recent work on the last glaciation of the British Isles has led to an improved understanding of the nature and timing of the retreat of the British?Irish Ice Sheet (BIIS) from its southern maximum (Isles of Scilly), northwards into the Celtic and Irish seas. However, the nature of the deglacial environments across the Celtic Sea shelf, the extent of subaerial exposure and the existence (or otherwise) of a contiguous terrestrial linkage between Britain and Ireland following ice retreat remains ambiguous. Multiproxy research, based on analysis of 12 BGS vibrocores from the Celtic Deep Basin (CDB), seeks to address these issues. CDB cores exhibit a shell‐rich upward fining sequence of Holocene marine sand above an erosional contact cut in laminated muds with infrequent lonestones. Molluscs, in situ Foraminifera and marine diatoms are absent from the basal muds, but rare damaged freshwater diatoms and foraminiferal linings occur. Dinoflagellate cysts and other non‐pollen palynomorphs evidence diverse, environmentally incompatible floras with temperate, boreal and Arctic glaciomarine taxa co‐occurring. Such multiproxy records can be interpreted as representing a retreating ice margin, with reworking of marine sediments into a lacustrine basin. Equally, the same record may be interpreted as recording similar conditions within a semi‐enclosed marine embayment dominated by meltwater export and deposition of reworked microfossils. As assemblages from these cores contrast markedly with proven glaciomarine sequences from outside the CDB, a glaciolacustrine interpretation is favoured for the laminated sequence, truncated by a Late Weichselian transgressive sequence fining upwards into fully marine conditions. Reworked rare intertidal molluscs from immediately above the regional unconformity provide a minimum date c. 13.9 cal. ka BP for commencement of widespread marine erosion. Although suggestive of glaciolacustrine conditions, the exact nature and timing of laminated sediment deposition within the CDB, and the implications this has on (pen)insularity of Ireland following deglaciation, remain elusive.  相似文献   

16.
A large ice sheet still covered almost all of Maine and eastern New England until ca. 15 cal ka BP, reaching south of 45 °S, despite rising summer insolation intensity and major ice recession elsewhere outside the North Atlantic region. Furthermore, the well-studied moraine belt along eastern coastal Maine, including the prominent Pineo Ridge delta/moraine complex and Pond Ridge moraine, indicates repeated readvances and stillstands between ca. 16 and 15 cal ka BP. This moraine belt reflects a considerable ice sheet response over eastern North America during this time period, coeval with the latter half of the European Oldest Dryas period. Moraine deposition was concurrent with reduction or elimination of North Atlantic meridional overturning, starting with the earlier onset of peak IRD and Heinrich Event 1 (HE-1). The existing 14C chronology suggests that the coastal moraine belt and the persistence of the ice sheet until ∼ 15 cal ka BP was a response to the severe cooling of the North Atlantic region after ∼ 17 cal ka BP.  相似文献   

17.
The importance of the Baffin-Labrador region is explained in terms of the channelling through this area of the mass flux of meltwater from the Laurentide Ice Sheet and the probable effects of this on the thermohaline circulation of the North Atlantic. The chronology of glaciation and deglaciation in the region is summarised. Reference is made to recent marine records from the Baffin Shelf. Isotopic changes recorded in foraminiferal assemblages obtained from marine sediments in the Baffin Shelf-Labrador Sea area indicate the timing and possible magnitude of meltwater fluxes during the period 14.0-11.0 ka BP.  相似文献   

18.
Graham, A.G.C., Lonergan, L. & Stoker, M.S. 2010: Depositional environments and chronology of Late Weichselian glaciation and deglaciation in the central North Sea. Boreas, Vol. 39, pp. 471–491. 10.1111/j.1502‐3885.2010.00144.x. ISSN 0300‐9483. Geological constraints on ice‐sheet deglaciation are essential for improving the modelling of ice masses and understanding their potential for future change. Here, we present a detailed interpretation of depositional environments from a new 30‐m‐long borehole in the central North Sea, with the aim of improving constraints on the history of the marine Late Pleistocene British–Fennoscandian Ice Sheet. Seven units characterize a sequence of compacted and distorted glaciomarine diamictons, which are overlain by interbedded glaciomarine diamictons and soft, bedded to homogeneous marine muds. Through correlation of borehole and 2D/3D seismic observations, we identify three palaeoregimes. These are: a period of advance and ice‐sheet overriding; a phase of deglaciation; and a phase of postglacial glaciomarine‐to‐marine sedimentation. Deformed subglacial sediments correlate with a buried suite of streamlined subglacial bedforms, and indicate overriding by the SE–NW‐flowing Witch Ground ice stream. AMS 14C dating confirms ice‐stream activity and extensive glaciation of the North Sea during the Last Glacial Maximum, between c. 30 and 16.2 14C ka BP. Sediments overlying the ice‐compacted deposits have been reworked, but can be used to constrain initial deglaciation to no later than 16.2 14C ka BP. A re‐advance of British ice during the last deglaciation, dated at 13.9 14C ka BP, delivered ice‐proximal deposits to the core site and deposited glaciomarine sediments rapidly during the subsequent retreat. A transition to more temperate marine conditions is clear in lithostratigraphic and seismic records, marked by a regionally pervasive iceberg‐ploughmarked erosion surface. The iceberg discharges that formed this horizon are dated to between 13.9 and 12 14C ka BP, and may correspond to oscillating ice‐sheet margins during final, dynamic ice‐sheet decay.  相似文献   

19.
Palaeoglaciological reconstructions of the North Sea sector of the last British Ice Sheet have, as other shelf areas, suffered from a lack of dates directly related to ice‐front positions. In the present study new high‐resolution TOPAS seismic data, bathymetric records and sediment core data from the Witch Ground Basin, central North Sea, were compiled. This compilation made it possible to map out three ice‐marginal positions, partly through identification of terminal moraines and partly through location of glacial‐fed debrisflows. The interfingering of the distal parts of the glacial‐fed debrisflows with continuous marine sedimentation enabled the development of a chronology for glacial events based on previously published and some new radiocarbon dates on marine molluscs and foraminifera. From these data it is suggested that after the central Witch Ground Basin was deglaciated at c. 27 cal. ka BP, the eastern part was inundated by glacial ice from the east in the Tampen advance at c. 21 cal. ka BP. Subsequently, the basin was inundated by ice from northeast during the Fladen 1 (c. 17.5 cal. ka BP) and the Fladen 2 (16.2 cal. ka BP) events. It should be emphasized that the Fladen 1 and 2 events, individually, may represent dynamics of relatively small lobes of glacial ice at the margin of the British Ice Sheet and that the climatic significance of these may be questioned. However, the Fladen Events probably correlate in time with the Clogher Head and Killard Point re‐advances previously documented from Ireland and the Bremanger event from off western Norway, suggesting that the British and Fennoscandian ice sheets both had major advances in their northwestern parts, close to the northwestern European seaboard, at this time.  相似文献   

20.
We present a well‐dated, high‐resolution and continuous sediment record spanning the last c. 24 000 years from lake Bolshoye Shchuchye located in the Polar Ural Mountains, Arctic Russia. This is the first continuous sediment succession reaching back into the Last Glacial Maximum (LGM) ever retrieved from this region. We reconstruct the glacial and climate history in the area since the LGM based on sedimentological and geochemical analysis of a 24‐m‐long sediment core. A robust chronology was established using a combination of AMS 14C‐dating, the position of the Vedde Ash and varve counting. The varved part of the sediment core spans across the LGM from 24 to 18.7 cal. ka BP. We conclude that the lake basin remained ice‐free throughout the LGM, but that mountain glaciers were present in the lake catchment. A decrease in both glacial varve preservation and sedimentation rate suggests that these glaciers started to retreat c. 18.7 cal. ka BP and had disappeared from the catchment by 14.35 cal. ka BP. There are no indications of glacier regrowth during the Younger Dryas. We infer a distinct climatic amelioration following the onset of the Holocene and an Early to Middle Holocene thermal optimum between 10–5 cal. ka BP. Our results provide a long‐awaited continuous and high‐resolution record of past climate that supplements the existing, more fragmentary data from moraines and exposed strata along river banks and coastal cliffs around the Russian Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号