首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Southern Tail‐End Graben, Danish Central Graben, is characterized by a lateral variation in the thickness and mobility of pre‐rift Zechstein Supergroup evaporites, allowing investigation of how supra‐basement evaporite variability influences rift structural style and tectono‐stratigraphy. The study area is divided into two structural domains based on interpretations of the depositional thickness and mobility of the Zechstein Supergroup. Within each domain, we examine the overall basin morphology and the structural styles in the pre‐Zechstein and supra‐Zechstein (cover) units. Furthermore, integration of two‐way travel‐time (TWT)‐structure and ‐thickness maps allows fault activity and evaporite migration maps to be generated for pre‐ and syn‐rift stratal units within the two domains, permitting constraints to be placed on: (i) the timing of activity on pre‐Zechstein and cover faults and (ii) the onset, duration and migration direction of mobile evaporites. The northern domain is interpreted to be free from evaporite‐influence, and has developed in a manner typical of brittle‐only, basement‐involved rifts. Syn‐rift basins display classical half‐graben geometries bounded by thick‐skinned faults. In contrast, the southern domain is interpreted to be evaporite‐influenced, and cover structure reflects a southward increase in the thickness and mobility of the Zechstein Supergroup evaporites. Fault‐related and evaporite‐related folding is prominent in the southern domain, together with variable degrees of decoupling of sub‐Zechstein and cover fault and fold systems. The addition of mobile evaporites to the rift results in: (i) complex and spatially variable modes of tectono‐stratigraphic evolution; (ii) syn‐rift stratal geometries which are condensed above evaporite swells and over‐thickened in areas of withdrawal; (iii) compartmentalized syn‐rift depocentres; and (iv) masking of rift‐related megasequence boundaries. Through demonstrating these deviations from the characteristics of rifts free from evaporite influence, we highlight the first order control evaporites may exert upon rift structural style and the distribution and thicknesses of syn‐rift units.  相似文献   

2.
Studies of salt‐influenced rift basins have focused on individual or basin‐scale fault system and/or salt‐related structure. In contrast, the large‐scale rift structure, namely rift segments and rift accommodation zones and the role of pre‐rift tectonics in controlling structural style and syn‐rift basin evolution have received less attention. The Norwegian Central Graben, comprises a complex network of sub‐salt normal faults and pre‐rift salt‐related structures that together influenced the structural style and evolution of the Late Jurassic rift. Beneath the halite‐rich, Permian Zechstein Supergroup, the rift can be divided into two major rift segments, each comprising rift margin and rift axis domains, separated by a rift‐wide accommodation zone – the Steinbit Accommodation Zone. Sub‐salt normal faults in the rift segments are generally larger, in terms of fault throw, length and spacing, than those in the accommodation zone. The pre‐rift structure varies laterally from sheet‐like units, with limited salt tectonics, through domains characterised by isolated salt diapirs, to a network of elongate salt walls with intervening minibasins. Analysis of the interactions between the sub‐salt normal fault network and the pre‐rift salt‐related structures reveals six types of syn‐rift depocentres. Increasing the throw and spacing of sub‐salt normal faults from rift segment to rift accommodation zone generally leads to simpler half‐graben geometries and an increase in the size and thickness of syn‐rift depocentres. In contrast, more complex pre‐rift salt tectonics increases the mechanical heterogeneity of the pre‐rift, leading to increased complexity of structural style. Along the rift margin, syn‐rift depocentres occur as interpods above salt walls and are generally unrelated to the relatively minor sub‐salt normal faults in this structural domain. Along the rift axis, deformation associated with large sub‐salt normal faults created coupled and decoupled supra‐salt faults. Tilting of the hanging wall associated with growth of the large normal faults along the rift axis also promoted a thin‐skinned, gravity‐driven deformation leading to a range of extensional and compressional structures affecting the syn‐rift interval. The Steinbit Accommodation Zone contains rift‐related structural styles that encompass elements seen along both the rift margin and axis. The wide variability in structural style and evolution of syn‐rift depocentres recognised in this study has implications for the geomorphological evolution of rifts, sediment routing systems and stratigraphic evolution in rifts that contain pre‐rift salt units.  相似文献   

3.
The impact of a pre‐existing rift fabric on normal fault array evolution during a subsequent phase of lithospheric extension is investigated using 2‐D and 3‐D seismic reflection, and borehole data from the northern Horda Platform, Norwegian North Sea. Two fault populations are developed: (i) a population comprising relatively tall (>2 km), N‐S‐striking faults, which have >1.5 km of throw. These faults are up to 60 km long, penetrate down into crystalline basement and bound the eastern margins of 6–15 km wide half‐graben, which contain >3 km of pre‐Jurassic, likely Permo–Triassic, but possibly Devonian syn‐rift strata; and (ii) a population comprising vertically restricted (<1 km), NW‐SE‐striking faults, which are more closely spaced (0.5–5 km), have lower displacements (30–100 m) and not as long (2–10 km) as those in the N–S‐striking population. The NW‐SE‐striking population typically occurs between the N‐S‐striking population, and may terminate against or cross‐cut the larger structures. NW–SE‐striking faults do not bound pre‐Jurassic half‐graben and are largely restricted to the Jurassic‐to‐Cretaceous succession. Seismic‐stratigraphic observations, and the stratigraphic position of the fault tips in both fault populations, allow us to reconstruct the Late Jurassic‐to‐Early Cretaceous growth history of the northern Horda Platform fault array. We suggest the large, N‐S‐striking population was active during the Permo–Triassic and possibly earlier (Devonian?), before becoming inactive and buried during the Early and Middle Jurassic. After a period of relative tectonic quiescence, the N‐S‐striking, pre‐Jurassic fault population propagated through the Early‐Middle Jurassic cover and individual fault systems rapidly (within <10 Ma) established their maximum length in response to Late Jurassic extension. These fault systems became the dominant structures in the newly formed fault array and defined the locations of the main, Late Jurassic‐to‐Early Cretaceous, syn‐rift depocentres. Late Jurassic extension was also accommodated by broadly synchronous growth of the NW‐SE‐striking fault population; the eventual death of this population occurred in response to the localization of strain onto the N–S‐striking fault population. Our study demonstrates that the inheritance of a pre‐existing rift fabric can influence the geometry and growth of individual fault systems and the fault array as a whole. On the basis of observations made in this study, we present a conceptual model that highlights the influence of a pre‐existing rift fabric on fault array evolution in polyphase rifts.  相似文献   

4.
Rift basin tectono‐stratigraphic models indicate that normal fault growth controls the sedimentology and stratigraphic architecture of syn‐rift deposits. However, such models have rarely been tested by observations from natural examples and thus remain largely conceptual. In this study we integrate 3D seismic reflection, and biostratigraphically constrained core and wireline log data from the Vingleia Fault Complex, Halten Terrace, offshore Mid‐Norway to test rift basin tectono‐stratigraphic models. The geometry of the basin‐bounding fault and its hangingwall, and the syn‐rift stratal architecture, vary along strike. The fault is planar along a much of its length, bounding a half‐graben containing a faultward‐thickening syn‐rift wedge. Locally, however, the fault has a ramp‐flat‐ramp geometry, with the hangingwall defined by a fault‐parallel anticline‐syncline pair. Here, an unusual bipartite syn‐rift architecture is observed, comprising a lower faultward‐expanding and an upper faultward‐thinning wedge. Fine‐grained basinfloor deposits dominate the syn‐rift succession, although isolated coarse clastics occur. The spatial and temporal distribution of these coarse clastics is complex due to syn‐depositional movement on the Vingleia Fault Complex. High rates of accommodation generation in the fault hangingwall led to aggradational stacking of fan deltas that rapidly (<5 km) pinch out basinward into offshore mudstone. In the south of the basin, rapid strain localization meant that relay ramps were short‐lived and did not represent major, long‐lived sediment entry points. In contrast, in the north, strain localization occurred later in the rift event, thus progradational shorefaces developed and persisted for a relatively long time in relay ramps developed between unlinked fault segments. The footwall of the Vingleia Fault Complex was characterized by relatively low rates of accommodation generation, with relatively thin, progradational hangingwall shorelines developed downdip of the fault block apex, sometime after the onset of sediment supply to the hangingwall. We show that rift basin tectono‐stratigraphic models need modifying to take into account along‐strike variability in fault structure and basin physiography, and the timing and style of syn‐rift sediment dispersal and facies, in both hangingwall and footwall locations.  相似文献   

5.
The location, shape and stacking pattern of deep‐marine clastic sediments on drifting stage passive continental margins are strongly influenced by the slope and basin floor topography. The tectonic control on sediment routes and dispersal patterns, however, is less understood on rift margins, particularly the impact of subaqueous transfer zones or relay ramps. In this study, an area of the Palaeocene marine syn‐rift succession in the Vøring Basin is mapped in detail to unravel the relationship between fault geometries and sedimentary infill patterns. Using root‐mean‐square (RMS) amplitudes and deposit thicknesses interpreted from seismic data, sedimentary elements in the Fenris Graben and the Gjallar Ridge are related to the fault patterns and the overall basin geometry. Older deposits are found to be aligned parallel to the basin axis, with the greatest sediment thicknesses on the hanging walls and adjacent to rotated faults. The main sediment supply is interpreted to be sourced from the Vøring Marginal High and Greenland, presumably containing a significant proportion of coarser grained material and comprising numerous local depocentres. With continued rifting and decreased fault activity, finer grained deposition draped the previous basin infill and smoothed the basin floor topography. Deposits close to the foot of relay ramps along the Gjallar Ridge, however, suggest that the high may have acted as a local sediment source leading to local depocentres. Transfer zones played a significant role in sediment transport during the early rifting phase, and were able to maintain some influence into the late rifting and early drifting stage. Identification of early‐ and late‐stage transfer zones may therefore help in locating coarser grained depocentres and potential hydrocarbon reservoirs.  相似文献   

6.
7.
The deglaciation history of Balsfjord, northern Norway, and post-glacial mass movement events were investigated. Radiocarbon dates indicate that the Balsfjord glacier retreated from the Tromsø–Lyngen moraines about 10.4 14C Ky BP. Between ca. 10.3 14C Ky BP and 9.9 14C Ky BP, deposition of a distinct end moraine–the Skjevelnes moraine–in the central part of Balsfjord occurred. The transition from glacimarine to open marine sedimentary environment took place before 9.6 14C Ky BP. Between ca. 9.5 14C Ky BP and 8.4 14C Ky BP, at least one local and three regional mass movement events occurred. After this period, no gravity flow activity is preserved in the cores. The high frequency of mass movements in the early post-glacial period is presumed to be due to fast sea level changes and/or tectonic activity induced by rapid isostatic uplift.  相似文献   

8.
This paper describes the development of a regressive-to-transgressive shoreline wedge within the Middle Jurassic Tarbert Formation in the Oseberg South area (northern North Sea), as interpreted from core and log data from more than hundred wells. The wedge is described in terms of four facies associations (FA1–FA4). The lower, regressive portion of the wedge (FA1–FA2) contains both coarsening upward wave/storm-dominated shoreline deposits as well as coal-bearing paralic deposits, and was deposited during ascending regression. The upper, transgressive portion of the wedge (FA3–FA4) is characterised by wave-dominated estuarine deposits, exhibiting an upward change from inner to central to outer estuarine deposits. In contrast to some earlier studies, it is argued that this part was deposited during accretionary transgression. The present study documents an estuarine system that developed without any preceding fall of relative sea level and valley incision. It is argued that differential fault-induced subsidence created a broad gentle sag wherein one or several estuarine systems developed as the depositional system became transgressive. The subtle fault-induced subsidence is related to the tectonic evolution in the North Sea Basin.  相似文献   

9.
ABSTRACT This study addresses the complex relationship between an evolving fault population and patterns of synrift sedimentation during the earliest stages of extension. We have used 3D seismic and well data to examine the early synrift Tarbert Formation from the Middle–Late Jurassic northern North Sea rift basin. The Tarbert Formation is of variable thickness across the study area, and thickness variations define a number of 1- to 5-km-wide depocentres bounded by normal faults. Seismic reflections diverge towards the bounding faults indicating that the faults were active contemporaneous with the deposition of the formation. Many of these faults became inactive during later Heather Formation times. The preservation of the Tarbert Formation in both footwall and hangingwall locations demonstrates that, during the earliest synrift, the rate of deposition balanced the rate of tectonic subsidence. Local space generated by hangingwall subsidence was superimposed upon accommodation generated due to a regional rise in relative sea-level. In basal Tarbert Formation times, transgression across the prerift coastal plain produced lagoons and bays, which became increasingly marine. During continued transgression, barrier islands moved landward across the drowned bays. In the southern part of our study area, shallow marine sediments are erosionally truncated by fluvial deposition. These fluvial systems were constrained by fault growth monoclines, and flowed parallel to the main faults. We illustrate that stratal architecture and facies distribution of early sedimentation is strongly influenced by the active short-lived faults. Local depocentres adjacent to fault displacement maxima focused channel stacking and allowed the aggradation of thick shoreface successions. These depocentres formed early in the rift phase are not necessarily related to Late Jurassic – Early Cretaceous depocentres developed along the major linked normal fault systems.  相似文献   

10.
The first deep permafrost boreholes (>10 m) ever drilled in Scandinavia for climatic studies constitute part of a transect of deep mountain permafrost boreholes through the mountains of Europe established under the EU PACE (Permafrost and Climate in Europe) Project. In Scandinavia, PACE boreholes are located at Juvvasshøe, southern Norway, Tarfalaryggen in northern Sweden, and northernmost in the transect at Janssonhaugen, western Svalbard. This paper outlines the aims and objectives of the PACE programme, and describes in detail the Svalbard and Scandinavian permafrost boreholes.  相似文献   

11.
The Oseberg Fault-Block, situated along the eastern flank of the northern Viking Graben in the North Sea, was affected by Middle–Late Jurassic rifting initiated in Bajocian–Bathonian times. Temporal variations in stretching rates exerted the major control on the depositional infill patterns of the Bathonian–Kimmeridgian Heather Formation and its intercalated Middle Callovian to Early Oxfordian Fensfjord and Late Oxfordian to Kimmeridgian Sognefjord Formations. Three shallow-marine, regressive–transgressive synrift wedges are recognized, and are interpreted in terms of discrete rift phases. The lower, regressive segments of the synrift wedges were deposited during periods of relatively low tectonic activity, whereas the upper, overall transgressive segments correspond to extensional pulses or stages during which significant fault-related subsidence and fault-block rotation occurred. These rotational tilt stages are further subdivided into an early, a climax and a late synrotational substage. The lower, regressive segments consist of stacked, shallowing-upward units, which reflect the advance of wide shallow-marine, rift-marginal shorelines during the tectonically quiescent periods. During the intervening rotational tilt stages renewed basin floor tilting and increased basinal subsidence led to retreat of the rift-marginal depositional systems, renewal of the half-graben topography, formation of intrabasinal sediment sources (footwall islands) and the re-establishment of localized footwall, hangingwall and axial depositional systems. These localized depositional systems generally have an overall forestepping-to-backstepping character superimposed on the larger-scale transgressive trend. There was an associated shift from a wave- and storm-dominated environment during deposition of the lower, regressive segment to a more protected, partly current-(?tidally) influenced environment in the upper, transgressive segment. This reflects a shift from a broad open basin in tectonically quiescent periods to smaller subbasins (embayments or estuaries) during periods with increased rates of rifting. The footwall highs which formed intrabasinal sediment sources were of limited size compared with the volume of the adjacent depositional sinks. As a consequence, complete infilling of individual half-grabens were not achieved during the synrotational stages, leaving the subbasins underfilled at the end of each successive rift phase. Mudstone drapes represent periods with deprivation of clastic material and basinal condensation during the latest synrotational to early tectonic quiescence substages, when footwall islands were small or completely submerged and there was a large distance to the (then progradational) rift-marginal shoreline.  相似文献   

12.
This paper compiles new and previously published data on recent calcareous benthic foraminifera (dead and living assemblages) in surface sediment samples from the northern North Sea area, focussing on the dead benthic foraminifera and their relation to the environment. Five dead benthic foraminiferal assemblages have been identified. In Scottish coastal areas Cibicides lobatulus and Rosalina sp. dominate in areas with strong current activity and coarse-grained sediments, whereas C. lobatulus and Trifarina angulosa dominate at similar conditions in the Norwegian coastal areas. Cassidulina laevigata assemblages occur in areas influenced by inflow of Atlantic water into the northern North Sea. In the central part of the Norwegian Channel Uvigerina mediterranea prevails in fine-grained sediments with high organic content and possibly low oxygen content. This species' restricted distribution to the Norwegian Channel could possibly be related to the availability of food. Bulimina marginata and Hyalinea balthica dominate on the Fladen Ground where seasonal stratification is pronounced. This presumably leads to a decrease in the oxygen content in the bottom-waters during part of the year.  相似文献   

13.
Abstract The structural evolution of a basin cannot be reconstructed from sedimentary thicknesses alone without data on palaeobathymetry. Two classes of geological horizons, are defined, profiles and traces. Profiles are time-lines and bound depositional units. Traces were formed at a known water depth and contain implicit palaeobathymetric data.
Rock units bounded by traces are diachronous lithostratigraphic units, and the thicknesses of such units are controlled directly by subsidence, while the thicknesses of profile-bounded units may be unaffected by the subsidence or even the palaeotopography of the basin.
Dating fault movement from thickness variations in profile-bounded units is difficult without prior knowledge of the palaeobathymetry, and it is impossible to distinguish between synsedimentary fault movement and onlap to a pre-existing fault scarp from thickness alone.
Reconstruction of the basin history of the North Sea is difficult due to the lack of trace-bounded units in the post-Jurassic. The validity of previously published studies depends largely on the quality and quantity of palaeobathymetric data included. An alternative basin history is proposed based on the few trace-bounded units in the North Viking Graben. This includes rifting episodes in the Triassic and Late Jurassic, and a period of uplift in the Palaeocene.  相似文献   

14.
The tunnel through the mountain of Torghatten, in northern Norway, is generally regarded as a product of wave action. The tunnel is above the late Weichselian marine limit. Fresh looking polished bedrock that resembles subglacial ice-sculptured and meltwater forms, p-forms, occurs near the opening to the landward eastern side of the tunnel and inside. Most likely, the tunnel is a polygenetic formation. Storm action during deglaciations and also subglacial meltwater drainage and plastically sliding ice during glaciations have been active processes in the formation of the tunnel.  相似文献   

15.
Gurney, S.D. & Hayward, S. 2015. Earth hummocks in north-east Okstindan, northern Norway: Morphology, distribution and environmental constraints. Norsk Geografisk Tidsskrift–Norwegian Journal of Geography. ISSN 0029-1951.

Earth hummocks (also termed pounus or thúfur) are a common form of periglacial non-sorted patterned ground. The study objectives were to determine the morphology, distribution and development on slopes of earth hummocks in north-east Okstindan, Norway, an area with many hummocks but few documented accounts. The methodology involved detailed geomorphological mapping and precise measurement with a profileometer. The internal structure of the hummocks was investigated through excavations and sediment sample analyses. Fourteen sites with well-developed earth hummocks (accounting for over 650 individual hummock forms) were investigated. The sites have an average altitude of 750?m and occur on slopes with an average gradient of 7°. The hummock heights are in the range 0.11–0.52?m and their diameters 0.7–1.5?m, although coalescent forms are up to 5?m in length. The hummock morphology is characterised by a variable plan form, asymmetry with respect to upslope and downslope forms, downslope elongation, coalescence, and superimposed microtopography. The hummocks’ distribution appeared to have been controlled by the existence of a frost-susceptible ‘host’ sediment, but moisture availability and topographic position played a role. The authors conclude that differential frost heave and vegetation cover stability are critical for the hummocks’ longevity in the studied landscape.  相似文献   

16.
17.
Through examination of the scaling relations of faults and the use of seismic stratigraphic techniques, we demonstrate how the temporal and spatial evolution of the fault population in a half-graben basin can be accurately reconstructed. The basin bounded by the ≫62-km-long Strathspey–Brent–Statfjord fault array is located on the western flank of the Late Jurassic northern North Sea rift basin. Along-strike displacement variations, transverse fault-displacement folds and palaeo-fault tips abandoned in the hangingwall all provide evidence that the fault system comprises a hierarchy of linked palaeo-segments. The displacement variations developed while the fault was in a prelinkage, multisegment stage of its growth have not been equilibrated following fault linkage. Using the stratal architecture of synrift sediments, we date the main phase of segment linkage as latest Callovian – middle Oxfordian (10–14 Myr after rift initiation). A dense subpopulation of faults is mapped in the hangingwall to the Strathspey–Brent–Statfjord fault array. The majority of these faults are short, of low displacement and became inactive within 3–4 Myr of the beginning of the extensional event. Subsequently, only the segments of the proto-Strathspey–Brent–Statfjord fault and a conjugate array of antithetic faults located 3.5 km basinward continued to grow to define a graben-like basin geometry. Faults of the antithetic array became inactive ∼11.5 Myr into the rift event, concentrating strain on the linked Strathspey–Brent–Statfjord fault; hence, the basin evolved into a half-graben. As the rift event progressed, strain was localized on a smaller number of active structures with increased rates of displacement. The results of this study suggest that a simple model for the linkage of 2–3 fault segments may not be applicable to a complex multisegment array.  相似文献   

18.
The recent sediment record of Lake Belau (Schleswig–Holstein, Germany), deposited in the period 1945–2002, was compared with instrumental meteorological and limnological data. The sediments deposited during this period are annually laminated. A varve chronology was established and supported by 137Cs measurements. Micro-facies and diatom assemblage composition analyses were confirmed in thin sections and compared statistically with limnological and meteorological data. Comparison of phytoplankton data with diatom assemblage data from the sediment for the time interval from 1988 to 1999 proved that the sediments reflect limnological processes in the lake and record seasonal changes in the primary producer communities. Among the climatological data, the number of contiguous ice days (days with maximal temperatures ≤0 °C) and the state of the winter NAO are strong predictors for micro-facies development and diatom assemblage composition. Furthermore, solar and local (nutrient input) influences are visible in the diatom assemblage compositions. Our study illustrates the high potential for using analyses of micro-facies and diatom assemblages to reconstruct past weather conditions in varved sediments of Lake Belau.  相似文献   

19.
中国首次南极内陆冰盖考察获得的50m冰芯的雪冰化学资料研究表明:南极伊利莎白公主地海盐离子浓度季节变化特征明显,为冰芯定年提供了可靠的依据。伊利莎白公主地雪冰中Cl-、Na+和Mg2+等海盐离子浓度与南极冰盖其它地方相当,而Ca2+含量异常的高,可能与局地较强的陆地源有关。近150年来,伊利莎白公主地海盐离子浓度具有明显升高的趋势,可能是整个南半球100多年来升温的结果。  相似文献   

20.
Because salt can decouple sub‐ and supra‐salt deformation, the structural style and evolution of salt‐influenced rifts differs from those developed in megoscopically homogenous and brittle crust. Our understanding of the structural style and evolution of salt‐influenced rifts comes from scaled physical models, or subsurface‐based studies that have utilised moderate‐quality 2D seismic reflection data. Relatively few studies have used high‐quality 3D seismic reflection data, constrained by borehole data, to explicitly focus on the role that along‐strike displacement variations on sub‐salt fault systems, or changes in salt composition and thickness, play in controlling the four‐dimensional evolution of supra‐salt structural styles. In this study, we use 3D seismic reflection and borehole data from the Sele High Fault System (SHFS), offshore Norway to determine how rift‐related relief controlled the thickness and lithology of an Upper Permian salt‐bearing layer (Zechstein Supergroup), and how the associated variations in the mechanical properties of this unit influenced the degree of coupling between sub‐ and supra‐salt deformation during subsequent extension. Seismic and borehole data indicate that the Zechstein Supergroup is thin, carbonate‐dominated and immobile at the footwall apex, but thick, halite‐dominated and relatively mobile in high accommodation areas, such as near the lateral fault tips and in the immediate hangingwall of the fault system. We infer that these variations reflect bathymetric changes related to either syn‐depositional (i.e. Late Permian) growth of the SHFS or underfilled, fault scarp‐related relief inherited from a preceding (i.e. Early Permian) rift phase. After a period of tectonic quiescence in the Early Triassic, regional extension during the Late Triassic triggered halokinesis and growth of a fault‐parallel salt wall, which was followed by mild extension in the Jurassic and forced folding of Triassic overburden above the fault systems upper tip. During the Early Cretaceous, basement‐involved extension resulted in noncoaxial tilting of the footwall, and the development of an supra‐salt normal fault array, which was restricted to footwall areas underlain by relatively thick mobile salt; in contrast, at the footwall apex, no deformation occurred because salt was thin and immobile. The results of our study demonstrate close coupling between tectonics, salt deposition and the style of overburden deformation for >180 Myr of the rift history. Furthermore, we show that rift basin tectono‐stratigraphic models based on relatively megascopically homogeneous and brittle crust do not appropriately describe the range of structural styles that occur in salt‐influenced rifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号