共查询到10条相似文献,搜索用时 0 毫秒
1.
James B. Chapman Barbara Carrapa Peter G. DeCelles James Worthington Nicoletta Mancin Miriam Cobianchi Marius Stoica Xin Wang Mustafo Gadoev Ilhomjon Oimahmadov 《Basin Research》2020,32(3):525-545
Investigation of a >6-km-thick succession of Cretaceous to Cenozoic sedimentary rocks in the Tajik Basin reveals that this depocentre consists of three stacked basin systems that are interpreted to reflect different mechanisms of subsidence associated with tectonics in the Pamir Mountains: a Lower to mid-Cretaceous succession, an Upper Cretaceous–Lower Eocene succession and an Eocene–Neogene succession. The Lower to mid-Cretaceous succession consists of fluvial deposits that were primarily derived from the Triassic Karakul–Mazar subduction–accretion complex in the northern Pamir. This succession is characterized by a convex-up (accelerating) subsidence curve, thickens towards the Pamir and is interpreted as a retroarc foreland basin system associated with northward subduction of Tethyan oceanic lithosphere. The Upper Cretaceous to early Eocene succession consists of fine-grained, marginal marine and sabkha deposits. The succession is characterized by a concave-up subsidence curve. Regionally extensive limestone beds in the succession are consistent with late stage thermal relaxation and relative sea-level rise following lithospheric extension, potentially in response to Tethyan slab rollback/foundering. The Upper Cretaceous–early Eocene succession is capped by a middle Eocene to early Oligocene (ca. 50–30 Ma) disconformity, which is interpreted to record the passage of a flexural forebulge. The disconformity is represented by a depositional hiatus, which is 10–30 Myr younger than estimates for the initiation of India–Asia collision and overlaps in age with the start of prograde metamorphism recorded in the Pamir gneiss domes. Overlying the disconformity, a >4-km-thick upper Eocene–Neogene succession displays a classic, coarsening upward unroofing sequence characterized by accelerating subsidence, which is interpreted as a retro-foreland basin associated with crustal thickening of the Pamir during India–Asia collision. Thus, the Tajik Basin provides an example of a long-lived composite basin in a retrowedge position that displays a sensitivity to plate margin processes. Subsidence, sediment accumulation and basin-forming mechanisms are influenced by subduction dynamics, including periods of slab-shallowing and retreat. 相似文献
2.
Maria F. Loreto Nevio Zitellini Csar R. Ranero Camilla Palmiotto Manel Prada 《Basin Research》2021,33(1):138-158
We present a new tectonic map focused upon the extensional style accompanying the formation of the Tyrrhenian back‐arc basin. Our basin‐wide analysis synthetizes the interpretation of vintage multichannel and single‐channel seismic profiles, integrated with modern seismic images, P‐wave velocity models, and high‐resolution morpho‐bathymetric data. Four distinct evolutionary phases of the Tyrrhenian back‐arc basin opening are further constrained, redefining the initial opening to Langhian/Serravallian time. Listric and planar normal faults and their conjugates bound a series of horst and graben, half‐graben and triangular basins. Distribution of extensional faults, active throughout the basin since Middle Miocene, allows us to define an arrangement of faults in the northern/central Tyrrhenian mainly related to a pure shear which evolved to a simple shear opening. At depth, faults accommodate over a Ductile‐Brittle Transitional zone cut by a low‐angle detachment fault. In the southern Tyrrhenian, normal, inverse and transcurrent faults appear to be related to a large shear zone located along the continental margin of the northern Sicily. Extensional style variation throughout the back‐arc basin combined with wide‐angle seismic velocity models allows to explore the relationships between shallow deformation, faults distribution throughout the basin, and crustal‐scale processes as thinning and exhumation. 相似文献
3.
Stefano Patruno Vittorio Scisciani William Helland-Hansen Nico D'Intino William Reid Claudio Pellegrini 《Basin Research》2020,32(2):224-239
Clinoforms are basinward-dipping and accreting palaeo-bathymetric profiles that record palaeo-environmental conditions and processes; thus, clinothems represent natural palaeo-archives. Here, we document shelf-edge scale clinoform sets which prograded through the entire width of an epicontinental marine basin (ca. 400 km), eventually encroaching onto the opposite basin flank, where they started to prograde upslope and landward, in defiance of gravity (“upslope-climbing clinoforms”). The giant westward-prograding Eridanos muddy shelf-edge clinothem originated from the Baltic hinterland in the Oligocene and achieved maximum regression in the Early Pleistocene, on the UK Central Graben (CG) and Mid North Sea High (MNSH), after crossing the whole North Sea mesopelagic depocentre and causing near complete basin infill. Here we integrate well and seismic data through the MNSH and CG and examine the Eridanos final heyday and demise, identifying five clinothem complexes (A1, A2, A3, B and C) and six depositional sequence boundaries (SB1 to SB6) in the Miocene-Recent section. Tectonic and climatic events drove the recent evolution of this system. Early Pleistocene climate cooling, in particular, resulted in a stepwise increase in sediment supply. This climaxed in the earliest Calabrian, following a likely Eburonian eustatic fall (=SB3) when the Eridanos clastic wedge was restructured from a 100–300 m thick compound shelf-edge and delta system to a “hybrid” shelf-edge delta at sequence boundary SB3 (ca. 1.75 Ma). In the ca. 40 kyr that followed SB3, a progradation rate peak (>1,000 m/kyr) is associated with clinoforms starting to accrete upslope, onto the east-dipping slope between CG and MNSH. This “upslope-climbing clinoform” phase was quickly followed by the maximum regression and final retreat of the Eridanos system in the Early Calabrian (=SB4), likely as the result of climate-driven changes in the Baltic hinterland and/or delta auto-retreat. To our knowledge, this contributions represents the first documentation of “upslope-climbing clinoforms” recorded in the stratigraphic record. 相似文献
4.
Anindita Samsu Alexander R. Cruden Mike Hall Steven Micklethwaite Steven W. Denyszyn 《Basin Research》2019,31(4):782-807
Complex arrays of faults in extensional basins are potentially influenced by pre‐existing zones of weakness in the underlying basement, such as faults, shear zones, foliation, and terrane boundaries. Separating the influence of such basement heterogeneities from far‐field tectonics proves to be challenging, especially when the timing and character of deformation cannot be interpreted from seismic reflection data. Here we aim to determine the influence of basement heterogeneities on fault patterns in overlying cover rocks using interpretations of potential field geophysical data and outcrop‐scale observations. We mapped >1 km to meter scale fractures in the western onshore Gippsland Basin of southeast Australia and its underlying basement. Overprinting relationships between fractures and mafic intrusions are used to determine the sequence of faulting and reactivation, beginning with initial Early Cretaceous rifting. Our interpretations are constrained by a new Early Cretaceous U‐Pb zircon isotope dilution thermal ionization mass spectrometry age (116.04 ± 0.15 Ma) for an outcropping subvertical, NNW‐SSE striking dolerite dike hosted in Lower Cretaceous Strzelecki Group sandstone. NW‐SE to NNW‐SSE striking dikes may have signaled the onset of Early Cretaceous rifting along the East Gondwana margin at ca. 105–100 Ma. Our results show that rift faults can be oblique to their expected orientation when pre‐existing basement heterogeneities are present, and they are orthogonal to the extension direction where basement structures are less influential or absent. NE‐SW to ENE‐WSW trending Early Cretaceous rift‐related normal faults traced on unmanned aerial vehicle orthophotos and digital aerial images of outcrops are strongly oblique to the inferred Early Cretaceous N‐S to NNE‐SSW regional extension direction. However, previously mapped rift‐related faults in the offshore Gippsland Basin (to the east of the study area) trend E‐W to WNW‐ESE, consistent with the inferred regional extension direction. This discrepancy is attributed to the influence of NNE‐SSW trending basement faults underneath the onshore part of the basin, which caused local re‐orientation of the Early Cretaceous far‐field stress above the basement during rifting. Two possible mechanisms for inheritance are discussed—reactivation of pre‐existing basement faults or local re‐orientation of extension vectors. Multiple stages of extension with rotated extension vectors are not required to achieve non‐parallel fault sets observed at the rift basin scale. Our findings demonstrate the importance of (1) using integrated, multi‐scale datasets to map faults and (2) mapping basement geology when investigating the structural evolution of an overlying sedimentary basin. 相似文献
5.
6.
《Basin Research》2018,30(4):799-815
Since the last century, several geological and geophysical studies have been developed in the Santiago Basin to understand its morphology and tectonic evolution. However, some uncertainties regarding sedimentary fill properties and possible density anomalies below the sediments/basement boundary remain. Considering that this is an area densely populated with more than 6 million inhabitants in a highly active seismotectonic environment, the physical properties of the Santiago Basin are important to study the geological and structural evolution of the Andean forearc and to characterize its seismic response and related seismic hazard. Two and three‐dimensional gravimetric models were developed, based on a database of 797 compiled and 883 newly acquired gravity stations. To produce a well‐constrained basement elevation model, a review of 499 wells and 30 transient electromagnetic soundings were used, which contribute with basement depth or minimum sedimentary thickness information. For the 2‐D modelling, a total of 49 gravimetric profiles were processed considering a homogeneous density contrast and independent regional trends. A strong positive gravity anomaly was observed in the centre of the basin, which complicated the modelling process but was carefully addressed with the available constrains. The resulting basement elevation models show complex basement geometry with, at least, eight recognizable depocenters with maximum sedimentary infill of ~ 500 m. The 3‐D density models show alignments in the basement that correlates well with important intrusive units of the Cenozoic and Mesozoic. Along with interpreted fault zones westwards and eastwards of the basin, the observations suggest a structural control of Santiago basin geometry, where recent deformation associated with the Andean contractional deformation front and old structures developed during the Cenozoic extension are superimposed to the variability of river erosion/deposition processes. 相似文献
7.
Recent fold growth and drainage development: The Janauri and Chandigarh anticlines in the Siwalik foothills, northwest India 总被引:2,自引:4,他引:2
The active growth of a fault-and-thrust belt in frontal zones of Himalaya is a prominent topographical feature, extending 2500 km from Assam to Pakistan. In this paper, kinematical analysis of frontal anticlines and spatial mapping of active faults based on geomorphological features such as drainage pattern development, fault scarps and uplifted Quaternary alluvial fans are presented. We analyse the geomorphic and hydrographic expressions of the Chandigarh and the Janauri active anticlines in the NW India Siwaliks. To investigate the morphological scenario during the folding process, we used spatial imagery, geomorphometric parameters extracted from digital elevation models and fieldwork. Folding between the Beas and Sutlej Rivers gives clear geomorphological evidence of recent fold growth, presumably driven by movements of blind thrust faults. Structural style within the Janauri and Chandigarh anticlines is highly variable (fault-propagation folds, pop-up structures and transfer faults). The approach presented here involves analysis of topography and drainage incision of selected landforms to detect growth of active anticlines and transfer faults. Landforms that indicate active folding above a southwest-dipping frontal thrust and a northeast-dipping back-thrust are described. Along-strike differences in ridge morphology are measured to describe the interaction of river channel patterns with folds and thrust faults and to define history of anticline growth. The evolution of the apparently continuous Janauri ridge has occurred by the coalescence of independent segments growing towards each other. By contrast, systematic drainage basin asymmetry shows that the Chandigarh anticline ridge has propagated laterally from NW to SE. 相似文献
8.
Sanne Lorentzen Carita Augustsson Jens Jahren Johan P. Nystuen Niels H. Schovsbo 《Basin Research》2019,31(6):1098-1120
Lower Cambrian quartz arenitic deposits have a worldwide occurrence. In this study, petrographic and mineralogical analyses were carried out on samples from the quartz‐rich Ringsaker Member of the Vangsås Formation from southern Norway and the corresponding Hardeberga Formation from southern Sweden and on the Danish island of Bornholm. The quartz arenite is almost completely quartz cemented and has an average intergranular volume of 30%. The quartz cement is the dominating cause for porosity loss. Dissolution along stylolites and microstylolites is suggested to be the primary and secondary source for the quartz cement respectively. The quartzose sandstone from southern Norway was severely cemented prior to the Caledonian Orogeny, thus limiting the tectonic influence on diagenesis during thrusting. For most samples, authigenic clay minerals and detrital phyllosilicates represent ca. 5% of the present‐day composition. This, together with a low feldspar content, of on average 4%, indicates that the sediment was extremely quartz‐rich already during deposition. The low amount of feldspar prior to burial and the formation of early diagenetic kaolinite point to weathering, sediment reworking and early diagenesis act as important controls on sediment maturity. The large variation in clay‐mineral and feldspar content between the localities, as well as within the sandstone successions, can be explained by different palaeogeography on the shelf during deposition and subsequently dissimilar subjection to reworking and early diagenetic processes. Weathering in the provenance area, reworking in the depositional shallow‐marine environment and meteoric flushing during the burial stage are suggested to explain the high mineralogical maturity of the lower Cambrian sandstone from southwestern Baltica. These processes may generally account for similar quartz‐rich shallow‐marine sandstone units, deposited as a result of intensive continental denudation and during temperate to subtropical and moderately humid conditions. 相似文献
9.
Bonita J. Barrett Richard E. LL. Collier David M. Hodgson Robert L. Gawthorpe Robert M. Dorrell Timothy M. Cullen 《Basin Research》2019,31(6):1040-1065
Quantification of allogenic controls in rift basin‐fills requires analysis of multiple depositional systems because of marked along‐strike changes in depositional architecture. Here, we compare two coeval Early‐Middle Pleistocene syn‐rift fan deltas that sit 6 km apart in the hangingwall of the Pirgaki‐Mamoussia Fault, along the southern margin of the Gulf of Corinth, Greece. The Selinous fan delta is located near the fault tip and the Kerinitis fan delta towards the fault centre. Selinous and Kerinitis have comparable overall aggradational stacking patterns. Selinous comprises 15 cyclic stratal units (ca. 25 m thick), whereas at Kerinitis 11 (ca. 60 m thick) are present. Eight facies associations are identified. Fluvial and shallow water facies dominate the major stratal units in the topset region, with shelfal fine‐grained facies constituting ca. 2 m thick intervals between major topset units and thick conglomeratic foresets building down‐dip. It is possible to quantify delta build times (Selinous: 615 kyr; Kerinitis: >450 kyr) and average subsidence and equivalent sedimentation rates (Selinous: 0.65 m/kyr; Kerinitis: >1.77 m/kyr). The presence of sequence boundaries at Selinous, but their absence at Kerinitis, enables sensitivity analysis of the most uncertain variables using a numerical model, ‘Syn‐Strat’, supported by an independent unit thickness extrapolation method. Our study has three broad outcomes: (a) the first estimate of lake level change amplitude in Lake Corinth for the Early‐Middle Pleistocene (10–15 m), which can aid regional palaeoclimate studies and inform broader climate‐system models; (b) demonstration of two complementary methods to quantify faulting and base level signals in the stratigraphic record—forward modelling with Syn‐Strat and a unit thickness extrapolation—which can be applied to other rift basin‐fills; and (c) a quantitative approach to the analysis of stacking patterns and key surfaces that could be applied to stratigraphic pinch‐out assessment and cross‐hole correlations in reservoir analysis. 相似文献
10.
Andreu Vinyoles Miguel Lpez‐Blanco Miguel Garcs Pau Arbus Luis Valero Elisabet Beamud Beln Oliva‐Urcia Patricia Cabello 《Basin Research》2021,33(1):447-477
The propagation of the deformation front in foreland systems is typically accompanied by the incorporation of parts of the basin into wedge‐top piggy‐back basins, this process is likely producing considerable changes to sedimentation rates (SR). Here we investigate the spatial‐temporal evolution of SR for the Tremp–Jaca Basin in the Southern Pyrenees during its evolution from a wedge‐top, foreredeep, forebulge configuration to a wedge‐top stage. SR were controlled by a series of tectonic structures that influenced subsidence distribution and modified the sediment dispersal patterns. We compare the decompacted SR calculated from 12 magnetostratigraphic sections located throughout the Tremp–Jaca Basin represent the full range of depositional environment and times. While the derived long‐term SR range between 9.0 and 84.5 cm/kyr, compiled data at the scale of magnetozones (0.1–2.5 Myr) yield SR that range from 3.0 to 170 cm/kyr. From this analysis, three main types of depocenter are recognized: a regional depocenter in the foredeep depozone; depocenters related to both regional subsidence and salt tectonics in the wedge‐top depozone; and a depocenter related to clastic shelf building showing transgressive and regressive trends with graded and non‐graded episodes. From the evolution of SR we distinguish two stages. The Lutetian Stage (from 49.1–41.2 Ma) portrays a compartmentalized basin characterized by variable SR in dominantly underfilled accommodation areas. The markedly different advance of the deformation front between the Central and Western Pyrenees resulted in a complex distribution of the foreland depozones during this stage. The Bartonian–Priabonian Stage (41.2–36.9 Ma) represents the integration of the whole basin into the wedge‐top, showing a generalized reduction of SR in a mostly overfilled relatively uniform basin. The stacking of basement units in the hinterland during the whole period produced unusually high SR in the wedge‐top depozone. 相似文献