首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A continuous pollen record from Lake El'gygytgyn (northeastern Russian Arctic) provides detailed information concerning the regional vegetation and climate history during the Mid‐Pleistocene Transition (MPT), between 1091 ka (end of Marine Isotope Stage (MIS) 32) and 715 ka (end of MIS 18). Pollen‐based qualitative vegetation reconstruction along with biome reconstruction indicate that the interglacial regional vegetation history during the MPT is characterized by a gradual replacement of forest and shrub vegetation by open herbaceous communities (i.e. tundra/cold steppe). The pollen spectra reveal seven vegetation successions that have clearly distinguishable glacial‐interglacial cycles. These successions are represented by the intervals of cold deciduous forest (CLDE) biome scores changing from high to low, which are basically in phase with the variations of obliquity from maxima to minima. The dominating influence of obliquity forcing on vegetation successions contradicts with the stronger power of eccentricity, as demonstrated by the result of wavelet analysis based on landscape openness reconstruction. This discrepancy shows that a single index is insufficient for catching signals of all the impacting factors. Comparisons with vegetation and environmental changes in the Asian interior suggest that global cooling during the MPT was probably the key force driving long‐term aridification in the Arctic region. The accelerated aridification after MIS 24–22 was probably caused by the additional effect of the Tibetan Plateau uplift, which played an important role on intensification of the Siberian High and westerly jet systems.  相似文献   

2.
《Quaternary Science Reviews》2007,26(13-14):1713-1724
Continuous high-resolution pollen data for the past 225 ka from sediments in Bear Lake, Utah–Idaho reflect changes in vegetation and climate that correlate well with variations in summer insolation and global ice-volume during MIS 1 through 7. Spectral analysis of the pollen data identified peaks at 21–22 and 100 ka corresponding to periodicities in Earth's precession and eccentricity orbital cycles. Suborbital climatic fluctuations recorded in the pollen data, denoted by 6 and 5 ka cyclicities, are similar to Greenland atmospheric temperatures and North Atlantic ice-rafting Heinrich events. Our results show that millennial-scale climate variability is also evident during MIS 5, 6 and 7, including the occurrence of Heinrich-like events in MIS 6, showing the long-term feature of such climate variability. This study provides clear evidence of a highly interconnected ocean–atmosphere system during the last two glacial/interglacial cycles that extended its influence as far as continental western North America. Our study also contributes to a greater understanding of the impact of long-term climate change on vegetation of western North America. Such high-resolution studies are particularly important in efforts of the scientific community to predict the consequences of future climate change.  相似文献   

3.
《Quaternary Science Reviews》2007,26(17-18):2042-2066
A review of seven outstanding issues on Mediterranean palaeoenvironments is presented. These are related to the dominant orbital pacing of climate variability, the length of the interglacial vegetation succession, the influence of the African summer monsoon, the seasonality of precipitation during boreal insolation maxima, the moisture balance during glacial maxima and the appearance of the mediterranean-type climate rhythm and evolution of mediterranean sclerophyllous plants. What emerges is that (1) marine δ18Oplanktonic and SST records show that precession has been a fundamental tempo of Mediterranean climate change, representing both a low-latitude signal (runoff from North Africa) and the direct influence of insolation at Mediterranean latitudes, but high-latitude glacial effects (41-kyr and 100-kyr cycles) became superimposed after 2.8 Ma. Sapropel and dust deposition patterns in marine cores reveal that obliquity also has an effect on Mediterranean climate through dry–wet oscillations, which are independent of glacial–interglacial variability. (2) The temperate part of interglacial vegetation succession has a duration of approximately half a precession cycle. This persisted during the interval of obliquity-dominated glacial cycles (∼2.8–1 Ma), with distinct forest successions following the precessional cycles. However, these are not always separated by an open vegetation phase because of minimal ice growth, producing an impression of a prolonged interglacial forest interval. (3) The effect of an enhanced African monsoon during summer insolation maxima has been mainly indirect, in terms of Nile discharge and runoff along the North African coast, leading to increased freshwater input into the Mediterranean Sea, reduced deep-water ventilation and sapropel deposition. (4) The notion of an accentuated summer rain regime in the northern Mediterranean borderlands also contributing to a freshening of the Mediterranean Sea during boreal insolation maxima is not supported by the available evidence, which suggests increased summer aridity. (5) Recent improvements in chronological precision and data resolution point to an increase in aridity and decreased temperatures during the Last Glacial Maximum (21±2 ka), but suggest an increase in effective moisture during the immediately preceding interval of 24–27 ka. (6) The mediterranean-type climate is not exclusively a post-3.6 Ma phenomenon, but may have appeared intermittently during the course of the Tertiary (or before). (7) If that is the case, then the paradigm that the sclerophyllous evergreen habit represents a pre-adaptation to summer drought may need re-evaluation.  相似文献   

4.
High-resolution pollen analysis of Alborán Sea core MD95-2043 provides a 48-ka continuous vegetation record that can be directly correlated with sea surface and deep-water changes. The reliability of this record is supported by comparison with that of Padul (Sierra Nevada, Spain). Marine Isotope Stage (MIS) 3 was characterised by fluctuations in Quercus forest cover in response to Dansgaard-Oeschger climate variability. MIS 2 was characterised by the dominance of semi-desert vegetation. Despite overall dry and cold conditions during MIS 2, Heinrich events (HEs) 2 and 1 were distinguished from the last glacial maximum by more intensely arid conditions. Taxon-specific vegetation responses to a tripartite climatic structure within the HEs are observed. In MIS 1, the Bölling-Allerød was marked by rapid afforestation, while a re-expansion of semi-desert environments occurred during the Younger Dryas. The maximum development of mixed Quercus forest occurred between 11.7 and 5.4 cal ka BP, with forest decline since 5.4 cal ka BP. On orbital timescales, a long-term expansion of semi-desert vegetation from MIS 3 into MIS 2 reflects global ice-volume trends, while Holocene arboreal decline reflects summer insolation decrease. The influence of precession on the amplitude of forest development and vegetation composition is also detected.  相似文献   

5.
萨拉乌苏河流域末次间冰阶气候——以米浪沟湾剖面为例   总被引:1,自引:0,他引:1  
米浪沟湾剖面末次间冰阶层序粒度和化学元素波动韵律与由古流动砂丘砂和上覆河湖相或古土壤构成的沉积旋回颇为一致。古流动砂丘砂犹如现代流动砂丘砂,是东亚冬季风主导下干冷气候的产物;河湖相和古土壤颗粒细化,化学、生物等地球风化程度增强,含较多喜暖的软体动物化石,指示其偏南夏季风主导下的温暖湿润气候。据此,末次间冰阶萨拉乌苏河流域至少经历了10次温湿(W事件)和9次冷干(C事件)气候波动,且可划分为MIS3e(58.85~48.98kaBP)、MIS3d(48.98~39.55kaBP)、MIS3c(39.55~34.59kaBP)、MIS3b(34.59~26.47kaBP)和MIS3a(26.47~23.07kaBP)等5个亚段。其中,19次冷/暖波动可与格陵兰GRIP冰心δ18O冰段/间冰段相对应,5个亚段与我国古里雅冰心在波动性质和相位上都极为一致,与V23-81冷性浮游有孔虫数代表的北大西洋地区气候也具有较好的可比性。谱分析显示出21.70ka、1.05ka、0.64ka、0.50ka等显著周期,即该地千百年尺度气候主要受与北大西洋热盐环流波动引起的东亚冬、夏季风强弱有关,而万年尺度上则受控于岁差周期所导致的太阳辐射变化。  相似文献   

6.
Thirty-one new bulk-sediment U–Th dates are presented, together with an improved δ18O stratigraphy, for ODP Site 1008A on the slopes of the Bahamas Banks. These ages supplement and extend those from previous studies and provide constraints on the timing of sea-level highstands associated with marine isotope stages (MIS) 7 and 9. Ages are screened for reliability based on their initial U and Th isotope ratios, and on the aragonite fraction of the sediment. Twelve ‘reliable’ dates for MIS 7 suggest that its start is concordant with that predicted if climate is forced by northern-hemisphere summer insolation following the theory of Milankovitch. But U–Th and δ18O data indicate the presence of an additional highstand which post-dates the expected end of MIS 7 by up to 10 ka. This event is also seen in coral reconstructions of sea-level. It suggests that sea-level is not responding in any simple way to northern-hemisphere summer insolation, and that tuned chronologies which make such an assumption are in error by ≈10 ka at this time. U–Th dates for MIS 9 also suggest a potential mismatch between the actual timing of sea-level and that predicted by simple mid-latitude northern-hemisphere forcing. Four dates are earlier than that predicted for the start of MIS 9. Although the most extreme of these dates may not be reliable (based on the low-aragonite content of the sediment) the other three appear robust and suggest that full MIS 9 interglacial conditions were established at 343 ka. This is ≈8 ka prior to the date expected if this warm period were driven by northern-hemisphere summer insolation.  相似文献   

7.
The cold intensity of the last glacial stadials corresponding to marine isotope stage (MIS) 5d (or 5b), MIS 4 and MIS 2 in terrestrial East Asia monsoon area is not discussed much due to the paucity of long continuous pollen records. A palynological study of drilling cores from three closely-linked intramontane basins (Toushe, Sun-moon Lake and Yuchi) in central Taiwan provides a history of shifting altitudinal vegetation zones in surrounding mountains during late Quaternary climate changes. By integrating these records, we found that the alpine conifer forest approached its lowest altitude, about 614 m, during the earliest stadial (≒MIS 5d or 5b), and 745 m during the early stadial (≒MIS 4) based on records of Yuchi Basin and Sun-moon Lake. In addition, the pollen records of Toushe Basin and Sun-moon Lake show more temperate conditions for the late stadial (≒MIS 2) than the early stadial (≒MIS 4). This leads to an interpretation of a decreasing intensity of stadials during the last glaciation, which might follow the regional insolation amplitude. Such a decreasing trend in coldness during the last glacial stadials does not exist in the record for the South China Sea which reflects a different sensitivity and response to climatic forcings between terrestrial and marine.  相似文献   

8.
New multiproxy marine data of the Eemian interglacial (MIS5e) from the Norwegian Sea manifest a cold event with near-glacial surface ocean summer temperatures (3–4 °C). This mid-Eemian cooling divided the otherwise relatively warm interglacial climate and was associated with widespread expansions of winter sea-ice and polar water masses due to changes in atmospheric circulation and ocean stability. While the data also verify a late rather than early last interglacial warm peak, which is in general disharmony with northern hemisphere insolation maximum and the regional climatic progression of the early Holocene, the cold event itself was likely instrumental for delaying the last interglacial climate development in the Polar North when compared with regions farther south. Such a ‘climatic decoupling’ of the Polar region may bear profound implications for the employment of Eemian conditions to help evaluate the present and future state of the Arctic cryosphere during a warming interglacial.  相似文献   

9.
银川盆地位于东亚季风与西风带的交界带,地层沉积物记录着气候环境的演变信息。通过对银川盆地LS01钻孔沉积物进行光释光定年、粒度分析以及端元分析重建了该地区MIS6—MIS5时期的气候演变序列。结果表明,端元分析得到4个有具体环境指示意义的端元Em1—Em4:Em1代表了水动力较弱的弱流水或湖沼相沉积;Em2代表了水动力较强的河流沉积;Em3和Em4可指代区域构造抬升事件。气候演变分为6个阶段:150~137 ka(MIS6),银川盆地气候冷干,出现两次构造抬升事件;137~110 ka(MIS5),气候整体较为暖湿,期间有3次暖事件a1(137~129 ka)、a2(124~120 ka)和a3(118~111 ka);110~107 ka(MIS5),气候转向冷干;107~102 ka(MIS5),气候由冷转暖,出现冷事件b1(106~104 ka),整体偏暖湿;102~87 ka(MIS5),气候较冷干;87~75 ka(MIS5),出现冷事件b2(87~84 ka),但整体偏暖湿。该区域MIS6—MIS5阶段气候变化主要受夏季太阳辐射和岁差驱动。  相似文献   

10.
Marine Isotope Stage 11 (MIS 11) is considered one of the best analogues for the Holocene. In the UK the long lacustrine sequence at Marks Tey, Essex, spans the entirety of the Hoxnian interglacial, the British correlative of MIS 11c. We present multiproxy evidence from a new 18.5‐m core from this sequence. Lithostratigraphy, pollen stratigraphy and biomarker evidence indicate that these sediments span the pre‐, early and late temperate intervals of this interglacial as well as cold climate sediments that post‐date the Hoxnian. The δ18O signal of endogenic carbonate from this sequence produces several clear patterns that are interpreted as reflecting the climatic structure of the interglacial. As well as providing evidence for long‐term climate stability during the interglacial and a major post‐Hoxnian stadial/interstadial oscillation the δ18O signal provides strong evidence for abrupt cooling events during the interglacial itself. One of these isotopic events occurs in association with a short‐lived increase in non‐arboreal pollen (the NAP phase). The results presented here are discussed in the context of other MIS 11 records from Europe and the North Atlantic, particularly with respect to our understanding of the occurrence of abrupt climatic events in pre‐Holocene interglacials. Copyright © 2016 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.  相似文献   

11.
The vegetation on the northeastern margin of the Tibetan Plateau is highly sensitive to climatic changes and thus represents a potentially interesting environmental archive. Pollen samples from the Fanjiaping Loess section in Lanzhou on the western Chinese Loess Plateau (CLP) were analyzed in conjunction with OSL dating. The results indicate that pollen zone B (60.6–46.0 ka, correlative to the early MIS 3) had the greatest abundances of Cupressaceae, Tsuga, Gramineae and Cyperaceae of the entire section, suggesting a warm phase during the last glacial period. These pollen taxa decreased significantly in abundance in the zones C (46.0–39.0 ka) and D (39.0–27.0 ka), reflecting a substantial climate cooling from the middle MIS 3 to MIS 2. These results correlate with climate records from the South China Sea, the CLP, Baikal Lake, North America, North Atlantic Ocean and other regions, and probably correspond with the decline of northern high-latitude insolation and the increase of global ice volume from 50 to 20 ka. In particular, arboreal pollen, fern spore and algae abundances declined sharply since ~40 ka, while shrub and herb pollen reached the highest abundances. Conifer pollen Picea and Abies abundance also rose markedly and increased up the section. This implies significant climate deterioration and likely corresponded with substantial growth of the polar ice sheets since ~40 ka. The decreasing temperature caused by an insolation decline during the last glacial period probably reinforced the cooling effect in a ‘snow/ice/albedo’ feedback, which would result in less climate sensitivity to radiative forcing. Meanwhile, vegetation decline in the Northern Hemisphere during the last glacial period and tundra development at high latitudes possibly caused additional cooling, enhancing the growth of polar ice sheets since 40 ka. The development of polar ice sheets increased the polar-to-equator temperature and pressure gradients, strengthening the westerlies and supplying plenty of moisture to Northwest China during 40–30 ka. Lake sediments developed widely on the Tibetan Plateau during 40–30 ka, probably related to an increase in the seasonality of middle-to-low latitude insolation which caused an enhancement of glacier melting on the Plateau.  相似文献   

12.
Fossil arctic ground squirrel (Spermophilus parryii) middens were recovered from ice-rich loess sediments in association with Sheep Creek-Klondike and Dominion Creek tephras (ca 80 ka) exposed in west-central Yukon. These middens provide plant and insect macrofossil evidence for a steppe-tundra ecosystem during the Early Wisconsinan (MIS 4) glacial interval. Midden plant and insect macrofossil data are compared with those previously published for Late Wisconsinan middens dating to ~25–2914C ka BP (MIS 3/2) from the region. Although multivariate statistical comparisons suggest differences between the relative abundances of plant macrofossils, the co-occurrence of steppe-tundra plants and insects (e.g., Elymus trachycaulus, Kobresia myosuroides, Artemisia frigida, Phlox hoodii, Connatichela artemisiae) provides evidence for successive reestablishment of the zonal steppe-tundra habitats during cold stages of the Late Pleistocene. Arctic ground squirrels were well adapted to the cold, arid climates, steppe-tundra vegetation and well-drained loessal soils that characterize cold stages of Late Pleistocene Beringia. These glacial conditions enabled arctic ground squirrel populations to expand their range to the interior regions of Alaska and Yukon, including the Klondike, where they are absent today. Arctic ground squirrels have endured numerous Quaternary climate oscillations by retracting populations to disjunct “interglacial refugia” during warm interglacial periods (e.g., south-facing steppe slopes, well-drained arctic and alpine tundra areas) and expanding their distribution across the mammoth-steppe biome during cold, arid glacial intervals.  相似文献   

13.
The distribution of ice‐rafted detritus (IRD) is studied in three cores from the western Svalbard slope (1130–1880 m water depth, 76–78°N) covering the period 74–0 ka. The aim was to provide new insight into the dynamics of the Svalbard–Barents Sea Ice Sheet during Marine Isotope Stages (MIS) 4–1 to get a better understanding of ice‐sheet interactions with changes in ocean circulation and climate on orbital and millennial (Dansgaard–Oeschger events of stadial–interstadial) time scales. The results show that concentration, flux, composition and grain‐size of IRD vary with climate and ocean temperature on both orbital and millennial time scales. The IRD consists mainly of fragments of siltstones and mono‐crystalline transparent quartz (referred to as ‘quartz’). IRD dominated by siltstones has a local Svalbard–Barents Sea source, while IRD dominated by quartz is from distant sources. Local siltstone‐rich IRD predominates in warmer climatic phases (interstadials), while the proportion of allochthonous quartz‐rich IRD increases in cold phases (glacials and stadials/Heinrich events). During the Last Glacial Maximum and early deglaciation at 24–16.1 ka, the quartz content reached up to >90%. In warm climate, local iceberg calving apparently increased and the warmer ocean surface caused faster melting. During the glacial maxima (MIS 4 and MIS 2) and during cold stadials and Heinrich events, the local ice‐sheets must have been relatively stable with low ablation. During ice retreat phases of the MIS 4/3 and MIS 2/1 transitions, maxima in IRD deposition were dominated by local coarse‐grained IRD. These maxima correlate with episodes of climate warming, indicating a rapid, stepwise retreat of the Svalbard–Barents Sea Ice Sheet in phase with millennial‐scale climate oscillations.  相似文献   

14.
The Quaternary deposits of tectonically stable areas are a powerful tool to investigate high‐frequency climate variations (<10 ka) and to distinguish allogenic and autogenic factors controlling deposition. Therefore, an Upper Pleistocene–Holocene coastal apron‐fan system in north–western Sardinia (Porto Palmas, Italy) was studied to investigate the relations between climate changes, sea‐level fluctuations and sediment source‐supply that controlled its development. The sedimentary sequence records the strong influence of local (wet/dry) and worldwide (sea‐level) environmental variations in the sedimentation and preservation of the deposits. A multi‐disciplinary approach allowed subdivision of the succession into four major, unconformity‐bounded stratigraphic units: U1 U2, U3 and U4. Unit U1, tentatively dated to the warm and humid Marine Isotopic Stage (MIS) 5, consists of sandy, gravelly coastal/beach deposits developed during high sea‐level in low‐lying areas. Unit U2 consists of debris‐flow dominated fan‐deposits (ca 74 ka; MIS 4), preserved as partial fills of small valleys and coves. Unit U2 is mainly composed of reddish silty conglomerate to pebbly siltstones sourced from the Palaeozoic metamorphic inland hills (bedrock), superficially disintegrated during the preceding warm, vegetation‐rich MIS 5. The cold and semi‐arid climate strongly reduced vegetation cover along the valley flanks. Therefore, sediment gravity‐flow processes, possibly activated by rainstorms, led to deposition of debris‐flow dominated fans. Unit U3 consists of water‐flow dominated alluvial‐fan deposits (ca 47 to 23 ka; MIS 3), developed on a slightly inclined coastal plain. Unit U3 is composed of sandstone and sandy conglomerate fed from two main sediment sources: metamorphic inland bedrock and Quaternary bioclastic‐rich shelf‐derived sands. During this cold phase, sea‐level dropped sufficiently to expose bioclastic sands accumulated on the shelf. Frequent climate fluctuations favoured inland aeolian transport of sand during dry phases, followed by reworking of the aeolian bodies by flash floods during wet phases. Bedrock‐derived fragments mixed with water‐reworked, wind‐blown sands led to the development of water‐flow dominated fans. The Dansgaard–Oeschger events possibly associated with sand landward deflation and main fan formations are Dansgaard–Oeschger 13 (ca 47 ka), Dansgaard–Oeschger 8 (ca 39 ka) and Dansgaard–Oeschger 2 (ca 23 ka). No record of sedimentation during MIS 2 was observed. Finally, bioclastic‐rich aeolianites (Unit U4, ca 10 to 5 ka; MIS 1), preserved on a coastal slope, were developed during the Holocene transgression (ca 10 to 5 ka; MIS 1). The studied sequence shows strong similarities with those of other Mediterranean sites; it is, however, one of the few where the main MIS 4 and MIS 3 climatic fluctuations are registered in the sedimentary record.  相似文献   

15.
Long sediment cores (12.5 and 13.5 m) from two lakes in Yunnan Province were used to infer the paleoclimate of southwest China over the past 50,000 yr. During the Holocene and marine isotope stage (MIS 3), bio-induced carbonate precipitation and organic matter (OM) production was high, suggesting warm temperatures and high primary productivity. In contrast, sediment inorganic carbon (IC) and organic carbon (OC) concentrations were low in last glacial deposits from 38,000 to 12,000 cal yr B.P., indicating cool temperatures and low productivity. The 50,000-yr record has alternating peaks of carbonate and coarse-grain (>38 μm) quartz that reflect warm, moist interglacial or interstadial conditions alternating with cold, dry glacial or stadial conditions, respectively. Spectral analysis of the carbonate and quartz signals reveals power concentrated at periods of 7200 and 8900 cal yr, respectively, that may reflect a nonlinear climate response to precessional forcing at a time of reduced eccentricity modulation (McIntyre and Molfino, 1996). Oxygen isotope values of calcite from Yunnan lake cores indicate the summer monsoon was weak during the last glaciation from 50,000 to 12,000 cal yr B.P. The summer monsoon intensified between 12,000 and 8000 cal yr B.P., but weakened gradually in response to insolation forcing during the mid-to-late Holocene. Our results support the Overpeck et al. (1996) model that posits a weak summer monsoon during the last glaciation that responded nonlinearly to insolation forcing when its intensity was affected by Eurasian snow cover and ice-sheet extent. The summer monsoon intensified and responded linearly to seasonal insolation forcing in the Holocene when ice volume diminished.  相似文献   

16.
Kjellström, E., Brandefelt, J., Näslund, J.‐O., Smith, B., Strandberg, G., Voelker, A. H. L. & Wohlfarth, B. 2010: Simulated climate conditions in Europe during the Marine Isotope Stage 3 stadial. Boreas, 10.1111/j.1502‐3885.2010.00143.x. ISSN 0300‐9483. State‐of‐the‐art climate models were used to simulate climate conditions in Europe during Greenland Stadial (GS) 12 at 44 ka BP. The models employed for these simulations were: (i) a fully coupled atmosphere–ocean global climate model (AOGCM), and (ii) a regional atmospheric climate model (RCM) to dynamically downscale results from the global model for a more detailed investigation of European climate conditions. The vegetation was simulated off‐line by a dynamic vegetation model forced by the climate from the RCM. The resulting vegetation was then compared with the a priori vegetation used in the first simulation. In a subsequent step, the RCM was rerun to yield a new climate more consistent with the simulated vegetation. Forcing conditions included orbital forcing, land–sea distribution, ice‐sheet configuration, and atmospheric greenhouse gas concentrations representative for 44 ka BP. The results show a cold climate on the global scale, with global annual mean surface temperatures 5 °C colder than the modern climate. This is still significantly warmer than temperatures derived from the same model system for the Last Glacial Maximum (LGM). Regional, northern European climate is much colder than today, but still significantly warmer than during the LGM. Comparisons between the simulated climate and proxy‐based sea‐surface temperature reconstructions show that the results are in broad agreement, albeit with a possible cold bias in parts of the North Atlantic in summer. Given a prescribed restricted Marine Isotope Stage 3 ice‐sheet configuration, with large ice‐free regions in Sweden and Finland, the AOGCM and RCM model simulations produce a cold and dry climate in line with the restricted ice‐sheet configuration during GS 12. The simulated temperature climate, with prescribed ice‐free conditions in south‐central Fennoscandia, is favourable for the development of permafrost, but does not allow local ice‐sheet formation as all snow melts during summer.  相似文献   

17.
15 abrupt warming transitions perturbed glacial climate in Greenland during Marine Isotope Stage 3 (MIS 3, 60–27 ka BP). One hypothesis states that the 8–16 °C warming between Greenland Stadials (GS) and Interstadials (GI) was caused by enhanced heat transport to the North Atlantic region after a resumption of the Atlantic Meridional Overturning Circulation (AMOC) from a weak or shutdown stadial mode. This hypothesis also predicts warming over Europe, a prediction poorly constrained by data due to the paucity of well-dated quantitative temperature records. We therefore use a new evidence from biotic proxies and a climate model simulation to study the characteristics of a GS–GI transition in continental Europe and the link to enhanced AMOC strength. We compare reconstructed climatic and vegetation changes between a stadial and subsequent interstadial – correlated to GS15 and GI14 (~55 ka BP) – with a simulated AMOC resumption using a three-dimensional earth system model setup with early-MIS 3 boundary conditions. Over western Europe (12°W–15°E), we simulate twice the annual precipitation, a 17 °C warmer coldest month, a 8 °C warmer warmest month, 1300 °C-day more growing degree days with baseline 5 °C (GDD5) and potential vegetation allowing tree cover after the transition. However, the combined effect of frequent killing frosts, <20 mm summer precipitation and too few GDD5 after the transition suggest a northern tree limit lying at ~50°N during GI14. With these 3 climatic limiting factors we provide a possible explanation for the absence of forests north of 48°N during MIS 3 interstadials with mild summers. Finally, apart from a large model bias in warmest month surface air temperatures, our simulation is in reasonable agreement with reconstructed climatic and vegetation changes in Europe, thus further supporting the hypothesis.  相似文献   

18.
To reconstruct the palaeoproductivity evolution history of the centre of the western Pacific warm pool (WPWP) over the last 250 ka, multi‐proxies were analysed in sediment core WP7 recovered from the Ontong–Java Plateau. Palaeoproductivity evolution at the centre of the WPWP during the last 250 ka is closely related to glacial–interglacial cycles and the insolation controlled by precession. The glacial higher primary productivity relative to the interglacial conditions could have resulted from both thermocline shoaling associated with persistent El Niňo‐like conditions and the increased influx of dust resulting from intensified winter monsoon together with important changes in the thermocline. The minimum primary productivity values during the last three terminations could be resulted from deglacial thermocline deepening and intensified stratification associated with persistent La Niña‐like conditions, and the concurrent Neogloboquadrina dutertrei δ13C minimum events probably reflect the chemical signatures of Subantarctic Mode Water and Antarctic Intermediate Water. In addition, primary productivity values are also controlled by the thermocline variations resulting from El Niño/La Niña‐Southern Oscillation processes responding to precession forcing, and lead the δ18O by about 4 ka. The 33.1 ka, 19 ka and “half‐precession” periods are prominent in the palaeoproductivity records. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
刘俊英  郑绵平  袁鹤然  刘喜方  王海雷 《地质学报》2007,81(12):I0001-I0003
本文主要根据西藏扎布耶湖区SZK02孔所揭露的近84m剖面的沉积物特征与其产的介形类6属20种,轮藻类2属3种,结合14C、ESR、U-series地层测年等,初步认为该区128~1.4ka至少存在5个较明显的气候变化时期。①在128~76.7ka(83.63~57.0m)处于我国末次间冰期时段,气候凉湿,湖盆扩展,在90~81ka期间湖面最高,水质最淡。②76.7~58.6ka(57.0~38.13m)为我国末次冰期早冰阶时期,湖盆收缩,水温低,早期76.7~69.7ka(57.0~47.5m)偏冷湿,中期69.7~65.0ka(47.52~42.64m)气候温干,正逢早冰阶时期;晚期65.0~58.6ka(42.64~38.13m)气候干燥度下降。③58.6~29.1ka(38.13~13.75m)处于我国末次冰期间冰阶时段,早期58.6~51.6ka(38.13~33.07m)偏温湿,为3c暖期;中期51.6~42.5ka(33.07~26.13m)气候干冷,为3b冷期,正临末次冰期中冰阶时;晚期42.5~36.0ka(26.13~20.16m)偏凉湿,湿度更大,再次出现高湖面,为3a暖期;末期36.0~29.1ka(20.16~13.75m),趋向温干。④29.1~11.8Cal.ka(13.75~4.83m),气候趋向干冷,处于末次盛冰期(LGM)、末次晚冰阶时期,湖盆萎缩,水温低。早期29.1~16.6Cal.ka(13.75~6.98m)偏温湿;晚期16.6~13.1Cal.ka(6.98~5.76m)寒冷干燥;至末期13.1~11.7Cal.ka(5.76~4.83m),进一步干燥寒冷,全球新仙女木事件在本区发生。⑤11.7~1.4Cal.ka(4.83~0.65m),大致进入全新世气候期,气候波动大,凉湿与干冷交替频繁发生。在11.7~10.7Cal.ka(4.83~4.42m)时较温湿;10.7~9.5Cal.ka(4.42~4.07m)转向干冷;9.5~9.1Cal.ka(4.07~3.7m)更干冷,湖盆进一步萎缩;9.1~6.3Cal.ka(3.7~2.86m)向温干过渡;6.3~3.6Cal.ka(2.86~1.77m)干冷,湖泊已成盐湖;3.6~1.4Cal.ka(1.77~0.65m),气候趋向冷湿。  相似文献   

20.
Foraminifera from two cores off eastern Vietnam and the northwestern Philippines, where modern summer and winter monsoon-driven upwelling occurs in the South China Sea, respectively, were analyzed to evaluate the changes in paleoproductivity and upper water structure over the last 220,000 yr. We observed enhanced organic carbon flux and a shoaled thermocline when upwelling intensified off eastern Vietnam during interglacial ages and off the northwestern Philippines during glacial ages. This indicates that the East Asian summer monsoon increased while the winter monsoon decreased during interglacial ages. Particularly, the upwelling reached a maximum off eastern Vietnam during late marine isotopic stage (MIS) 5 and off the northwestern Philippines during MIS 2, implying that the summer monsoon decreased gradually since MIS 5 while the winter monsoon displayed an opposite trend. The variations in upwelling proxies exhibit a distinct cyclicity with frequencies near 41,000 yr and 23,000 yr off eastern Vietnam, in contrast to a strong frequency peak near 100,000 yr off the northwestern Philippines. We suggest that the East Asian summer monsoon has been forced by changes in solar insolation associated with precession and obliquity, while ice-volume forcing is probably a primary factor in determining the strength and timing of the East Asian winter monsoon but with less important insolation forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号