共查询到20条相似文献,搜索用时 0 毫秒
1.
《Boreas: An International Journal of Quaternary Research》2018,47(4):1118-1143
This paper presents a reconstruction of the marginal zone of the Anglian (Elsterian, 480–420 ka BP) age ice sheet in the Danbury‐Tiptree area, East Anglia, UK. The research area is a unique locality where the ice front abutted against a 30‐km‐long and 100‐m‐tall ridge in an otherwise lowland area. Observations from three main field localities (Danbury quarry, Royal Oak pit and Tiptree quarry) are complemented with ground penetrating radar survey data, borehole data analysis, laboratory analyses and geological map interpretation. A four‐stage model of the evolution of the landscape in the Danbury‐Tiptree area is presented. The results are of broader importance, in that the sedimentary record sheds light on the processes operating at a constrained ice‐sheet margin. The paper identifies the most important characteristics of the depositional environments at an ice front terminating within this type of setting: (i) high temporal and spatial variability of energetic depositional conditions, resulting in the presence of a vast array of distinct depositional sub‐environments; (ii) mechanisms promoting differential erosion leading to enhanced topography, and (iii) unusually high overburden pressure in the topographically constrained ice margin within the otherwise lowland area influencing the ice‐sheet–bedrock interaction in this particular research area, inducing postglacial seismicity. 相似文献
2.
Hans Petter Sejrup Berit Oline Hjelstuen Atle Nygård Haflidi Haflidason Ivar Mardal 《Boreas: An International Journal of Quaternary Research》2015,44(1):1-13
Palaeoglaciological reconstructions of the North Sea sector of the last British Ice Sheet have, as other shelf areas, suffered from a lack of dates directly related to ice‐front positions. In the present study new high‐resolution TOPAS seismic data, bathymetric records and sediment core data from the Witch Ground Basin, central North Sea, were compiled. This compilation made it possible to map out three ice‐marginal positions, partly through identification of terminal moraines and partly through location of glacial‐fed debrisflows. The interfingering of the distal parts of the glacial‐fed debrisflows with continuous marine sedimentation enabled the development of a chronology for glacial events based on previously published and some new radiocarbon dates on marine molluscs and foraminifera. From these data it is suggested that after the central Witch Ground Basin was deglaciated at c. 27 cal. ka BP, the eastern part was inundated by glacial ice from the east in the Tampen advance at c. 21 cal. ka BP. Subsequently, the basin was inundated by ice from northeast during the Fladen 1 (c. 17.5 cal. ka BP) and the Fladen 2 (16.2 cal. ka BP) events. It should be emphasized that the Fladen 1 and 2 events, individually, may represent dynamics of relatively small lobes of glacial ice at the margin of the British Ice Sheet and that the climatic significance of these may be questioned. However, the Fladen Events probably correlate in time with the Clogher Head and Killard Point re‐advances previously documented from Ireland and the Bremanger event from off western Norway, suggesting that the British and Fennoscandian ice sheets both had major advances in their northwestern parts, close to the northwestern European seaboard, at this time. 相似文献
3.
Thomas V. Lowell Timothy G. Fisher I. Hajdas K. Glover H. Loope T. Henry 《Quaternary Science Reviews》2009,28(17-18):1597-1607
The sensitivity of ice sheets to climate change influences the return of meltwater to the oceans. Here we track the Laurentide Ice Sheet along a ~400 km long transect spanning about 6000 yr of retreat during the major climate oscillations of the lateglacial. Thunder Bay, Ontario is near a major topographic drainage divide, thus terrestrial ablation processes are the primary forcers of ice margin recession in the study area. During deglaciation three major moraine sets were produced, and have been assigned minimum ages of 13.9 ± 0.2, 12.3 ± 0.2–12.1 ± 0.1, and 11.2 ± 0.2 cal ka BP from south to north. These define a slow retreat (~10–50 m/a) prior to major climate oscillations which was then followed by a factor of ~2 increase during the Bölling–Alleröd, and an additional increase during the early Holocene. When compared to retreat rates in other terrestrial settings of the ice sheet, nearly identical patterns emerge. However this becomes problematic because a key control on retreat rates is the surface slope of the ice sheet and this should vary considerably over areas of so-called hard and soft beds. Further these ice margin reconstructions would not allow meltwater sourced in the Hudson Basin to drain into the Atlantic basin until after Younger Dryas time. 相似文献
4.
5.
BARBARA A. LUSARDI CARRIE E. JENNINGS KENNETH L. HARRIS 《Boreas: An International Journal of Quaternary Research》2011,40(4):585-597
Lusardi, B. A., Jennings, C. E. & Harris, K. L. 2011: Provenance of Des Moines lobe till records ice‐stream catchment evolution during Laurentide deglaciation. Boreas, 10.1111/j.1502‐3885.2011.00208.x. ISSN 0300‐9483. Mapping and analysis of deposits of the Des Moines lobe of the Laurentide Ice Sheet, active after the Last Glacial Maximum (LGM), reveal several texturally and lithologically distinct tills within what had been considered to be a homogeneous deposit. Although the differences between tills are subtle, minor distinctions are predictable and mappable, and till sheets within the area covered by the lobe can be correlated for hundreds of kilometres parallel to ice flow. Lateral till‐sheet contacts are abrupt or overlap in a narrow zone, coincident with a geomorphic discontinuity interpreted to be a shear margin. Till sheets 10 to 20 m thick show mixing in their lower 2 to 3 m. We suggest that: (i) lithologically distinct till sheets correspond to unique ice‐stream source areas; (ii) the sequence of tills deposited by the Des Moines lobe was the result of the evolution and varying dominance of nearby and competing ice streams and their tributaries; and (iii) in at least one instance, more than one ice stream simultaneously contributed to the lobe. Therefore the complex sequence of tills of subtly different provenances, and the unconformities between them record the evolution of an ice‐catchment area during Laurentide Ice Sheet drawdown. Till provenance data suggest that, after till is created in the ice‐stream source area, the subglacial conditions required for transporting till decline and incorporation of new material is limited. 相似文献
6.
Glenn W. Berger Martin Melles Debabrata Banerjee Andrew S. Murray Alexandra Raab 《第四纪科学杂志》2004,19(5):513-523
A 10.5 m core from Changeable Lake in the Severnaya Zemlya Archipelago just north of the Taymyr Peninsula intersects ca. 30 cm of diamicton at its base, interpreted as a basal till. Because the upper 10.13 m of this core consists of non‐glacial sediments, a maximum numeric age for these non‐glacial sediments would provide a clear lower limit to the timing of the last glaciation in the area of Changeable Lake. Radiocarbon (14C) dating of several materials from this core yielded widely scattered results. Consequently we applied photonic dating to sediments above the diamicton. The experimental single‐aliquot‐regenerative (SAR) dose fine‐grain method was applied to two samples, using the ‘double SAR’ approach. With one exception, these fine‐grain SAR results and the results of application of the SAR method to sand‐sized quartz grains from two samples, at ca. 9.95 m and ca. 10.05 m depth, are discrepant with age estimates from the multi‐aliquot infrared‐photon‐stimulated luminescence (IR‐PSL) method applied to fine grains. Multi‐aliquot IR‐PSL dating of 10 samples produces ages increasing monotonically from ca. 4 ka at 2 m to 53 ± 4 ka at 9.97 m. These self‐consistent multi‐aliquot IR‐PSL ages, along with limiting 14C ages of >47 ka at ca. 10 m, provide direct evidence that glacial ice did not advance over this lake basin during the Last Glacial Maximum, and thus delimit the northeastern margin of the Barents–Kara Sea ice‐sheet to somewhere west of this archipelago. The last regional glaciation probably occurred during marine isotope stage (MIS) 4 or earlier. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
7.
8.
ANNE HORMES NAKI AKÇAR PETER W. KUBIK 《Boreas: An International Journal of Quaternary Research》2011,40(4):636-649
Hormes, A., Akçar, N. & Kubik, P. W. 2011: Cosmogenic radionuclide dating indicates ice‐sheet configuration during MIS 2 on Nordaustlandet, Svalbard. Boreas, 10.1111/j.1502‐3885.2011.00215.x. ISSN 0300‐9483.0300‐9843 Glacial geological field surveys, aerial image interpretation and cosmogenic radionuclide (CRN) dating allowed us to reconstruct the ice‐sheet configuration on Nordaustlandet, the northernmost island of the European sector on the margin of the Arctic Ocean. The timing of deglaciation was investigated by determining the 26Al and 10Be ages of glacially scoured bedrock, weathered periglacial blockfields and glacial erratic boulders. Only 10Be ages were useful for our interpretations, because of unresolved analytical problems with 26Al. Fjords and lowlands on Nordaustlandet yielded Late Weichselian 10Be ages, indicating that actively erosive ice streams scoured the coastal fjord bathymetry during marine isotope stage (MIS) 2. In Murchisonfjorden, ground‐truthed air‐photograph interpretation and 10Be ages of boulders indicated a cold‐based glacier ice cover during MIS 2 on higher plateaus. 10Be ages and lithological studies of erratic boulders on higher and interior plateaus of Prins Oscars Land (>200–230 m a.s.l.) suggest that the Mid‐Weichselian glaciation (MIS 4) might have been more extensive than that during MIS 2. 相似文献
9.
Jon Y. Landvik Edward J. Brook Lyn Gualtieri Henriette Linge Grant Raisbeck Otto Salvigsen Françoise Yiou 《Boreas: An International Journal of Quaternary Research》2013,42(1):43-56
The Late Weichselian ice sheet of western Svalbard was characterized by ice streams and inter‐ice‐stream areas. To reconstruct its geometry and dynamics we investigated the glacial geology of two areas on the island of Prins Karls Forland and the Mitrahalvøya peninsula. Cosmogenic 10Be surface exposure dating of glacial erratics and bedrock was used to constrain past ice thickness, providing minimum estimates in both areas. Contrary to previous studies, we found that Prins Karls Forland experienced a westward ice flux from Spitsbergen. Ice thickness reached >470 m a.s.l., and warm‐based conditions occurred periodically. Local deglaciation took place between 16 and 13 ka. At Mitrahalvøya, glacier ice draining the Krossfjorden basin reached >300 m a.s.l., and local deglaciation occurred at c. 13 ka. We propose the following succession of events for the last deglaciation. After the maximum glacier extent, ice streams in the cross‐shelf troughs and fjords retreated, tributary ice streams formed in Forlandsundet and Krossfjorden, and, finally, local ice caps were isolated over both Prins Karls Forland and Mitrahalvøya and their adjacent shelves. 相似文献
10.
11.
Pattern and chronology of glacial Lake Peace shorelines and implications for isostacy and ice‐sheet configuration in northeastern British Columbia,Canada 下载免费PDF全文
Adrian S. Hickin Olav B. Lian Victor M. Levson Yao Cui 《Boreas: An International Journal of Quaternary Research》2015,44(2):288-304
Recognition of positions of glacial lakes along the margin of continental ice sheets is critical in reconstructing ice configuration during deglaciation. Advances in remote sensing technology (e.g. LiDAR) have enabled the generation of accurate digital‐elevation models (DEMs) that reveal unprecedented geomorphic detail. Combined with geographical information systems, these tools have considerably advanced the mapping and correlation of geomorphic features such as relict shorelines. Shorelines of glacial Lake Peace (GLP) developed between the Laurentide and Cordilleran ice sheets in northeastern British Columbia and northwestern Alberta. Shoreline mapping from high resolution DEMs produced more than 55 500 elevation data points from 3231 shorelines, enabling the identification of four major phases of GLP: Phase I (altitude 960–990 m a.s.l.); Phase II (890–915 m a.s.l.); Phase III (810–865 m a.s.l.); and Phase IV (724–733 m a.s.l.). The timing of Phase II of GLP is estimated by two optical ages of <16.0±2.5 and 14.2±0.5 ka BP. Extensive mapping of the shorelines allows for measuring of glacial isostatic adjustment as ice retreated. Shorelines currently dip to the northeast at around 0.4–0.5 m km?1. This slope reflects the asynchronous retreat of the Cordilleran (CIS) and Laurentide (LIS) ice sheets. The relative uplift in the southwest of the study area within the Rocky Mountains and foothills suggests that the Late Wisconsinan (MIS 2) CIS persisted in the foothill after the LIS lost mass and retreated, or that the Late Wisconsinan CIS was very thick and caused deep crustal loading, which resulted in more uplift in the southwest before reaching equilibrium during, or shortly after deglaciation. 相似文献
12.
Michel Magny Odile Peyron Laura Sadori Elena Ortu Giovanni Zanchetta Boris Vannière Willy Tinner 《第四纪科学杂志》2012,27(3):290-296
Pollen‐based quantitative estimates of seasonal precipitation from Lake Pergusa and lake‐level data from Lake Preola in Sicily (southern Italy) allow three successive periods to be distinguished within the Holocene: an early Holocene period before ca. 9800 cal a BP with rather dry climate conditions in winter and summer, a mid‐Holocene period between ca. 9800 and 4500 cal a BP with maximum winter and summer wetness, and a late Holocene period after 4500 cal a BP with declining winter and summer wetness. This evolution observed in the south‐central Mediterranean shows strong similarities to that recognized in the eastern Mediterranean. But, it contrasts with that reconstructed in north‐central Italy, where the mid‐Holocene appears to be characterized by a winter (summer) precipitation maximum (minimum), while the late Holocene coincided with a decrease (increase) in winter (summer) precipitation. Maximum precipitation at ca. 10 000–4500 cal a BP may have resulted from (i) increased local convection in response to a Holocene insolation maximum at 10 000 cal a BP and then (ii) the gradual weakening of the Hadley cell activity, which allowed the winter rainy westerlies to reach the Mediterranean area more frequently. After 4500 cal a BP, changes in precipitation seasonality may reflect non‐linear responses to orbitally driven insolation decrease in addition to seasonal and inter‐hemispheric changes of insolation. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
13.
14.
Focused subaerial erosion during ridge subduction: impact on the geomorphology in south‐central Peru
Data obtained from low‐temperature thermochronometers such as apatite fission‐track and (U‐Th)/He are combined with morphometric information extracted from digital elevation models. This combination shows several geomorphological effects that are caused by the migration of the Nazca Ridge along the Peruvian Coastal margin. Offshore, the depth of the deep‐sea trench decreases by ~1500 m where the Nazca Ridge collides with the continental South American Plate. Onshore the ridge causes an uplift of at least 800 m in the Coastal Cordillera. This uplift results in a westward shift of the coastline thereby focusing and increasing erosion in the uplifted areas. At the trailing edge, the shelf subsides and the coastline retreats eastwards, producing at least part of the indentation observed between Paita and Pisco. The Ridge acts therefore like a wave uplifting the Andean margin as it traverses inland and southwards leaving a clear fingerprint on the topographic evolution of the Peruvian coastal margin. 相似文献
15.
Toby N. Tonkin Nicholas G. Midgley David J. Graham Jillian C. Labadz 《Boreas: An International Journal of Quaternary Research》2017,46(2):199-211
Despite a long history of glaciological research, the palaeo‐environmental significance of moraine systems in the Kebnekaise Mountains, Sweden, has remained uncertain. These landforms offer the potential to elucidate glacier response prior to the period of direct monitoring and provide an insight into the ice‐marginal processes operating at polythermal valley glaciers. This study set out to test existing interpretations of Scandinavian ice‐marginal moraines, which invoke ice stagnation, pushing, stacking/dumping and push‐deformation as important moraine forming processes. Moraines at Isfallsglaciären were investigated using ground‐penetrating radar to document the internal structural characteristics of the landform assemblage. Radar surveys revealed a range of substrate composition and reflectors, indicating a debris‐ice interface and bounding surfaces within the moraine. The moraine is demonstrated to contain both ice‐rich and debris‐rich zones, reflecting a complex depositional history and a polygenetic origin. As a consequence of glacier overriding, the morphology of these landforms provides a misleading indicator of glacial history. Traditional geochronological methods are unlikely to be effective on this type of landform as the fresh surface may post‐date the formation of the landform following reoccupation of the moraine rampart by the glacier. This research highlights that the interpretation of geochronological data sets from similar moraine systems should be undertaken with caution. 相似文献
16.
Luminescence dating of ice‐marginal deposits in northern Germany: evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6) 下载免费PDF全文
Julia Roskosch Jutta Winsemann Ulrich Polom Christian Brandes Sumiko Tsukamoto Axel Weitkamp Werner A. Bartholomäus Dierk Henningsen Manfred Frechen 《Boreas: An International Journal of Quaternary Research》2015,44(1):103-126
The exact number, extent and chronology of the Middle Pleistocene Elsterian and Saalian glaciations in northern Central Europe are still controversial. This study presents new luminescence data from Middle Pleistocene ice‐marginal deposits in northern Germany, giving evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6). The study area is located in the Leine valley south of the North German Lowlands. The data set includes digital elevation models, high‐resolution shear wave seismic profiles, outcrop and borehole data integrated into a 3D subsurface model to reconstruct the bedrock relief surface. For numerical age determination, we performed luminescence dating on 12 ice‐marginal and two fluvial samples. Luminescence ages of ice‐marginal deposits point to at least two ice advances during MIS 12 and MIS 10 with ages ranging from 461±34 to 421±25 ka and from 376±27 to 337±21 ka. The bedrock relief model and different generations of striations indicate that the older ice advance came from the north and the younger one from the northeast. During rapid ice‐margin retreat, subglacial overdeepenings were filled with glaciolacustrine deposits, partly rich in re‐worked Tertiary lignite and amber. During MIS 8 and MIS 6, the study area may have been affected by two ice advances. Luminescence ages of glaciolacustrine delta deposits point to a deposition during MIS 8 or early MIS 6, and late MIS 6 (250±20 to 161±10 ka). The maximum extent of both the Elsterian (MIS 12 and MIS 10) and Saalian glaciations (MIS 8? and MIS 6) approximately reached the same position in the Leine valley and was probably controlled by the formation of deep proglacial lakes in front of the ice sheets, preventing a further southward advance. 相似文献
17.
Melanie J. Leng Bernd Wagner N. John Anderson Ole Bennike Ewan Woodley Simon J. Kemp 《第四纪科学杂志》2012,27(6):575-584
Here we present Holocene organic carbon, nitrogen, sulphur, carbon isotope ratio and macrofossil data from a small freshwater lake near Sisimiut in south‐west Greenland. The lake was formed c. 11 cal ka BP following retreat of the ice sheet margin and is located above the marine limit in this area. The elemental and isotope data suggest a complex deglaciation history of interactions between the lake and its catchment, reflecting glacial retreat and post‐glacial hydrological flushing probably due to periodic melting of local remnant glacial ice and firn areas between 11 and 8.5 cal ka BP. After 8.5 cal ka BP, soil development and associated vegetation processes began to exert a greater control on terrestrial–aquatic carbon cycling. By 5.5 cal ka BP, in the early Neoglacial cooling, the sediment record indicates a change in catchment–lake interactions with consistent δ13C while C/N exhibits greater variability. The period after 5.5 cal ka BP is also characterized by higher organic C accumulation in the lake. These changes (total organic carbon, C/N, δ13C) are most likely the result of increasing contribution (and burial) of terrestrial organic matter as a result of enhanced soil instability, as indicated by an increase in Cenococcum remains, but also Sphagnum and Empetrum. The impact of glacial retreat and relatively subdued mid‐ to late Holocene climate variation at the coast is in marked contrast to the greater environmental variability seen in inland lakes closer to the present‐day ice sheet margin. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
18.
A revised chronological framework for the deglaciation of the Lake Michigan lobe of the south‐central Laurentide Ice Sheet is presented based on radiocarbon ages of plant macrofossils archived in the sediments of low‐relief ice‐walled lakes. We analyze the precision and accuracy of 15 AMS 14C ages of plant macrofossils obtained from a single ice‐walled lake deposit. The semi‐circular basin is about 0.72 km wide and formed of a 4‐ to 16‐m‐thick succession of loess and lacustrine sediment inset into till. The assayed material was leaves, buds and stems of Salix herbacea (snowbed willow). The pooled mean of three ages from the basal lag facies was 18 270 ± 50 14C a BP (21 810 cal. a BP), an age that approximates the switch from active ice to stagnating conditions. The pooled mean of four ages for the youngest fossil‐bearing horizon was 17 770 ± 40 14C a BP (21 180 cal. a BP). Material yielding the oldest and youngest ages may be obtained from sediment cores located at any place within the landform. Based on the estimated settling times of overlying barren, rhythmically bedded sand and silt, the lacustrine environment persisted for about 50 more years. At a 67% confidence level, the dated part of the ice‐walled lake succession persisted for between 210 and 860 cal. a (modal value: 610 cal. a). The deglacial age of five moraines or morainal complexes formed by the fluctuating margin of the Lake Michigan lobe have been assessed using this method. There is no overlap of time intervals documenting when ice‐walled lakes persisted on these landforms. The rapid readvances of the lobe during deglaciation after the last glacial maximum probably occurred at some point between the periods of ice‐walled lake sedimentation. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
Elodie Lebas Sebastian Krastel Bernd Wagner Raphael Gromig Grigory Fedorov Marlene Baumer Natalia Kostromina Haflidi Haflidason 《Boreas: An International Journal of Quaternary Research》2019,48(2):470-487
A multi‐channel, high‐resolution seismic reflection survey using a Micro‐GI airgun was carried out in the framework of the Russian‐German project PLOT (Paleolimnological Transect) on Lake Levinson‐Lessing, Taymyr Peninsula, in 2016. In total, ~70 km of seismic reflection profiles revealed in unprecedented detail the glacial and postglacial sedimentary infill of the lake basin. Five main seismic units have been recognized and interpreted as glacial (Unit V), subglacial and proglacial (Unit IV), marine (Unit III), fluvial‐lacustrine (Unit II) and lacustrine (Unit I) sediments. Of particular significance are imbricated, south‐orientated structures present in the southernmost part of the lake basin within Unit V and a large topographic ridge recognized in front of those structures. We interpret these structures as push moraines and an end moraine, respectively, left by the glacier after its retreat. The depositional pattern of the units above the moraines documents past lake‐level fluctuations. We interpret Unit IV, Unit III and Unit I as highstand deposits, and Unit II as lowstand deposits. Gas‐charged sediments dominate the northern part of the lake basin, whilst they occur only sporadically and in limited spatial extent in the central and southern parts of the lake. In the latter areas, the seismic and echo‐sounder data suggest recent tectonic activity. Our study contributes to the reconstruction of environmental conditions in the Taymyr Peninsula directly following the Early Weichselian deglaciation and shows that deep tectonic lake basins affected by several glaciations can preserve important palaeoenvironmental records, which contributes significantly to our understanding of palaeoenvironmental changes in the Taymyr Peninsula and the central Russian Arctic. 相似文献
20.
COLM Ó COFAIGH DAVID J. A. EVANS JOHN F. HIEMSTRA 《Boreas: An International Journal of Quaternary Research》2011,40(1):1-14
Ó Cofaigh, C., Evans, D. J. A. & Hiemstra, J. F. 2010: Formation of a stratified subglacial ‘till’ assemblage by ice‐marginal thrusting and glacier overriding. Boreas, 10.1111/j.1502‐3885.2010.00177.x. ISSN 0300‐9483. A thick sequence of glaciotectonically stacked till and outwash is preserved in a coastal embayment at Feohanagh, southwest Ireland. The sequence contains a variety of diamicton lithofacies, including laminated, stratified and massive components, but stratified diamictons dominate. Stratification/lamination is imparted by the presence of numerous closely spaced subhorizontal and anastomosing partings, which give a fissile appearance to the diamictons. Many partings are the result of sandy or thin gravelly layers within the diamictons. Some diamictons contain interbeds and lenses of sand, mud and gravel, which still preserve the original stratification. The sequence at Feohanagh is the product of a two‐stage depositional process in which initial glaciolacustrine sedimentation in an ice‐dammed lake was followed by glaciotectonic thrusting and overriding, during which the lake sediments were reworked and variably deformed. Similar late Quaternary sequences of glaciotectonically stacked stratified sediments and till have been described from around the coastal margins of Ireland and Britain, where they constitute glaciotectonite–subglacial traction till continuums rather than true lodgement tills as traditionally implied. Thick stratified diamicton assemblages are likely to occur in areas where steep topography provides pinning points for the glacier margin to stabilize and deliver large volumes of sediment into a glaciolacustrine or glaciomarine setting before proglacial and subglacial reworking of the sediment pile. The resulting geological–climatic unit, often defined as ‘till’, will contain a large amount of stratified and variably deformed material (laminated and stratified diamictons will be common), including intact sediment rafts, reflecting low strain rates and short sediment transport distances. 相似文献