首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Paleothermal indicators based on clay mineral and organic matter analyses, were integrated with mudrock geochemistry and stratigraphic data to define the sedimentary evolution of the southwestern Thrace Basin during the Eocene to Oligocene. This multi‐method approach allowed us to reconstruct the burial evolution of the basin in Eocene and Oligocene times and to study the mudrock composition and relate this to their provenance and source area weathering. The studied mudrocks show similar chemical variations. The distribution of some major and trace elements for the studied samples reflect heterogeneous source areas containing both felsic to mafic rocks. In particular, the Light Rare Earth Elements/Transition elements (LREEs/TEs) ratios are very high for the Avdira and Organi samples (on the average between 1.5 and 2.2 for (La + Ce)/Cr and 3.5–8 for (La + Ce)/Ni), suggesting a felsic source(s), and very low for the Samothraki, Limnos, Paterma and Iasmos samples (on the average between 0.4 and 0.6 for (La + Ce)/Cr and 0.6–1 for (La + Ce)/Ni), suggesting a mainly basic source(s). The mineralogical composition coupled with the A‐CN‐K and A‐N‐K plots suggest a complex evolution. The clay mineral data (illite percentage in I/S and the stacking order R and the Kübler Index) coupled to vitrinite reflectance analysis indicate a high to intermediate diagenetic grade for the Middle to Upper Eocene samples (from Iasmos, Gratini, Organi, Paterma, Esimi and Samotraki sections) and a low diagenetic grade for the Upper Eocene to Oligocene samples (from Limnos and Avdira sections). These data helped in interpreting the geodynamic evolution of the studied basins where the magmatic activity plays an important role. In particular, Middle to Upper Eocene sediments show high to intermediate diagenetic grade since they are located in a portion of the basin dominated by Eocene to Oligocene magmatic activity and intrusion of granitoids, whereas, the Upper Eocene to Oligocene sediments are not involved in important magmatic activity and intrusion of granitoids and, thus, show low diagenetic grade. Furthermore, Middle to Upper Eocene sediments experienced deeper burial processes caused by lithostatic load, rather than the uppermost Eocene and Oligocene sediments, in relation of their position along the stratigraphic succession. These data suggest a burial depth of at least 3–4 km with a tectonic exhumation mainly related to the extensional phases of the Miocene age.  相似文献   

2.
《Basin Research》2018,30(Z1):532-549
The Podolia region is located along the western border of the Eastern European Craton, which is also known as Ukrainian Shield. From the Ordovician to the Miocene, this area formed part of an epicontinental basin system. In order to investigate the effects of orogenic cycles occurring along the plate margin, a multi‐disciplinary approach was used in this study. Paleotemperature analysis and low‐temperature thermochronometry were combined with stratigraphic data to obtain a burial model for the Paleozoic succession exposed in the study area. Maximum burial for Silurian and Devonian rocks occurred during the Devonian and Early Carboniferous at depths of 4–5 km, as constrained by vitrinite reflectance and illite content in mixed illite‐smectite layers. Thermochronometric data indicate that exhumation through the 45–120 °C temperature range took place between the Late Triassic and the Early Jurassic, and that no significant burial occurred afterwards (temperatures characterising the stratigraphically lowermost units remaining below ca. 60 °C). These results point to a major exhumation event coeval with the Cimmerian orogenesis, which took place a few hundreds of kilometres away from the study area. On the other hand, no significant effect of the Alpine orogenesis was recorded, although the collisional front was located <100 km from the Podolia region. This work shows how paleothermal and thermochronometric analyses can be successfully integrated with stratigraphic data to reconstruct the burial history, and how the burial history of a basin located on a plate margin can, in some cases, be independent from the distance of the margin from the collisional fronts.  相似文献   

3.
We utilized carbonate clumped isotope thermometry to explore the thermal history of the Delaware Basin, West Texas, USA. Carbonate wellbore cuttings from five oil/gas wells across the basin yielded clumped isotope temperatures (T(Δ47)) ranging from 27°C to 307°C, interpreted to reflect a combination of initial precipitation/recrystallization temperature and solid-state C-O bond reordering during burial. Dolomite samples generally record lower apparent T(Δ47)s than calcite, reflecting greater resistance to reordering in dolomite. In all five wells, clumped isotope temperatures exceed modern downhole temperature measurements, indicating higher heat flow in the past. Using modelled burial curves based on sedimentological history, we created unique time-temperature histories by linearly applying a geothermal gradient. Applying two different thermal history reordering models, we modelled the extent of solid-state C–O bond reordering to iteratively find the time-averaged best-fit geothermal gradients for each of the five wells. Results of this modelling suggest that the shallower, southwestern portion of the study area experienced higher geothermal gradients throughout the sediment history (~45°C/km) than did the deeper, southeastern portion (~32°C/km), with the northern portion experiencing intermediate geothermal gradients (~35–38°C/km). This trend is in agreement with the observed gas/oil ratios of the Delaware Basin, increasing from east to west. Furthermore, our clumped isotope temperatures agree well with previously published vitrinite reflectance data, confirming previous observations and demonstrating the utility of carbonate clumped isotope thermometry to reconstruct basin thermal histories.  相似文献   

4.
The diagenetic history of the Ediacaran sedimentary rocks in the East European Craton (EEC) over the area extending from Arkhangelsk (Russia) in the north to Podolia (Ukraine) in the south was revealed by means of the XRD characterization and K–Ar dating of clay fractions, mudstone porosity measurements and organic geochemistry investigations. Mudstone porosity measurements produced direct evidence of shallow maximum burial of the Ediacaran sediments on the craton (Russia, Lithuania, Belarus, Volyn), not exceeding 1.5 km, and much deeper burial at the cratonic margin, in Podolia and Poland. In general, illitization of smectite and biomarker indices indicates more advanced diagenesis at the cratonic margin. K–Ar dating of authigenic illite–smectite and aluminoceladonite revealed the Palaeozoic age of mineral diagenesis (ca. 450–300 Ma) both on the craton and its margin, with older ages generally observed in the north. When the maximum palaeotemperatures were evaluated from illite–smectite and biomarkers, based on the calibrations from the conventional burial diagenetic sections, a major mismatch was detected for the cratonic area: 100°C–130°C from illite––smectite and tens of oC lower from the lipid biomarkers. This diagenetic pattern was interpreted as the result of short‐lasting (in ky scale) pulses of potassium‐bearing hot fluids migrating from the Caledonian and Variscan orogens deep in the craton interior, effectively promoting illitization in porous rocks without altering the organic matter. Analogous short pulses of fluids were responsible for numerous diagenetic phenomena, including Mississippi Valley‐Type ore deposits, in the American Midwest, in front of the Appalachians. K–Ar dating indicates that the entire Proterozoic sedimentary cover of the Great Unconformity on the EEC remained untouched by measureable post‐sedimentary changes until the early Palaeozoic, thus for over 1000 My, which is an unprecedented finding.  相似文献   

5.
《Basin Research》2018,30(Z1):497-512
Shale of the Upper Cretaceous Slater River Formation extends across the Mackenzie Plain of the Canadian Northwest Territories and has potential as a regional source rock because of the high organic content and presence of both oil‐ and gas‐prone kerogen. An understanding of the thermal history experienced by the shale is required to predict any potential petroleum systems. Our study integrates multi‐kinetic apatite fission track (AFT) and apatite (U‐Th)/He (AHe) thermochronometers from a basal bentonite unit to understand the timing and magnitude of Late Cretaceous burial experienced by the Slater River Formation along the Imperial River. We use LA‐ICP‐MS and EPMA methods to assess the chemistry of apatite, and use these values to derive the AFT kinetic parameter rmr0. Our AFT dates and track lengths, respectively, range from 201.5 ± 36.9 Ma to 47.1 ± 12.3 Ma, and 16.8 to 10.2 μm, and single crystal AHe dates are between 57.9 ± 3.5 and 42.0 ± 2.5 Ma with effective uranium concentrations from 17 ppm to 36 ppm. The fission track data show no relationship with the kinetic parameter Dpar and fail the χ2‐test indicating that the data do not comprise a single statistically significant population. However, when plotted against their rmr0 value, the data are separated into two statistically significant kinetic populations with distinct track length distributions. Inverse thermal history modelling of both the multi‐kinetic AFT and AHe datasets, reveal that the Slater River Formation reached maximum burial temperatures of ~65–90 °C between the Turonian and Paleocene, indicating that the source rock matured to the early stages of hydrocarbon generation, at best. Ultimately, our data highlight the importance of kinetic parameter choice for AFT and AHe thermochronology, as slight variations in apatite chemistry may have significant implications on fission track and radiation damage annealing in apatite with protracted thermal histories through the uppermost crust.  相似文献   

6.
Opuntia tomentosa seeds have physiological dormancy and a permeable but hard funicular envelope that restricts water uptake and embryo growth. Dormancy break, germination, and changes in the funiculus were compared in laboratory-stored seeds and in those buried for 7 months at different microsites and later exhumed and stored in the laboratory. The funicular envelopes of both lots were examined with a scanning electron microscope (SEM). Seeds in both lots were: scarified with H2SO4 (0, 45, 60 and 90 min), treated with gibberellins (0, 1000 and 2000 ppm) and germinated at the same ages (0, 2, 4, 7, and 10 months after exhumation) at 24 °C. Light effect was determined at 24 °C and 20–35 °C. In laboratory-stored seeds germination was low. Exhumed seeds germinated in ~50%, the remaining ones required scarification and gibberellins, but lost dormancy two months later. Gibberellins reduced germination heterogeneity, and scarification reduced germination; the adverse effect of scarification was offset by gibberellins. Exhumed seeds germinated mainly in darkness at 20–35 °C and partially in far red light at both temperatures. SEM showed that fungi eroded the funiculus reducing its resistance. O. tomentosa could form a seed bank, ensuring its survival under heterogeneous environments.  相似文献   

7.
The diagenetic evolution of Permian (Autunian and Saxonian) and Triassic (Buntsandstein) sandstones and mudrocks have been studied over 1000 m sequence from the Sigüenza 44‐3 drill core in the Iberian Range, Spain. We compare and contrast the diagenetic processes in these different lithologies and the timing of clay mineral formation. Moreover, we establish the relationship between clay mineral diagenesis and reservoir potential. Both the Permian and Triassic successions are characterised by conglomerates, sandstones and interbedded mudstones of fluvial origin that change upwards into distal deposits of a fluvio‐deltaic system. The clay minerals are illite, illite‐smectite mixed layers, kaolinite and dickite. The illite content in all sequences is not related to diminished feldspars; it is owing to the initial detrital mineralogical composition of the Autunian sandstones. The effect of feldspar alteration to kaolin minerals has a strong influence on the lost of porosity‐permeability in the Saxonian facies. In contrast, illite and mixed layers illite‐smectite are the main clay rims preserving porosity in the Buntsandstein sandstones. However, fibrous illite is the dominant pore‐filling in the Permian Autunian facies, closing porosity and permeability. Kaolinite and dickite show opposite trends: dickite increases yet kaolinite decreases from Triassic to Permian sandstones. Dickite replaced kaolinite during burial‐thermal evolution of the succession. The δD and δ18O isotopic signatures from silt and clay fractions indicate a mixture of meteoric and marine waters, and suggest a minimum temperature range between 60 and 150 °C for diagenetic pore fluids. The Permian δD values (?24‰ to ?44‰) are relatively similar to Buntsandstein values (?24‰ to ?37‰). However, the Permian δ18O values (+7.6 and +15.3, average of +13.3‰) are generally higher by ca. 6.2‰ compared to the Buntsandstein data (4.8–10.1‰, average +7.1‰). Such a variation is interpreted as the result of mesodiagenetic pore fluid changes. The extensive dickitisation of kaolinite is attributed to increased hydrogen ions resulting from maturation of organic matter. The vitrinite reflectance of organic matter and the modelled thermal history suggest a maximum burial of 3400 m, accomplished 70 Ma ago. The Permo‐Triassic reached the gas window shortly before major uplift, at 65 Ma, when further maturation and hydrocarbon expulsion ceased.  相似文献   

8.
《Basin Research》2018,30(1):75-96
The Xichang Basin in southeastern Tibet provides crucial information about formation and tectonic processes affecting the eastern Tibetan Plateau. To determine when and how the uplift developed, we conducted detailed studies of structures and obtained thermochronology data from the Xichang Basin and its periphery. The Xichang Basin is characterized by gentle deformation of the strata, segmented by an E‐vergent boundary thrust fault. Two stages of deformation, strike‐slip followed by an E‐W oriented shortening resulted in oblique shortening between the southeastern Tibetan Plateau and the Sichuan Basin. New apatite fission‐track data interpreted together with (U‐Th)/He data confirm a simple burial/heating and exhumation/cooling history across the Xichang Basin and its periphery. Subsidence and burial of the Xichang Basin peaked between 80–30 Ma, followed by mountain building with a protracted cooling starting at around 40–20 Ma, with rates of ca. 2.0–8.0 °C Myr−1 (i.e. 0.1–0.3 mm year−1). Our data indicate that the Xichang Basin has experienced ca. 2.5–5 km of exhumation, much more intensive than the ca. 1–2 km of exhumation inferred for the southwestern Sichuan Basin. Restored balanced cross‐sections of post‐Late‐Triassic strata along a ca. 250 km traverse indicate ca. 10–20% east‐west shortening strain (i.e. ca. 20–30 km) at the southeastern Tibetan Plateau during Cenozoic time. Study of crustal thickening and erosion supports a tectonic shortening mechanism to account for the uplift of the Xichang Basin on the southeastern Tibetan Plateau.  相似文献   

9.
The thermal evolution of sedimentary basins is usually constrained by maturity data, which is interpreted from Rock-Eval pyrolysis and vitrinite reflectance analytical results on field or boreholes samples. However, some thermal evolution models may be inaccurate due to the use of elevated maturities measured in samples collected within an undetected metamorphic contact aureole surrounding a magmatic intrusion. In this context, we investigate the maturity and magnetic mineralogy of 16 claystone samples from Disko-Svartenhuk Basin, part of the SE Baffin Bay volcanic margin. Samples were collected within thermal contact metamorphic aureoles near magma intrusions, as well as equivalent reference samples not affected by intrusions. Rock-Eval pyrolysis (Tmax), and vitrinite reflectance (Ro) analysis were performed to assess the thermal maturity, which lies in the oil window when 435°C ≤ Tmax ≤ 470°C and 0.6%–0.7% ≤ Ro ≤ 1.3%. In addition, we performed low- (<300K) and high-temperature (>300K) investigations of isothermal remanent magnetization to assess the magnetic mineralogy of the selected samples. The maturity results (0.37% ≤ Ro ≤ 2%, 22°C ≤ Tmax ≤ 604°C) show a predominance of immature to early mature Type III organic matter, but do not reliably identify the contact aureole when compared to the reference samples. The magnetic assemblage of the immature samples consists of iron sulphide (greigite), goethite and oxidized or non-stoichiometric magnetite. The magnetic assemblage of the early mature to mature samples consists of stoichiometric magnetite and fine-grained pyrrhotite (<1 μm). These results document the disappearance of the iron sulphide (greigite) and increase in content of magnetite during normal burial. On the other hand, magnetite is interpreted to be the dominant magnetic mineral inside the contact aureole surrounding dyke/sill intrusions where palaeotemperatures indicate mature to over-mature state. Interestingly, the iron sulphide (greigite) is still detected in the contact aureole where palaeotemperatures exceeded 130°C. Therefore, the magnetic mineralogy is a sensitive method that can characterize normal burial history, as well as identify hidden metamorphic contact aureoles where the iron sulphide greigite is present at temperatures beyond its stability field.  相似文献   

10.
The Northland Allochthon, an assemblage of Cretaceous–Oligocene sedimentary rocks, was emplaced during the Late Oligocene–earliest Miocene, onto the in situ Mesozoic and early Cenozoic rocks (predominantly Late Eocene–earliest Miocene) in northwestern New Zealand. Using low‐temperature thermochronology, we investigate the sedimentary provenance, burial and erosion histories of the rocks from both the hanging and footwalls of the allochthon. In central Northland (Parua Bay), both the overlying allochthon and underlying Early Miocene autochthon yield detrital zircon and partially reset apatite fission‐track ages that were sourced from the local Jurassic terrane and perhaps Late Cretaceous volcanics; the autochthon contains, additionally, material sourced from Oligocene volcanics. Thermal history modelling indicates that the lower part of the allochthon together with the autochthon was heated to ca. 55–100°C during the Late Oligocene and Early Miocene, most likely due to the burial beneath the overlying nappe sequences. From the Mesozoic basement exposed in eastern Northland, we obtained zircon fission‐track ages tightly bracketed between 153 and 149 Ma; the apatite fission‐track ages on the other hand, generally young towards the northwest, from 129 to 20.9 Ma. Basement thermochronological ages are inverted to simulate the emplacement and later erosion of the Northland Allochthon, using a thermo‐kinematic model coupled with an inversion algorithm. The results suggest that during the Late Oligocene, the nappes in eastern Northland ranged from ca. 4–6‐km thick in the north to zero in the Auckland region (over a distance >200 km). Following the allochthon emplacement, eastern Northland was uplifted and unroofed during the Early Miocene for a period of ca. 1–6 Myr at the rate of 0.1–0.8 km/Myr, leading to rapid erosion of the nappes. Since Middle Miocene, the basement uplift ceased and the erosion of the nappes and the region as a whole slowed down (ca. 0–0.2 km/Myr), implying a decay in the tectonic activity in this region.  相似文献   

11.
《Basin Research》2018,30(3):564-585
Studies in both modern and ancient Cordilleran‐type orogenic systems suggest that processes associated with flat‐slab subduction control the geological and thermal history of the upper plate; however, these effects prove difficult to deconvolve from processes associated with normal subduction in an active orogenic system. We present new geochronological and thermochronological data from four depositional areas in the western Sierras Pampeanas above the Central Andean flat‐slab subduction zone between 27° S and 30° S evaluating the spatial and temporal thermal conditions of the Miocene–Pliocene foreland basin. Our results show that a relatively high late Miocene–early Pliocene geothermal gradient of 25–35 °C km−1 was typical of this region. The absence of along‐strike geothermal heterogeneities, as would be expected in the case of migrating flat‐slab subduction, suggests that either the response of the upper plate to refrigeration may be delayed by several millions of years or that subduction occurred normally throughout this region through the late Miocene. Exhumation of the foreland basin occurred nearly synchronously along strike from 27 to 30° S between ca. 7 Ma and 4 Ma. We propose that coincident flat‐slab subduction facilitated this wide‐spread exhumation event. Flexural modelling coupled with geohistory analysis show that dynamic subsidence and/or uplift associated with flat‐slab subduction is not required to explain the unique deep and narrow geometry of the foreland basin in the region implying that dynamic processes were a minor component in the creation of accommodation space during Miocene–Pliocene deposition.  相似文献   

12.
Four Mesozoic–Cenozoic palaeothermal episodes related to deeper burial and subsequent exhumation and one reflecting climate change during the Eocene have been identified in a study of new apatite fission‐track analysis (AFTA®) and vitrinite reflectance data in eight Danish wells. The study combined thermal‐history reconstruction with exhumation studies based on palaeoburial data (sonic velocities) and stratigraphic and seismic data. Mid‐Jurassic exhumation (ca. 175 Ma) was caused by regional doming of the North Sea area, broadly contemporaneous with deep exhumation in Scandinavia. A palaeogeothermal gradient of 45 °C km?1 at that time may be related to a mantle plume rising before rifting in the North Sea. Mid‐Cretaceous exhumation affecting the Sorgenfrei–Tornquist Zone is probably related to late Albian tectonic movements (ca. 100 Ma). The Sole Pit axis in the southern North Sea experienced similar inversion and this suggests a plate‐scale response along crustal weakness zones across NW Europe. Mid‐Cenozoic exhumation affected the eastern North Sea Basin and the onset of this event correlates with a latest Oligocene unconformity (ca. 24 Ma), which indicates a major Scandinavian uplift phase. The deeper burial that caused the late Oligocene thermal event recognized in the AFTA data reflect progradation of lower Oligocene wedges derived from the uplifting Scandinavian landmass. The onset of Scandinavian uplift is represented by an earliest Oligocene unconformity (ca. 33 Ma). Late Neogene exhumation affected the eastern (and western) North Sea Basin including Scandinavia. The sedimentation pattern in the central North Sea Basin shows that this phase began in the early Pliocene (ca. 4 Ma), in good agreement with the AFTA data. These three phases of Cenozoic uplift of Scandinavia also affected the NE Atlantic margin, whereas an intra‐Miocene unconformity (ca. 15 Ma) on the NE Atlantic margin reflects tectonic movements of only minor amplitude in that area. The study demonstrates that only by considering episodic exhumation as an inherent aspect of the sedimentary record can the tectonic evolution be accurately reconstructed.  相似文献   

13.
Apatite fission‐track (AFT) thermochronology and (U‐Th)/He (AHe) dating, combined with paleothermometers and independent geologic constraints, are used to model the thermal history of Devonian Catskill delta wedge strata. The timing and rates of cooling determines the likely post‐orogenic exhumation history of the northern Appalachian Foreland Basin (NAB) in New York and Pennsylvania. AFT ages generally young from west to east, decreasing from ~185 to 120 Ma. AHe single‐grain ages range from ~188 to 116 Ma. Models show that this part of the Appalachian foreland basin experienced a non‐uniform, multi‐stage cooling history. Cooling rates vary over time, ~1–2 °C/Myr in the Early Jurassic to Early Cretaceous, ~0.15–0.25 °C/Myr from the Early Cretaceous to Late Cenozoic, and ~1–2 °C/Myr beginning in the Miocene. Our results from the Mesozoic are broadly consistent with earlier studies, but with the integration of multiple thermochronometers and multi‐kinetic annealing algorithms in newer inverse thermal modeling programs, we constrain a Late Cenozoic increase in cooling which had been previously enigmatic in eastern U.S. low‐temperature thermochronology datasets. Multi‐stage cooling and exhumation of the NAB is driven by post‐orogenic basin inversion and catchment drainage reorganization, in response to changes in base level due to rifting, plus isostatic and dynamic topographic processes modified by flexure over the long (~200 Myr) post‐orogenic period. This study compliments other regional exhumation data‐sets, while constraining the timing of post‐orogenic cooling and exhumation in the NAB and contributing important insights on the post‐orogenic development and inversion of foreland basins along passive margins.  相似文献   

14.
Populations of the winter annual Eruca sativa in Israel are distributed along a climatic gradient, from Mediterranean mesic habitats in the north to semi-arid and arid habitats in the south. Seed cohorts of five populations sampled across the gradient were produced in a common-garden experiment, and their germination was tested under continuous light or darkness at 5–35 °C, as well as with alternating 30/20 and 25/15 °C temperatures under a 12/12 h photoperiod. Germination was enhanced by light and by increasing temperature. Under constant temperatures maximal germination of arid and semi-arid populations was lower than in the mesic populations, suggesting on higher levels of primary dormancy with increasing aridity. Seeds that did not germinate in darkness or at low temperatures in light, germinated almost fully when exposed to GA3 at 25 °C, indicating that imbibition under less favorable conditions induces secondary dormancy in E. sativa. Daily alternating temperatures did not affect or even reduced seed germination compared to constant 25 and 30 °C in continuous light. Exposure of dry seeds to 30 °C before imbibition increased germination to ≥80% in seed cohorts of all populations. These responses to light and temperature indicate that adaptation of E. sativa to the Mediterranean environment is associated with the ability to germinate under the relatively warm autumn temperatures, and is enhanced by exposure to high temperature during the dry summer.  相似文献   

15.
An igneous hydrocarbon reservoir had been found in the Zhanhua depression, Bohai Bay Basin, eastern China. Two doleritic sills successively intruded into the immature source rock of the third member of the Shahejie Formation (Es3). The heat released from the magma changed the mineral composition of wall rocks and accelerated the maturity of organic matter. Thin hornfels and carbargilite zones were found next to the sills. The vitrinite reflectances (%Ro) of these heated wall rocks increased to at least 1.4% near the contacts (<50 m), and accumulation of oil was found in the hornfels zone and dolerite bodies. With the aim of understanding the influence of the sills on the hydrocarbon generation process, a complex heat conduction model was used to simulate the thermal history of the organic‐rich wall rocks, in which both the latent heat of crystallization of intrusions and vapourization heat of pore water in wall rocks were considered. The simulation results suggested that the cooling of each sill continued for about 0.1 Ma after its emplacement and the temperature of wall rocks was considerably raised. The peak temperature (Tpeak) that wall rocks experienced can reach 460–650°C in the region of 10 m away from the contacts. The thermal model was qualitatively verified by comparing the experimental data of vitrinite reflectances and mineral geothermometers of the wall rocks with the simulation results. Furthermore, we modelled the hydrocarbon generation of the source rocks based on the simulated thermal history. In the region of about 100 m from the contacts, the organic matter was heated and partially transformed into hydrocarbon within only a few 1000 years, which was significantly faster than the normal burial generation process.  相似文献   

16.
Despite many years of study, the processes involved in the development of the continental margin of southern Africa and the distinctive topography of the hinterland remain poorly understood. Previous thermochronological studies carried out within a monotonic cooling framework have failed to take into account constraints provided by Mesozoic sedimentary basins along the southern margin. We report apatite fission track analysis and vitrinite reflectance data in outcrop samples from the Late Jurassic to Early Cretaceous sedimentary fill of the Oudtshoorn, Gamtoos and Algoa Basins (Uitenhage Group), as well as isolated sedimentary remnants further west, plus underlying Paleozoic rocks (Cape Supergroup) and Permian‐Triassic sandstones from the Karoo Supergroup around the Great Escarpment. Results define a series of major regional cooling episodes. Latest Triassic to Early Jurassic cooling which began between 205 and 180 Ma is seen dominantly in basement flanks to the Algoa and Gamtoos Basins. This episode may have affected a wider region but in most places any effects have been overprinted by later events. The effects of Early Cretaceous (beginning between 145 and 130 Ma) and Early to mid‐Cretaceous (120–100 Ma) cooling are both delimited by major structures, while Late Cretaceous (85–75 Ma) cooling appears to have affected the whole region. These cooling events are all interpreted as dominantly reflecting exhumation. Higher Late Cretaceous paleotemperatures in samples from the core of the Swartberg Range, coupled with evidence for localised Cenozoic cooling, are interpreted as representing Cenozoic differential exhumation of the mountain range. Late Cretaceous paleotemperatures between 60°C and 90°C in outcropping Uitenhage Group sediments from the Oudtshoorn, Gamtoos and Algoa Basins require burial by between 1.2 and 2.2 km prior to Late Cretaceous exhumation. Because these sediments lie in depositional contact with underlying Paleozoic rocks in many places, relatively uniform Late Cretaceous paleotemperatures across most of the region, in samples of both basin fill and underlying basement, suggest the whole region may have been buried prior to Late Cretaceous exhumation. Cenozoic cooling (beginning between 30 and 20 Ma) is focussed mainly in mountainous regions and is interpreted as representing denudation which produced the modern‐day relief. Features such as the Great Escarpment are not related to continental break up, as is often supposed, but are much younger (post‐30 Ma). This history of post‐breakup burial and subsequent episodic exhumation is very different from conventional ideas of passive margin evolution, and requires a radical re‐think of models for development of continental margins.  相似文献   

17.
《Basin Research》2018,30(5):926-941
Constraining the thermal, burial and uplift/exhumation history of sedimentary basins is crucial in the understanding of upper crustal strain evolution and also has implications for understanding the nature and timing of hydrocarbon maturation and migration. In this study, we use Vitrinite Reflectance (VR) data to elucidate the paleo‐physiography and thermal history of an inverted basin in the foreland of the Atlasic orogeny in Northern Tunisia. In doing so, it is the primary aim of this study to demonstrate how VR techniques may be applied to unravel basin subsidence/uplift history of structural domains and provide valuable insights into the kinematic evolution of sedimentary basins. VR measurements of both the onshore Pelagian Platform and the Tunisian Furrow in Northern Tunisia are used to impose constraints on the deformation history of a long‐lived structural feature in the studied region, namely the Zaghouan Fault. Previous work has shown that this fault was active as an extensional structure in Lower Jurassic to Aptian times, before subsequently being inverted during the Late Cretaceous Eocene Atlas I tectonic event and Upper Miocene Atlas II tectonic event. Quantifying and constraining this latter inversion stage, and shedding light on the roles of structural inheritance and the basin thermal history, are secondary aims of this study. The results of this study show that the Atlas II WNW‐ESE compressive event deformed both the Pelagian Platform and the Tunisian Furrow during Tortonian‐Messinian times. Maximum burial depth for the Pelagian Platform was reached during the Middle to Upper Miocene, i.e. prior to the Atlas II folding event. VR measurements indicate that the Cretaceous to Ypresian section of the Pelagian Platform was buried to a maximum burial depth of ~3 km, using a geothermal gradient of 30°C/km. Cretaceous rock samples VR values show that the hanging wall of the Zaghouan Fault was buried to a maximum depth of <2 km. This suggests that a vertical km‐scale throw along the Zaghouan Fault pre‐dated the Atlas II shortening, and also proves that the fault controlled the subsidence of the Pelagian Platform during the Oligo‐Miocene. Mean exhumation rates of the Pelagian Platform throughout the Messinian to Quaternary were in the order of 0.3 mm/year. However, when the additional effect of Tortonian‐Messinian folding is accounted for, exhumation rates could have reached 0.6–0.7 mm/year.  相似文献   

18.
The purpose of our study was to better understand seed germination ecology of the spring annual short-lived Olimarabidopsis pumila, which grows in the Gurbantonggut Desert, China. Seeds underwent after-ripening at 4, 20 ± 2 (room temperature) and 30 °C. After dormancy was broken, germination capacity was a function of temperature and presence of light. For the temperature range studied (4–30 °C), germination capacity was significantly higher between 15 and 25 °C than at temperatures above or below them. Alternating temperatures of 20/10, 25/10 and 25/15 °C were favorable for germination. Although GA3 did promote dark germination of seeds, GA3 did not replace light for germination. Seeds germinated to >75% if light exposure time was over 8 h and temperature and moisture conditions were favorable. Seeds were able to germinate at relatively low water potentials (83% at ?0.41 MPa), but decreasing water potentials produced detrimental effects on germination percentage and rate. Thus, dormancy characteristics and germination behavior of O. pumila seeds ensure that germination occurs in the desert only when soil moisture conditions are favorable for seedling establishment and survival.  相似文献   

19.
Constraining the thermal and denudational evolution of continental margins from extensional episodes to early orogenic stages is critical in the objective to better understand the sediment routing during the growth of orogenic topography. Here, we report 160 detrital zircon U/Pb ages and 73 (U‐Th)/He ages from Albian, Upper Cretaceous and Eocene sandstones from the south‐central Pyrenees. All samples show dominant zircon U/Pb age peaks at 310–320 Ma, indicating a primary contribution from Variscan granites of the central Pyrenean Axial Zone. A secondary population at 450–600 Ma documents zircon grains sourced from the eastern Pyrenees. Zircon (U‐Th)/He ages recovered from older samples document, a Triassic age peak at ca. 241 Ma, corresponding to denudation coeval with the initiation of Atlantic rifting. An Early Cretaceous cooling event at ca. 133 Ma appears consistent with rift‐related exhumation and thermal overprint on the Iberian margin. The (U‐Th)/He age peaks from ca. 80 Ma to ca. 68 Ma with decreasing depositional ages are interpreted to reflect the southward‐migrating thrust‐related exhumation on the pro‐wedge side of the Pyrenean orogen. The increase in lag times, from ca. 15 Ma in the Tremp Formation (ca. 65 Ma) to 28 Ma in the Escanilla Formation (ca. 40 Ma), suggests decreasing exhumation rates from 0.4 km Myr–1 to 0.2 km Myr–1. The apparent inconsistency with convergence rates is used to infer that rocks cooled at 68 Ma may have resided in the crust before final exhumation to the surface. Finally, the cooling event observed at 68 Ma provides support to the inferred acceleration of convergence, shortening and exhumation during Late Cretaceous times.  相似文献   

20.
Significant lateral variations in observed temperatures in the Beaufort‐Mackenzie Basin raise the question on the temperature‐controlling factors. Based on the structural configuration of the sediments and underlying crust in the area, we calculate the steady‐state 3D conductive thermal field. Integrated data include the base of the relic permafrost layer representing the 0 °C‐isotherm, public‐domain temperature data (from 227 wells) and thermal conductivity data. For >75% of the wells the predicted temperatures deviate by <10 K from the observed temperatures, which validates the overall model setup and adopted thermal properties. One important trend reproduced by the model is a decrease in temperatures from the western to the eastern basin. While in the west, a maximum temperature of 185 °C is reached at 5000 m below sea level, in the east the maximum temperature is 138 °C. The main cause for this pattern lies in lateral variations in thermal conductivity indicating differences in the shale and sand contents of the different juxtaposed sedimentary units. North‐to‐south temperature trends reveal the superposition of deep and shallow effects. At the southern margin, where the insulating effect of the low‐conductive sediments is missing, temperatures are lowest. Farther north, where the sub‐sedimentary continental crust is thick enough to produce considerable heat and a thick pile of sediments efficiently stores heat, temperatures tend to be highest. Temperatures decrease again towards the northernmost distal parts of the basin, where thinned continental and oceanic crust produce less radiogenic heat. Wells with larger deviations of the purely conductive model from the temperature observations (>15 K at 10% of the wells) and their basin‐wide pattern of misfit tendency (too cold vs. too warm temperature predictions) point to a locally restricted coupling of heat transport to groundwater flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号