首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Desilicification elevates extraction of Re and platinum‐group elements (PGEs) from many geological reference materials (RMs), but the extent to which it affects less chalcophile elements has been investigated rarely. To further evaluate the effect of desilicification, mass fractions of elements with variable chalcophile affinities (In, Cd, Cu, Ag, S, Se, Te, Re and PGEs) in different RMs were obtained by isotope dilution and digestion procedures involving HF‐HNO3 in bombs versus HNO3‐HCl in Carius tubes. The results show that the extraction efficiencies of HF‐desilicification vary in different RMs and for different elements. HF‐desilicification led to a significant increase (30–70%) for In and Cd mass fractions in all analysed RMs, but it played a negligible role in other strongly chalcophile elements in many samples (e.g., UB‐N and WGB‐1). Noticeably, desilicification led to a 10–30% increase in the mass fractions of Cu, Ag, S, Se and Te in BHVO‐2 and BIR‐1a, but less so in BCR‐2. These results could be attributed mainly to the variable chalcophile affinities of elements and their relative budget in sulfides, alloys and silicates. Desilicification should thus be preferred to determine chalcophile elements for most samples, except in cases where they are negligibly hosted in silicates.  相似文献   

2.
Mass fractions of Sn and In were determined in sixteen geological reference materials including basaltic/mafic (BCR‐2, BE‐N, BHVO‐1, BHVO‐2, BIR‐1, OKUM, W‐2, WS‐E), ultramafic (DTS‐2b, MUH‐1, PCC‐1, UB‐N) and felsic/sedimentary reference materials (AGV‐2, JA‐1, SdAR‐M2, SdAR‐H1). Extensive digestion and ion exchange separation tests were carried out in order to provide high yields (> 90% for Sn, > 85% for In), low total procedural blanks (~ 1 ng for Sn, < 3 pg for In) and low analytical uncertainties for the elements of interest in a variety of silicate sample matrices. Replicate analyses (= 2–13) of Sn–In mass fractions gave combined measurement uncertainties (2u) that were generally < 3% and in agreement with literature data, where available. We present the first high‐precision In data for reference materials OKUM (32.1 ± 1.5 ng g?1), DTS‐2b (2.03 ± 0.25 ng g?1), MUH‐1 (6.44 ± 0.30 ng g?1) and PCC‐1 (3.55 ± 0.35 ng g?1) as well as the first Sn data for MUH‐1 (0.057 ± 0.010 μg g?1) and DTS‐2b (0.623 ± 0.018 μg g?1).  相似文献   

3.
4.
A measurement procedure for determining of Ru, Pd, Ir, Pt and Au mass fractions in ferromanganese deposits by inductively coupled plasma‐mass spectrometry after acid digestion and anion exchange preconcentration is presented. To eliminate incomplete recovery after sorption preconcentration of the platinum‐group elements (PGE) and Au, a standard addition method was used. Detection limits ranged from 0.02 ng (Pd, Ir) to 0.19 ng (Ru). The measurement results for ferromanganese nodule reference material NOD‐A‐1 and NOD‐P‐1 agree with earlier reported values. Intermediate precision of PGE concentration data for nodule reference materials in this work was 5–24% (1s) and could reflect sample heterogeneity.  相似文献   

5.
Thallium stable isotope ratio and mass fraction measurements were performed on sixteen geological reference materials spanning three orders of magnitude in thallium mass fraction, including both whole rock and partially separated mineral powders. For stable isotope ratio measurements, a minimum of three independent digestions of each reference material was obtained. High‐precision trace element measurements (including Tl) were also performed for the majority of these RMs. The range of Tl mass fractions represented is 10 ng g?1 to 16 μg g?1, and Tl stable isotope ratios (reported for historical reasons as ε205Tl relative to NIST SRM 997) span the range ?4 to +2. With the exception – attributed to between‐bottle heterogeneity – of G‐2, the majority of data are in good agreement with published or certified values, where available. The precision of mean of independent measurement results between independent dissolutions suggests that, for the majority of materials analysed, a minimum digested mass of 100 mg is recommended to mitigate the impact of small‐scale powder heterogeneity. Of the sixteen materials analysed, we therefore recommend for use as Tl reference materials the USGS materials BCR‐2, COQ‐1, GSP‐2 and STM‐1; CRPG materials AL‐I, AN‐G, FK‐N, ISH‐G, MDO‐G, Mica‐Fe, Mica‐Mg and UB‐N; NIST SRM 607 and OREAS14P.  相似文献   

6.
Although sulfur is a relatively abundant element, measurement results with small uncertainties remain challenging to achieve, especially at S mass fractions below 100 μg g-1. We report > 1700 measurement results of S for thirty-seven geological reference materials including igneous, metamorphic and sedimentary rocks, and one soil. Measurement results were obtained in two laboratories (Macquarie GeoAnalytical and Géosciences Montpellier) over a long period of time ≈ 25 years (1997–2022), using several measurement procedures: X-ray fluorescence, high temperature iodo titration and elemental analysers equipped with thermal conductivity and/or infra-red detectors. Sulfur mass fractions for these diverse geological reference materials range between 5.5 and 11,395 μg g-1. While the comprehensive data set reported here should contribute significantly to a better characterisation of the S mass fractions of widely used geological reference materials, computed uncertainties, data distribution and comparison to published values still indicate heterogeneous distribution of S carrier(s) and analytical bias.  相似文献   

7.
A method is described to estimate the chemical form of gold (Au) in a variety of geological reference samples, combining a sequential extraction scheme with graphite furnace atomic absorption spectrometry, after extraction of Au as iodide or chloride with methyl isobutyl ketone. The fractions dissolved by sequential extraction are empirically defined as the exchangeable, amorphous, metallic, aqua regia-soluble and residual fractions. The amounts of Au in the amorphous fraction have been derived mainly from oxide or amorphous phases, and the chemical forms of Au are considered to be mostly amorphous and partly metallic. The metallic fraction of Au is likely to exist as submicroscopic grains of native metal which are relatively free from the rock-forming minerals, whereas the aqua regia-soluble or residual fraction of Au may be bound more intimately perhaps as inclusions or solid solutions of either native metal or electrum in most cases. Satisfactory agreement was observed between the sum of the Au values from exchangeable to residual fractions and the reported total Au values, except for a few samples which contained a large amount of reducing materials. Analytical results of Au for twenty six geological reference materials are tabulated, and geochemical and mineralogical features are discussed.  相似文献   

8.
The double‐spike method with multi‐collector inductively coupled plasma‐mass spectrometry was used to measure the Mo mass fractions and isotopic compositions of a set of geological reference materials including the mineral molybdenite, seawater, coral, as well as igneous and sedimentary rocks. The long‐term reproducibility of the Mo isotopic measurements, based on two‐year analyses of NIST SRM 3134 reference solutions and seawater samples, was ≤ 0.07‰ (two standard deviations, 2s, n = 167) for δ98/95Mo. Accuracy was evaluated by analyses of Atlantic seawater, which yielded a mean δ98/95Mo of 2.03 ± 0.06‰ (2s, n = 30, relative to NIST SRM 3134 = 0‰) and mass fraction of 0.0104 ± 0.0006 μg g?1 (2s, n = 30), which is indistinguishable from seawater samples taken world‐wide and measured in other laboratories. The comprehensive data set presented in this study serves as a reference for quality assurance and interlaboratory comparison of high‐precision Mo mass fractions and isotopic compositions.  相似文献   

9.
Chromium (Cr) isotopes have been widely used in various fields of Earth and planetary sciences. However, high‐precision measurements of Cr stable isotope ratios are still challenged by difficulties in purifying Cr and organic matter interference from resin using double‐spike thermal ionisation mass spectrometry. In this study, an improved and easily operated two‐column chemical separation procedure using AG50W‐X12 (200–400 mesh) resin is introduced. This resin has a higher cross‐linking density than AG50W‐X8, and this higher density generates better separation efficiency and higher saturation. Organic matter from the resin is a common cause of inhibition of the emission of Cr during analysis by TIMS. Here, perchloric and nitric acids were utilised to eliminate organic matter interference. The Cr isotope ratios of samples with lower Cr contents could be measured precisely by TIMS. The long‐term intermediate measurement precision of δ53/52CrNIST SRM 979 for BHVO‐2 is better than ± 0.031‰ (2s) over one year. Replicated digestions and measurements of geological reference materials (OKUM, MUH‐1, JP‐1, BHVO‐1, BHVO‐2, AGV‐2 and GSP‐2) yield δ53/52CrNIST SRM 979 results ranging from ?0.129‰ to ?0.032‰. The Cr isotope ratios of geological reference materials are consistent with the δ53/52CrNIST SRM 979 values reported by previous studies, and the measurement uncertainty (± 0.031‰, 2s) is significantly improved.  相似文献   

10.
Measurement of Ba isotope ratios of widely available reference materials is required for interlaboratory comparison of data. Here, we present new Ba isotope data for thirty‐four geological reference materials, including silicates, carbonates, river/marine sediments and soils. These reference materials (RMs) cover a wide range of compositions, with Ba mass fractions ranging from 6.4 to 1900 µg g?1, SiO2 from 0.62% to 90.36% m/m and MgO from 0.08% to 41.03% m/m. Accuracy and precision of our data were assessed by the analyses of duplicate samples and USGS rock RMs. Barium isotopic compositions for all RMs were in agreement with each other within uncertainty. The variation of δ138/134Ba in these RMs was up to 0.7‰. The shale reference sample, affected by a high degree of chemical weathering, had the highest δ138/134Ba (0.37 ± 0.03‰), while the stream sediment obtained from a tributary draining carbonate rocks was characterised by the lowest δ138/134Ba (?0.30 ± 0.05‰). Geochemical RMs play a fundamental role in the high‐precision and accurate determination of Ba isotopic compositions for natural samples with similar matrices. Analyses of these RMs could provide universal comparability for Ba isotope data and enable assessment of accuracy for interlaboratory data.  相似文献   

11.
The lithium isotope system can be an important tracer for various geological processes, especially tracing continental weathering. The key to this application is the accurate and precise determination of lithium isotopic composition. However, some of the previously established column separation methods are not well behaved when applied to chemically diverse materials, due to the significant variations in matrix/lithium ratios in some materials. Here, we report a new dual‐column system for lithium purification to achieve accurate and precise analysis of lithium isotopic compositions using a multi‐collector inductively coupled plasma‐mass spectrometer (MC‐ICP‐MS). Compared with single‐column systems, our dual‐column system yielded a consistent elution range of the lithium‐bearing fraction (7–16 ml) for samples with a large range of lithium loads and matrix compositions, so that column re‐calibration is not required. In addition, this method achieved complete lithium recovery and low matrix interference (e.g., Na/Li ≤ 1) with a short elution time (~ 6 h, excluding evaporation), with the entire procedure completed in 1.5 days. We report high precision Li isotopic compositions in twelve chemically diverse materials including seawater, silicates, carbonates, manganese nodules and clays. New recommended Li isotopic values and associated uncertainties are presented as reference values for quality control and inter‐laboratory calibration for future research and were consistent with previously published data. However, significant lithium isotopic variances (~ 1‰) in BHVO‐2 from different batches suggest Li isotopic heterogeneity in this reference material and that Li isotopic studies using this reference material should be treated with caution.  相似文献   

12.
We report mass‐independent and mass‐dependent Ca isotopic compositions for thirteen geological reference materials, including carbonates (NIST SRM 915a and 915b), Atlantic seawater as well as ten rock reference materials ranging from peridotite to sandstone, using traditional ε and δ values relative to NIST SRM 915a, respectively. Isotope ratio determinations were conducted by independent unspiked and 43Ca‐48Ca double‐spiked measurements using a customised Triton Plus TIMS. The mean of twelve measurement results gave ε40/44Ca values within ± 1.1, except for GSP‐2 that had ε40/44Ca = 4.04 ± 0.15 (2SE). Significant radiogenic 40Ca enrichment was evident in some high K/Ca samples. At an uncertainty level of ± 0.6, all reference materials had the same ε43/44Ca and ε48/44Ca values. We suggest the use of δ44/42Ca to report mass‐dependent Ca isotopic compositions. The precision under intermediate measurement conditions for δ44/42Ca over eight months in our laboratory was ± 0.03‰ (with n ≥ 8 repeat measurements). Measured igneous reference materials gave δ44/42Ca values ranging from 0.27‰ to 0.54‰. Significant Ca isotope fractionation may occur during magmatic and metasomatism processes. Studied reference materials with higher (Dyn/Ybn) tend to have lower δ44/42Ca, implying a potential role of garnet in producing magmas with low δ44/42Ca. Sandstone GBW07106 had a δ44/42Ca value of 0.22‰, lower than all igneous rocks studied so far.  相似文献   

13.
With implications for the origin of ore deposits, redox state of the atmosphere, and effects of volcanic outgassing, understanding the sulfur cycle is vital to our investigation of Earth processes. However, the paucity of sulfur concentration measurements in silicate rocks and the lack of well‐calibrated reference materials with concentrations relevant to the rocks of interest have hindered such investigations. To aid in this endeavour, this study details a new method to determine sulfur concentration via high mass resolution solution inductively coupled plasma‐mass spectrometry (ICP‐MS). The method is based on an aqua regia leach, involving relatively rapid sample preparation and analysis, and uses small test portion masses (< 50 mg). We utilised two independently prepared standard solutions to calibrate the analyses, resulting in 4% accuracy, and applied the method to eight geochemical reference materials. Measurements were reproducible to within ~ 10%. Sulfur concentrations and isotopes of six reference materials were measured additionally by elemental analyser‐combustion‐isotope ratio mass spectrometry to independently evaluate the accuracy of the ICP‐MS method. Reference materials that yielded reproducible measurements identical to published values from other laboratories (JGb‐1, JGb‐2 and MAG‐1) are considered useful materials for the measurement of sulfur. Reference materials that varied between studies but were reproducible for a given test portion perhaps suffer from sample heterogeneity and are not recommended as sulfur reference materials.  相似文献   

14.
The platinum-group elements (PGE) and gold have been determined in twenty international rock reference materials by inductively coupled plasma-mass spectrometry (ICP-MS) after pre-concentration by a nickel sulfide fire assay. It was possible to achieve determination limits for a 50 g sample that ranged from 1 pg g-1 (Rh) to 23 pg g-1 (Au). Compared to published certified and recommended values for rock reference materials, the trueness of the method was found to be good. However, in some cases we observed large deviations for all elements in the sub 10 ng g-1 range within individual reference sample splits. Our results show that the PGE and Au are inhomogeneously distributed in the reference materials analysed here, where they are present in low concentrations, using 50 g test portions.  相似文献   

15.
A range of independently characterised reference materials (RMs) for LA‐ICP‐MS, used for the determination of the platinum‐group elements (PGE) and Au in a sulfide matrix, were analysed and compared: 8b, PGE‐A, NiS‐3, Po727‐T1, Po724‐T and the Lombard meteorite. The newly developed RM NiS‐3 was used as the RM for the calibration of all LA‐ICP‐MS analyses and the measured concentrations of the other RMs compared against their published concentrations. This data were also used to assess the consistency of concentrations calibrated against the different RMs. It was found that Po727‐T1 and 8b produced results that were comparable, within uncertainty, for all elements. Po727‐T1 also produced consistent results with NiS‐3 for all elements. All other RMs showed differences for some elements, especially Ru in Po724‐T, and Os, Ir and Au in PGE‐A. The homogeneity of the PGE and Au in each RM was assessed, by comparing the precision of multiple LA‐ICP‐MS spot analyses with the average uncertainty of the signal. Po724‐T, Po727‐T1 and the Lombard meteorite were found to be homogeneous for all elements, but 8b, PGE‐A and NiS‐3 were heterogeneous for some elements. This is the first direct comparison between a range of independently characterised PGE and Au LA‐ICP‐MS RMs.  相似文献   

16.
A procedure is described for the determination of thirty‐seven minor and trace elements (LILE, REE, HFSE, U, Th, Pb, transition elements and Ga) in ultramafic rocks. After Tm addition and acid sample digestion, compositions were determined both following a direct digestion/dilution method (without element separation) and after a preconcentration procedure using a double coprecipitation process. Four ultramafic reference materials were investigated to test and validate our procedure (UB‐N, MGL‐GAS [GeoPT12], JP‐1 and DTS‐2B). Results obtained following the preconcentration procedure are in good agreement with previously published work on REE, HFSE, U, Th, Pb and some of the transition elements (Sc, Ti, V). This procedure has two major advantages: (a) it avoids any matrix effect resulting from the high Mg content of peridotite, and (b) it allows the preconcentration of a larger trace element set than with previous methods. Other elements (LILE, other transition elements Cr, Mn, Co, Ni, Cu, Zn, as well as Ga) were not fully coprecipitated with the preconcentration method and could only be accurately determined through the direct digestion/dilution method.  相似文献   

17.
黄金标准样品的X—射线荧光光谱定量分析   总被引:3,自引:1,他引:3  
罗立强  安庆骧 《岩矿测试》1993,12(3):234-237
应用化学计量学-X-射线光谱分析软件包CMXRS V2.1,在基本参数法进行基体效应校正的基础上,选择合适的样条函数,并采用微孔面罩及石蜡衬底等实验技术,测定了29个黄金标准样品中的Au、Ag、Cu和Zn。结果证明,方法可行。Au含量在99%以上的样品,Au的分析误差不超过0.14%,Au含量小于99%的样品,Au的分析误差不超过0.25%。  相似文献   

18.
The characterisation of relative copper isotope amount ratios (δ65Cu) helps constrain a variety of geochemical processes occurring in the geosphere, biosphere and hydrosphere. The accurate and precise determination of δ65Cu in matrix reference materials is crucial in the effort to validate measurement methods. With the goal of expanding the number and variety of available geological and biological materials, we have characterised the δ65Cu values of ten reference materials by MC‐ICP‐MS using C‐SSBIN model for mass bias correction. SGR‐1b (Green River shale), DOLT‐5 (dogfish liver), DORM‐4 (fish protein), TORT‐3 (lobster hepatopancreas), MESS‐4 (marine sediment) and PACS‐3 (marine sediment) have for the first time been characterised for δ65Cu. Additionally, four reference materials (with published δ65Cu values) have been characterised: BHVO‐1 (Hawaiian basalt), BIR‐1 (Icelandic basalt), W‐2a (diabase) and Seronorm? Trace Elements Serum L‐1 (human serum). The reference materials measured in this study possess complex and varied matrices with copper mass fractions ranging from 1.2 µg g?1 to 497 µg g?1 and δ65Cu values ranging from ?0.20‰ to 0.52‰ with a mean expanded uncertainty of ± 0.07‰ (U, k = 2), covering much of the natural copper isotope variability observed in the environment.  相似文献   

19.
A procedure for the analysis of geochemical samples has been developed based on direct atomic-emission spectrometry for the determination of silver, gold and the platinum-group elements. Instrumentation comprised a DC arc emission two-jet plasmatron coupled to a diffraction spectrograph and multichannel analyser for recording emission spectra. Spectrum analysis used a comprehensive library of spectral lines for practically all elements excited using this emission source. The software programme for the automatic registration of spectra and subsequent data processing are described and results presented for a number of geochemical reference materials.  相似文献   

20.
This study presents a high‐precision Cd isotope measurement method for soil and rock reference materials using MC‐ICP‐MS with double spike correction. The effects of molecular interferences (e.g., 109Ag1H+, 94Zr16O+, 94Mo16O+ and 70Zn40Ar+) and isobaric interferences (e.g., Pd, In and Sn) to Cd isotope measurements were quantitatively evaluated. When the measured solution has Ag/Cd ≤ 5, Zn/Cd ≤ 0.02, Mo/Cd ≤ 0.4, Zr/Cd ≤ 0.001, Pd/Cd ≤ 5 × 10?5 and In/Cd ≤ 10?3, the measured Cd isotope data were not significantly affected. The intermediate measurement precision of pure Cd solutions (BAM I012 Cd, Münster Cd and AAS Cd) was better than ± 0.05‰ (2s) for δ114/110Cd. The δ114/110Cd values of soil reference materials (NIST SRM 2709, 2709a, 2710, 2710a, 2711, 2711a and GSS‐1) relative to NIST SRM 3108 were in the range of ?0.251 to 0.632‰, the δ114/110Cd values of rock reference materials (BCR‐2, BIR‐1, BHVO‐2, W‐2, AGV‐2, GSP‐2 and COQ‐1) varied from ?0.196‰ to 0.098‰, and that of the manganese nodule (NOD‐P‐1) was 0.163 ± 0.040‰ (2s, n = 8). The large variation in Cd isotopes in soils and igneous rocks indicates that they can be more widely used to study magmatic and supergene processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号