首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The arid Puna plateau of the southern Central Andes is characterized by Cenozoic distributed shortening forming intramontane basins that are disconnected from the humid foreland because of the defeat of orogen‐traversing channels. Thick Tertiary and Quaternary sedimentary fills in Puna basins have reduced topographic contrasts between the compressional basins and ranges, leading to a typical low‐relief plateau morphology. Structurally identical basins that are still externally drained straddle the eastern border of the Puna and document the eastward propagation of orographic barriers and ensuing aridification. One of them, the Angastaco basin, is transitional between the highly compartmentalized Puna highlands and the undeformed Andean foreland. Sandstone petrography, structural and stratigraphic analysis, combined with detrital apatite fission‐track thermochronology from a ~6200‐m‐thick Miocene to Pliocene stratigraphic section in the Angastaco basin, document the late Eocene to late Pliocene exhumation history of source regions along the eastern border of the Puna (Eastern Cordillera (EC)) as well as the construction of orographic barriers along the southeastern flank of the Central Andes. Onset of exhumation of a source in the EC in late Eocene time as well as a rapid exhumation of the Sierra de Luracatao (in the EC) at about 20 Ma are recorded in the detrital sediments of the Angastaco basin. Sediment accumulation in the basin began ~15 Ma, a time at which the EC had already built sufficient topography to prevent Puna sourced detritus from reaching the basin. After ~13 Ma, shortening shifted eastward, exhuming ranges that preserve an apatite fission‐track partial annealing zone recording cooling during the late Cretaceous rifting event. Facies changes and fossil content suggest that after 9 Ma, the EC constituted an effective orographic barrier that prevented moisture penetration into the plateau. Between 3.4 and 2.4 Ma, another orographic barrier was uplifted to the east, leading to further aridification and pronounced precipitation gradients along the mountain front. This study emphasizes the important role of tectonics in the evolution of climate in this part of the Andes.  相似文献   

2.
《Basin Research》2018,30(Z1):142-159
Unravelling the spatiotemporal evolution of the Cenozoic Andean (Altiplano‐Puna) plateau has been one of the most intriguing problems of South American geology. Despite a number of investigations, the early deformation and uplift history of this area remained largely enigmatic. This paper analyses the Paleogene tectono‐sedimentary history of the Casa Grande Basin, in the present‐day transition zone between the northern sector of the Puna Plateau and the northern part of the Argentine Eastern Cordillera. Our detailed mapping of synsedimentary structures records the onset of regional contractional deformation during the middle Eocene, revealing reactivation of Cretaceous extensional structures and the development of doubly vergent thrusts. This is in agreement with records from other southern parts of the Puna Plateau and the Eastern Cordillera. These observations indicate the existence of an Eocene broken foreland setting within the region, characterized by low‐lying compressional basins and ranges with spatially disparate sectors of deformation, which was subsequently subjected to regional uplift resulting in the attainment of present‐day elevations during the Neogene.  相似文献   

3.
Two end‐member models have been proposed for the Paleogene Andean foreland: a simple W‐E migrating foreland model and a broken‐foreland model. We present new stratigraphic, sedimentological and structural data from the Paleogene Quebrada de los Colorados (QLC) Formation, in the Eastern Cordillera, with which to test these two different models. Basin‐wide unconformities, growthstrata and changes in provenance indicate deposition of the QLC Formation in a tectonically active basin. Both west‐ and east‐vergent structures, rooted in the basement, controlled the deposition and distribution of the QLC Formation from the Middle Eocene to the Early Miocene. The provenance analysis indicates that the main source areas were basement blocks, like the Paleozoic Oire Eruptive Complex, uplifted during Paleogene shortening, and that delimits the eastern boundary of the present‐day intraorogenic Puna plateau. A comparison of the QLC sedimentary basin‐fill pattern with those of adjacent Paleogene basins in the Puna plateau and in the Santa Bárbara System highlights the presence of discrete depozones. These reflect the early compartmentalization of the foreland, rather than a stepwise advance of the deformation front of a thrust belt. The early Tertiary foreland of the southern central Andes is represented by a ca. 250‐km‐wide area comprising several deformation zones (Arizaro, Macón, Copalayo and Calchaquí) in which doubly vergent or asymmetric structures, rooted in the basement, were generated. Hence, classical foreland model is difficult to apply in this Paleogene basin; and our data and interpretation agree with a broken‐foreland model.  相似文献   

4.
《Basin Research》2017,29(Z1):131-155
Intermontane basins are illuminating stratigraphic archives of uplift, denudation and environmental conditions within the heart of actively growing mountain ranges. Commonly, however, it is difficult to determine from the sedimentary record of an individual basin whether basin formation, aggradation and dissection were controlled primarily by climatic, tectonic or lithological changes and whether these drivers were local or regional in nature. By comparing the onset of deposition, sediment‐accumulation rates, incision, deformation, changes in fluvial connectivity and sediment provenance in two interrelated intermontane basins, we can identify diverse controls on basin evolution. Here, we focus on the Casa Grande basin and the adjacent Humahuaca basin along the eastern margin of the Puna Plateau in northwest Argentina. Underpinning this analysis is the robust temporal framework provided by U‐Pb geochronology of multiple volcanic ashes and our new magnetostratigraphical record in the Humahuaca basin. Between 3.8 and 0.8 Ma, ~120 m of fluvial and lacustrine sediments accumulated in the Casa Grande basin as the rate of uplift of the Sierra Alta, the bounding range to its east, outpaced fluvial incision by the Río Yacoraite, which presently flows eastward across the range into the Humahuaca basin. Detrital zircon provenance analysis indicates a progressive loss of fluvial connectivity from the Casa Grande basin to the downstream Humahuaca basin between 3 and 2.1 Ma, resulting in the isolation of the Casa Grande basin from 2.1 Ma to <1.7 Ma. This episode of basin isolation is attributed to aridification due to the uplift of the ranges to the east. Enhanced aridity decreased sediment supply to the Casa Grande basin to the point that aggradation could no longer keep pace with the rate of the surface uplift at the outlet of the basin. Synchronous events in the Casa Grande and Humahuaca basins suggest that both the initial onset of deposition above unconformities at ~3.8 Ma and the re‐establishment of fluvial connectivity at ~0.8 Ma were controlled by climatic and/or tectonic changes affecting both basins. Reintegration of the fluvial network allowed subsequent incision in the Humahuaca basin to propagate upstream into the Casa Grande basin.  相似文献   

5.
The Pipanaco Basin, in the southern margin of the Andean Puna plateau at ca. 28°SL, is one of the largest and highest intermontane basins within the northernmost Argentine broken foreland. With a surface elevation >1000 m above sea level, this basin represents a strategic location to understand the subsidence and subsequent uplift history of high‐elevation depositional surfaces within the distal Andean foreland. However, the stratigraphic record of the Pipanaco Basin is almost entirely within the subsurface, and no geophysical surveys have been conducted in the region. A high‐resolution gravity study has been designed to understand the subsurface basin geometry. This study, together with stratigraphic correlations and flexural and backstripping analysis, suggests that the region was dominated by a regional subsidence episode of ca. 2 km during the Miocene‐Pliocene, followed by basement thrusting and ca. 1–1.5 km of sediment filling within restricted intermontane basin between the Pliocene‐Pleistocene. Based on the present‐day position of the basement top as well as the Neogene‐Present sediment thicknesses across the Sierras Pampeanas, which show slight variations along strike, sediment aggradation is not the most suitable process to account for the increase in the topographic level of the high‐elevation, close‐drainage basins of Argentina. The close correlation between the depth to basement and the mean surface elevations recorded in different swaths indicates that deep‐seated geodynamic process affected the northern Sierras Pampeanas. Seismic tomography, as well as a preliminary comparison between the isostatic and seismic Moho, suggests a buoyant lithosphere beneath the northern Sierras Pampeanas, which might have driven the long‐wavelength rise of this part of the broken foreland after the major phase of deposition in these Andean basins.  相似文献   

6.
The intermontane Quebrada de Humahuaca Basin (Humahuaca Basin) in the Eastern Cordillera of the southern Central Andes of NW Argentina (23°–24°S) records the evolution of a formerly contiguous foreland‐basin setting to an intermontane depositional environment during the late stages of Cenozoic Andean mountain building. This basin has been and continues to be subject to shortening and surface uplift, which has resulted in the establishment of an orographic barrier for easterly sourced moisture‐bearing winds along its eastern margin, followed by leeward aridification. We present new U–Pb zircon ages and palaeocurrent reconstructions suggesting that from at least 6 Ma until 4.2 Ma, the Humahuaca Basin was an integral part of a largely contiguous depositional system that became progressively decoupled from the foreland as deformation migrated eastward. The Humahuaca Basin experienced multiple cycles of severed hydrological conditions and subsequent re‐captured drainage, fluvial connectivity with the foreland and sediment evacuation. Depositional and structural relationships among faults, regional unconformities and deformed landforms reveal a general pattern of intrabasin deformation that appears to be associated with different cycles of alluviation and basin excavation in which deformation is focused on basin‐internal structures during or subsequent to phases of large‐scale sediment removal.  相似文献   

7.
Although the Neuquén basin in Argentina forms a key transitional domain between the south‐central Andes and the Patagonian Andes, its Cenozoic history is poorly documented. We focus on the sedimentologic and tectonic evolution of the southern part of this basin, at 39–40°30′S, based on study of 14 sedimentary sections. We provide evidence that this basin underwent alternating erosion and deposition of reworked volcaniclastic material in continental and fluvial settings during the Neogene. In particular, basement uplift of the Sañico Massif, due to Late Miocene–Pliocene intensification of tectonic activity, led to sediment partitioning in the basin. During this interval, sedimentation was restricted to the internal domain and the Collon Cura basin evolved towards an endorheic intermontane basin. From stratigraphic interpretation, this basin remained isolated 7–11 Myr. Nevertheless, ephemeral gateways seem to have existed, because we observe a thin succession downstream of the Sañico Massif contemporaneous with the Collon Cura basin‐fill sequence. Comparisons of stratigraphic, paleoenvironmental and tectonic features of the southern Neuquén basin with other foreland basins of South America allow us to classify it as a broken foreland with the development of an intermontane basin from Late Miocene to Late Pliocene. This implies a thick‐skinned structural style for this basin, with reactivation of basement faults responsible for exhumation of the Sañico Massif. Comparison of several broken forelands of South America allows us to propose two categories of intermontane basins according to their structural setting: subsiding or uplifted basins, which has strong implications on their excavation histories.  相似文献   

8.
Important aspects of the Andean foreland basin in Argentina remain poorly constrained, such as the effect of deformation on deposition, in which foreland basin depozones Cenozoic sedimentary units were deposited, how sediment sources and drainages evolved in response to tectonics, and the thickness of sediment accumulation. Zircon U‐Pb geochronological data from Eocene–Pliocene sedimentary strata in the Eastern Cordillera of northwestern Argentina (Pucará–Angastaco and La Viña areas) provide an Eocene (ca. 38 Ma) maximum depositional age for the Quebrada de los Colorados Formation. Sedimentological and provenance data reveal a basin history that is best explained within the context of an evolving foreland basin system affected by inherited palaeotopography. The Quebrada de los Colorados Formation represents deposition in the distal to proximal foredeep depozone. Development of an angular unconformity at ca. 14 Ma and the coarse‐grained, proximal character of the overlying Angastaco Formation (lower to upper Miocene) suggest deposition in a wedge‐top depozone. Axial drainage during deposition of the Palo Pintado Formation (upper Miocene) suggests a fluvial‐lacustrine intramontane setting. By ca. 4 Ma, during deposition of the San Felipe Formation, the Angastaco area had become structurally isolated by the uplift of the Sierra de los Colorados Range to the east. Overall, the Eastern Cordillera sedimentary record is consistent with a continuous foreland basin system that migrated through the region from late Eocene through middle Miocene time. By middle Miocene time, the region lay within the topographically complex wedge‐top depozone, influenced by thick‐skinned deformation and re‐activation of Cretaceous rift structures. The association of the Eocene Quebrada del los Colorados Formation with a foredeep depozone implies that more distal foreland deposits should be represented by pre‐Eocene strata (Santa Barbara Subgroup) within the region.  相似文献   

9.
This paper addresses foreland basin fragmentation through integrated detrital zircon U–Pb geochronology, sandstone petrography, facies analysis and palaeocurrent measurements from a Mesozoic–Cenozoic clastic succession preserved in the northern Andean retroarc fold‐thrust belt. Situated along the axis of the Eastern Cordillera of Colombia, the Floresta basin first received sediment from the eastern craton (Guyana shield) in the Cretaceous–early Palaeocene and then from the western magmatic arc (Central Cordillera) starting in the mid‐Palaeocene. The upper‐crustal magmatic arc was replaced by a metamorphic basement source in the middle Eocene. This, in turn, was replaced by an upper‐crustal fold‐thrust belt source in the late Eocene which persisted until Oligocene truncation of the Cenozoic section by the eastward advancing thrust front. Sedimentary facies analysis indicates minimal changes in depositional environments from shallow marine to low‐gradient fluvial and estuarine deposits. These same environments are recorded in coeval strata across the Eastern Cordillera. Throughout the Palaeogene, palaeocurrent and sediment provenance data point to a uniform western or southwestern sediment source. These data show that the Floresta basin existed as part of a laterally extensive, unbroken foreland basin connected with the proximal western (Magdalena Valley) basin from mid‐Paleocene to late Eocene time when it was isolated by uplift of the western flank of the Eastern Cordillera. The Floresta basin was also connected with the distal eastern (Llanos) basin from the Cretaceous until its late Oligocene truncation by the advancing thrust front.  相似文献   

10.
As the highest part of the central Andean fold‐thrust belt, the Eastern Cordillera defines an orographic barrier dividing the Altiplano hinterland from the South American foreland. Although the Eastern Cordillera influences the climatic and geomorphic evolution of the central Andes, the interplay among tectonics, climate and erosion remains unclear. We investigate these relationships through analyses of the depositional systems, sediment provenance and 40Ar/39Ar geochronology of the upper Miocene Cangalli Formation exposed in the Tipuani‐Mapiri basin (15–16°S) along the boundary of the Eastern Cordillera and Interandean Zone in Bolivia. Results indicate that coarse‐grained nonmarine sediments accumulated in a wedge‐top basin upon a palaeotopographic surface deeply incised into deformed Palaeozoic rocks. Seven lithofacies and three lithofacies associations reflect deposition by high‐energy braided river systems, with stratigraphic relationships revealing significant (~500 m) palaeorelief. Palaeocurrents and compositional provenance data link sediment accumulation to pronounced late Miocene erosion of the deepest levels of the Eastern Cordillera. 40Ar/39Ar ages of interbedded tuffs suggest that sedimentation along the Eastern Cordillera–Interandean Zone boundary was ongoing by 9.2 Ma and continued until at least ~7.4 Ma. Limited deformation of subhorizontal basin fill, in comparison with folded and faulted rocks of the unconformably underlying Palaeozoic section, implies that the thrust front had advanced into the Subandean Zone by the 11–9 Ma onset of basin filling. Documented rapid exhumation of the Eastern Cordillera from ~11 Ma onward was decoupled from upper‐crustal shortening and coeval with sedimentation in the Tipuani‐Mapiri basin, suggesting climate change (enhanced precipitation) or lower crustal and mantle processes (stacking of basement thrust sheets or removal of mantle lithosphere) as possible controls on late Cenozoic erosion and wedge‐top accumulation. Regardless of the precise trigger, we propose that an abruptly increased supply of wedge‐top sediment produced an additional sedimentary load that helped promote late Miocene advance of the central Andean thrust front in the Subandean Zone.  相似文献   

11.
Depositional models of ancient lakes in thin‐skinned retroarc foreland basins rarely benefit from appropriate Quaternary analogues. To address this, we present new stratigraphic, sedimentological and geochemical analyses of four radiocarbon‐dated sediment cores from the Pozuelos Basin (PB; northwest Argentina) that capture the evolution of this low‐accommodation Puna basin over the past ca. 43 cal kyr. Strata from the PB are interpreted as accumulations of a highly variable, underfilled lake system represented by lake‐plain/littoral, profundal, palustrine, saline lake and playa facies associations. The vertical stacking of facies is asymmetric, with transgressive and thin organic‐rich highstand deposits underlying thicker, organic‐poor regressive deposits. The major controls on depositional architecture and basin palaeogeography are tectonics and climate. Accommodation space was derived from piggyback basin‐forming flexural subsidence and Miocene‐Quaternary normal faulting associated with incorporation of the basin into the Andean hinterland. Sediment and water supply was modulated by variability in the South American summer monsoon, and perennial lake deposits correlate in time with several well‐known late Pleistocene wet periods on the Altiplano/Puna plateau. Our results shed new light on lake expansion–contraction dynamics in the PB in particular and provide a deeper understanding of Puna basin lakes in general.  相似文献   

12.
The onset of deformation in the northern Andes is overprinted by subsequent stages of basin deformation, complicating the examination of competing models illustrating potential location of earliest synorogenic basins and uplifts. To establish the width of the earliest northern Andean orogen, we carried out field mapping, palynological dating, sedimentary, stratigraphic and provenance analyses in Campanian to lower Eocene units exposed in the northern Eastern Cordillera of Colombia (Cocuy region) and compare the results with coeval succession in adjacent basins. The onset of deformation is recorded in earliest Maastrichtian time, as terrigenous detritus arrived into the basin marking the end of chemical precipitation and the onset of clastic deposition produced by the uplift of a western source area dominated by shaly Cretaceous rocks. Disconformable contacts within the upper Maastrichtian to middle Palaeocene succession document increasing supply of quartzose sandy detritus from Cretaceous quartzose rocks exposed in eastern source areas. The continued unroofing of both source areas produced a rapid shift in depositional environments from shallow marine in Maastrichtian to fluvial‐lacustrine systems during the Palaeocene‐early Eocene. Supply of immature Jurassic sandstones from nearby western uplifts, together with localized plutonic and volcanic Cretaceous rocks, caused a shift in Palaeocene sandstones composition from quartzarenites to litharenites. Supply of detrital sandy fragments, unstable heavy minerals and Cretaceous to Ordovician detrital zircons, were derived from nearby uplifted blocks and from SW fluvial systems within the synorogenic basin, instead of distal basement rocks. The presence of volcanic rock fragments and 51–59 Ma volcanic zircons constrain magmatism within the basin. The Maastrichtian–Palaeocene sequence studied here documents crustal deformation that correlates with coeval deformation farther south in Ecuador and Peru. Slab flattening of the subducting Caribbean plate produced a wider orogen (>400 km) with a continental magmatic arc and intra‐basinal deformation and magmatism.  相似文献   

13.
The Alhama de Murcia and Crevillente faults in the Betic Cordillera of southeast Spain form part of a network of prominent faults, bounding several of the late Tertiary and Quaternary intermontane basins. Current tectonic interpretations of these basins vary from late‐orogenic extensional structures to a pull‐apart origin associated with strike–slip movements along these prominent faults. A strike–slip origin of the basins, however, seems at variance both with recent structural studies of the underlying Betic basement and with the overall basin and fault geometry. We studied the structure and kinematics of the Alhama de Murcia and Crevillente faults as well as the internal structure of the late Miocene basin sediments, to elucidate possible relationships between the prominent faults and the adjacent basins. The structural data lead to the inevitable conclusion that the late Miocene basins developed as genuinely extensional basins, presumably associated with the thinning and exhumation of the underlying basement at that time. During the late Miocene, neither the Crevillente fault nor the Alhama de Murcia fault acted as strike–slip faults controlling basin development. Instead, parts of the Alhama de Murcia fault initiated as extensional normal faults, and reactivated as contraction faults during the latest Miocene–early Pliocene in response to continued African–European plate convergence. Both prominent faults presently act as reverse faults with a movement sense towards the southeast, which is clearly at variance with the commonly inferred dextral or sinistral strike–slip motions on these faults. We argue that the prominent faults form part of a larger scale zone of post‐Messinian shortening made up of SSE‐ and NNW‐directed reverse faults and NE to ENE‐trending folds including thrust‐related fault‐bend folds and fault‐propagation folds, transected and displaced by, respectively, WNW‐ and NNE‐trending, dextral and sinistral strike–slip (tear or transfer) faults.  相似文献   

14.
Sedimentary basins in the interior of orogenic plateaus can provide unique insights into the early history of plateau evolution and related geodynamic processes. The northern sectors of the Iranian Plateau of the Arabia–Eurasia collision zone offer the unique possibility to study middle–late Miocene terrestrial clastic and volcaniclastic sediments that allow assessing the nascent stages of collisional plateau formation. In particular, these sedimentary archives allow investigating several debated and poorly understood issues associated with the long‐term evolution of the Iranian Plateau, including the regional spatio‐temporal characteristics of sedimentation and deformation and the mechanisms of plateau growth. We document that middle–late Miocene crustal shortening and thickening processes led to the growth of a basement‐cored range (Takab Range Complex) in the interior of the plateau. This triggered the development of a foreland‐basin (Great Pari Basin) to the east between 16.5 and 10.7 Ma. By 10.7 Ma, a fast progradation of conglomerates over the foreland strata occurred, most likely during a decrease in flexural subsidence triggered by rock uplift along an intraforeland basement‐cored range (Mahneshan Range Complex). This was in turn followed by the final incorporation of the foreland deposits into the orogenic system and ensuing compartmentalization of the formerly contiguous foreland into several intermontane basins. Overall, our data suggest that shortening and thickening processes led to the outward and vertical growth of the northern sectors of the Iranian Plateau starting from the middle Miocene. This implies that mantle‐flow processes may have had a limited contribution toward building the Iranian Plateau in NW Iran.  相似文献   

15.
A multidisciplinary approach, combining sediment petrographic, palynological and thermochronological techniques, has been used to study the Miocene‐Pliocene sedimentary record of the evolution of the Venezuelan Andes. Samples from the Maracaibo (pro‐wedge) and Barinas (retro‐wedge) foreland basins, proximal to this doubly vergent mountain belt, indicate that fluvial and alluvial‐fan sediments of similar composition were shed to both sides of the Venezuelan Andes. Granitic and gneissic detritus was derived from the core of the mountain belt, whereas sedimentary cover rocks and uplifted foreland basin sediments were recycled from its flanks. Palynological evidence from the Maracaibo and Barinas basins constrains depositional ages of the studied sections from late Miocene to Pliocene. The pollen assemblages from the Maracaibo Basin are indicative of mountain vegetation, implying surface elevations of up to 3500–4000 m in the Venezuelan Andes at this time. Detrital apatite fission‐track (AFT) data were obtained from both stratigraphic sections. In samples from the Maracaibo basin, the youngest AFT grain‐age population has relatively static minimum ages of 5 ± 2 Ma, whereas for the Barinas basin samples AFT minimum ages are 7 ± 2 Ma. With exception of two samples collected from the Eocene Pagüey Formation and from the very base of the Miocene Parángula Formation, no evidence for resetting and track annealing in apatite due to burial heating in the basins was found. This is supported by rock‐eval analyses on organic matter and thermal modelling results. Therefore, for all other samples the detrital AFT ages reflect source area cooling and impose minimum age constraints on sediment deposition. The main phase of surface uplift, topography and relief generation, and erosional exhumation in the Venezuelan Andes occurred during the late Miocene to Pliocene. The Neogene evolution of the Venezuelan Andes bears certain similarities with the evolution of the Eastern Cordillera in Colombia, although they are not driven by exactly the same underlying geodynamic processes. The progressive development of the two mountain belts is seen in the context of collision of the Panama arc with northwestern South America and the closure of the Panama seaway in Miocene times, as well as contemporaneous movement of the Caribbean plate to the east and clock‐wise rotation of the Maracaibo block.  相似文献   

16.
Evolution of the late Cenozoic Chaco foreland basin, Southern Bolivia   总被引:3,自引:1,他引:3  
Eastward Andean orogenic growth since the late Oligocene led to variable crustal loading, flexural subsidence and foreland basin sedimentation in the Chaco basin. To understand the interaction between Andean tectonics and contemporaneous foreland development, we analyse stratigraphic, sedimentologic and seismic data from the Subandean Belt and the Chaco Basin. The structural features provide a mechanism for transferring zones of deposition, subsidence and uplift. These can be reconstructed based on regional distribution of clastic sequences. Isopach maps, combined with sedimentary architecture analysis, establish systematic thickness variations, facies changes and depositional styles. The foreland basin consists of five stratigraphic successions controlled by Andean orogenic episodes and climate: (1) the foreland basin sequence commences between ~27 and 14 Ma with the regionally unconformable, thin, easterly sourced fluvial Petaca strata. It represents a significant time interval of low sediment accumulation in a forebulge‐backbulge depocentre. (2) The overlying ~14–7 Ma‐old Yecua Formation, deposited in marine, fluvial and lacustrine settings, represents increased subsidence rates from thrust‐belt loading outpacing sedimentation rates. It marks the onset of active deformation and the underfilled stage of the foreland basin in a distal foredeep. (3) The overlying ~7–6 Ma‐old, westerly sourced Tariquia Formation indicates a relatively high accommodation and sediment supply concomitant with the onset of deposition of Andean‐derived sediment in the medial‐foredeep depocentre on a distal fluvial megafan. Progradation of syntectonic, wedge‐shaped, westerly sourced, thickening‐ and coarsening‐upward clastics of the (4) ~6–2.1 Ma‐old Guandacay and (5) ~2.1 Ma‐to‐Recent Emborozú Formations represent the propagation of the deformation front in the present Subandean Zone, thereby indicating selective trapping of coarse sediments in the proximal foredeep and wedge‐top depocentres, respectively. Overall, the late Cenozoic stratigraphic intervals record the easterly propagation of the deformation front and foreland depocentre in response to loading and flexure by the growing Intra‐ and Subandean fold‐and‐thrust belt.  相似文献   

17.
Foreland basins are important recorders of tectonic and climatic processes in evolving mountain ranges. The Río Iruya canyon of NW Argentina (23° S) exposes ca. 7500 m of Orán Group foreland basin sediments, spanning over 8 Myr of near continuous deposition in the Central Andes. This study presents a record of sedimentary provenance for the Iruya Section in the context of a revised stratigraphic chronology. We use U‐Pb zircon ages from six interbedded ash layers and new magnetostratigraphy to constrain depositional ages in the section between 1.94 and 6.49 Ma, giving an average sedimentation rate of 0.93 ± 0.02 (2σ) km Myr?1. We then pair U‐Pb detrital zircon dating with quartz trace‐element analysis to track changes in sedimentary provenance from ca. 7.6 to 1.8 Ma. Results suggest that from ca. 7.6 to ca. 6.3 Ma, the Iruya watershed did not tap the Salta Group or Neogene volcanics that are currently exposed in the eastern Cordillera and Puna margin. One explanation is that a long‐lived topographic barrier separated the eastern Puna from the foreland for much of the mid‐late Miocene, and that the arrival of Jurassic‐Neogene zircons records regional tectonic reactivation at ca. 6.3 Ma. A second major provenance shift at ca. 4 Ma is marked by changes in the zircon and quartz populations, which appear to be derived from a restricted source region in Proterozoic‐Ordovician meta‐sediments. Considered in conjunction with the onset of coarse conglomerate deposition, we attribute this shift to accelerated uplift of the Santa Victoria range, which currently defines the catchment's western limit. A third shift at ca. 2.3 Ma records an apparent disconnection of the Iruya with the eastern Puna, perhaps due to defeat of the proto Rio‐Iruya by the rising Santa Victoria range. This study is one of the first applications of quartz trace‐element provenance analysis, which we show to be an effective complement to U‐Pb detrital zircon dating when appropriate statistical methods are applied.  相似文献   

18.
ABSTRACT A Tortonian to Pliocene magnetostratigraphy of the Fortuna basin supports a new chronostratigraphic framework, which is significant for the palaeogeographical and geodynamic evolution of the Eastern Betics in SE Spain.
The Neogene Fortuna basin is an elongated trough which formed over a left-lateral strike-slip zone in the Eastern Betics in the context of the convergence between the African and Iberian plates. Coeval with other basins in the Alicante–Cartagena area (Eastern Betics), rapid initial subsidence in the Fortuna basin started in the Tortonian as a result of WNW–ESE stretching. This led to transgression and deposition of marine sediments over extensive areas in open connection with the neighbouring basins. Since the late Tortonian, N–S to NW–SE compression led to inversion of older extensional structures. The transpressional tectonics along the NE–SW-trending Alhama de Murcia Fault is related to the rising of a structural high which isolated the Fortuna basin from the open Mediterranean basin. The progression of basin confinement is indicated by the development of restricted marine environments and deposition of evaporites (7.8–7.6 Ma). The new basin configuration favoured rapid sediment accumulation and marine regression. The basin subsided rapidly during the Messinian, leading to the accumulation of thick continental sequences. During the Pliocene, left-lateral shear along the Alhama de Murcia Fault caused synsedimentary folding, vertical axis block rotations and uplift of both the basin and its margins. The overall sedimentary evolution of the Fortuna basin can be regarded as a developing pull-apart basin controlled by NE–SW strike-slip faults. This resembles the evolution that has taken place in some areas of the Eastern Alboran basin since the late Tortonian.  相似文献   

19.
In order to evaluate the relationship between thrust loading and sedimentary facies evolution, we analyse the progradation of fluvial coarse‐grained deposits in the retroarc foreland basin system of the northern Andes of Colombia. We compare the observed sedimentary facies distribution with the calculated one‐dimensional (1D) Eocene to Quaternary sediment‐accumulation rates in the Medina wedge‐top basin and with a three‐dimensional (3D) sedimentary budget based on the interpretation of ~1800 km of industry‐style seismic reflection profiles and borehole data. Age constraints are derived from a new chronostratigraphic framework based on extensive fossil palynological assemblages. The sedimentological data from the Medina Basin reveal rapid accumulation of fluvial and lacustrine sediments at rates of up to ~500 m my?1 during the Miocene. Provenance data based on gravel petrography and paleocurrents reveal that these Miocene fluvial systems were sourced from Upper Cretaceous and Paleocene sedimentary units exposed to the west in the Eastern Cordillera. Peak sediment‐accumulation rates in the upper Carbonera Formation and the Guayabo Group occur during episodes of coarse‐grained facies progradation in the early and late Miocene proximal foredeep. We interpret this positive correlation between sediment accumulation and gravel deposition as the direct consequence of thrust activity along the Servitá–Lengupá faults. This contrasts with one class of models relating gravel progradation in more distal portions of foreland basin systems to episodes of tectonic quiescence.  相似文献   

20.
The wedge‐top depozone in the southern Taiwan foreland basin system is confined by the topographic front of the Chaochou Fault to the east and by a submarine deformation front to the west. The Pingtung Plain, Kaoping Shelf and Kaoping Slope constitute the main body of the wedge‐top depozone. In a subaerial setting, the alluvial and fluvial sediments accumulate on top of the frontal parts of the Taiwan orogenic wedge to form the Pingtung Plain proximal to high topographic relief. In a submarine setting, fine‐grained sediments accumulate on the Kaoping Shelf and dominant mass‐wasting sediment forms the Kaoping Slope. Wedge‐top sediments are deformed into a series of west‐vergent imbricated thrusts and folds and associated piggyback basins. A major piggyback basin occurs in the Pingtung Plain. Four smaller piggyback basins appear in the shelf–slope region. Many small‐sized piggyback basins developed over ramp folds in the lower slope region. Pliocene–Quaternary deep marine to fluvial sediments about 5000 m thick have been deposited on top of the frontal orogenic wedge in southern Taiwan. Sedimentary facies shows lateral variations from extremely coarse fluvial conglomerates proximal to the topographic front (Chaochou Fault) to fine‐grained deep marine mud close to the deformation front near the base of the slope. The stratigraphic column indicates that offshore deep‐water mud is gradationally overlain by shallow marine sands and then fluvial deposits. The transverse cross‐section of the wedge‐top depozone in the southern Taiwan is a doubly tapered prism. The northern boundary of the wedge‐top depozone in southern Taiwan is placed along the southern limit of the Western Foothills where the frontal orogenic wedge progressively changes southward to a wedge‐top depozone (Pingtung Plain), reflecting ongoing southward oblique collision between the Luzon Arc and the Chinese margin. The wedge‐top depozone is bounded to the south by the continent–ocean crust boundary. The deep slope west of the Hengchun Ridge can be viewed as an infant wedge‐top depozone, showing initial mountain building and the beginning of wedge‐top depozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号