共查询到10条相似文献,搜索用时 0 毫秒
1.
The quantifiable clinothem – types,shapes and geometric relationships in the Plio‐Pleistocene Giant Foresets Formation,Taranaki Basin,New Zealand 下载免费PDF全文
The understanding of how clinoforms develop is approached based on shape and dimensions, correlation between geometric parameters, and internal characteristics of clinothems bounded by clinoform surfaces in high‐resolution 2D seismic data from the Giant Foresets Formation, Taranaki Basin, offshore New Zealand. The study subdivides the observed clinothems to identify nine types: 1. Oblique 2. Tangential oblique 3. Tangential oblique chaotic 4. Sigmoidal symmetrical 5. Sigmoidal divergent 6. Sigmoidal chaotic 7. Asymmetrical top‐heavy 8. Asymmetrical bottom‐heavy 9. Complex. Accommodation is a dominant control on the type of clinothem that develops, whereby limited accommodation promotes clinothems with significant shelf‐edge advance and low trajectory angles, while increasing accommodation promotes higher trajectory angles and increased deposition on the shelf. Further variations in shape, slope and deposition are influenced by many factors of which sediment influx appears be a fundamental driver. Sigmoidal clinothems tend to show a strong relationship between their maximum thickness and average thickness, their overall slope and maximum foreset angle, along with a high correlation between average thickness and toe advance. This suggests that they distribute sediment in a manner that may be possible to predict and quantify. The increasing steepness of the foreset slope from bottom‐heavy to symmetrical to top‐heavy clinothems, respectively, is dominantly the result of decreasing sediment influx. The clinothems with the steepest slopes, along with chaotic clinothems, are associated with comparatively large toe advance suggesting a strong link between over‐steepened slopes and/or collapse, and processes promoting sediment deposition along the basin floor. Apart from toe advance, the two types of chaotic clinothems develop differently from each other, and from their assumed parent‐clinothem. Tangential oblique chaotic forms steepen, and shelf‐edge advance is limited, suggesting upper slope collapse. Sigmoidal chaotic clinothems have comparatively higher shelf‐edge advance, lower shelf‐edge trajectories and gentler slopes and profiles, suggesting different processes are responsible for their development and resulting shape. 相似文献
2.
In submarine settings, the growth of structurally influenced topography can play a decisive role in controlling the routing of sediments from shelf-edge to deep water, and can determine depositional architectures and sediment characteristics. Here we use well-constrained examples from the deep water Niger Delta, where gravity-driven deformation has resulted in the development of a large fold and thrust belt, to illustrate how spatial and temporal variations in the rate of deformation have controlled the nature and locus of contrasting depositional styles. Published work in the study area using 3D seismic data has quantified the growth history of the thrust-related folds at multiple locations using line-length-balancing, enabling cumulative strain for individual structures over time and along-strike to be obtained. We integrate this information with seismic interpretation and facies analysis, focusing on the interval of maximum deformation (15 to 3.7 Ma), where maximum strain rates reached 7%/Ma. Within this interval, we observe a vertical change in depositional architecture where: (1) leveed-confined and linear channels pass upward in to (2) ponded lobes with erosionally confined channels and finally (3) channelised sheets. Our analysis demonstrate that this change is tectonically induced and diachronous across the fault array, and we characterise the extent to which structural growth controls both the distribution and the architecture of the turbidite deposits in such settings. In particular, we show that leveed-confined channels exist when they can exploit strain minima between growing faults or at their lateral tips. Conversely, as a result of fault linkage and increased strain rates submarine channels become erosional and may be forced to cross folds at their strain maxima (crests), where their pathways are influenced by across-strike variations in shortening for individual structures. Our results enable us to propose new conceptual models of submarine channel deposition in structurally complex margins, and provide new insights into the magnitude of fault interaction needed to alter depositional style from leveed to erosionally confined channels, or to deflect seabed systems around growing structures. 相似文献
3.
4.
Diane I. Doser Terry H. Webb & Diane E. Maunder 《Geophysical Journal International》1999,139(3):769-794
We present the results of body waveform modelling studies for 17 earthquakes of M w ≥5.7 occurring in the South Island, New Zealand region between 1918 and 1962, including the 1929 M s = 7.8 Buller earthquake, the largest earthquake to have occurred in the South Island this century. These studies confirm the concept of slip partitioning in the northern South Island between strike-slip faulting in southwestern Marlborough and reverse and strike-slip faulting in the Buller region, but indicate that the zone of reverse faulting is quite localized. In the central South Island, all historical earthquakes appear to be associated with strike-slip faulting, although recent (post-1991) reverse faulting events suggest that slip partitioning also occurs within this region. The difference between historical and recent seismicity in the central South Island may also reflect stress readjustment occurring in response to the 1717 ad rupture along the Alpine fault. Within the Fiordland region (southwestern South Island) none of the historical earthquakes appears to have occurred along the Australian/Pacific plate interface, but rather they are associated with complex deformation of the subducting plate as well as with deformation of the upper (Pacific) plate. Two earthquakes in the Puysegur Bank region south of the South Island suggest that strike-slip deformation east of the Puysegur Trench is playing a major role in the tectonics of the region. 相似文献
5.
The spatial stability of alcohol outlets and crime in post‐disaster Christchurch,New Zealand 下载免费PDF全文
The devastating Canterbury Earthquakes of 2010 and 2011 left an indelible mark on the city of Christchurch. The social and economic upheaval that immediately followed the Earthquakes has, in time, been replaced with a period of rebuild and transformation. In this study we investigate the effects that the Canterbury Earthquakes had on two important and inter‐related phenomena in the city: alcohol availability and crime. More specifically, we investigate how alcohol outlets and crime across six different categories changed in magnitude and spatial distribution pre‐ (end‐2009) and post‐ (end‐2014) earthquake. We do this using a variety of geospatial techniques including a relatively new method: the spatial point pattern test which allows for the identification of changes in spatial patterns at the local level. Results indicate that both alcohol outlets and crime have decreased in magnitude since the Canterbury Earthquakes. Using the spatial point pattern test we found statistically significant differences in spatial point patterns for both alcohol outlets and all crime types pre‐ to post‐earthquake. The similarity in the differences of the spatial distributions of alcohol outlets and crime provides a first empirical clue of their potential association in the city post‐earthquake. 相似文献
6.
The 2003 August 21 Fiordland earthquake ( M L 7.0, M W 7.2) was the largest earthquake to occur in New Zealand for 35 yr and the fifth of M6+ associated with shallow subduction in Fiordland in the last 15 yr. The aftershocks are diffuse and do not distinguish between the two possible main shock fault planes implied by the Harvard CMT solution, one corresponding to subduction interface thrusting and the other corresponding to steeply seaward dipping thrusting. The distinction is important for calculating the induced stress changes on the overlying Alpine Fault which has a history of very large earthquakes, the last possibly in 1717. We have relocated the aftershocks, using data from temporary seismographs in the epicentral region and the double difference technique. We then use the correlation between aftershock hypocentres and regions of positive changes in Coulomb Failure Stress (CFS) due to various candidate main shock fault planes to argue for concentrated slip on the shallow landward dipping subduction interface. Average changes in CFS on the offshore segments of the Alpine Fault are then negative, retarding any future large events. In our models the change in CFS is evaluated on faults of optimal orientation in the regional stress field as determined by inversion of P -wave polarities. 相似文献
7.
M. Gómez‐Paccard M. López‐Blanco E. Costa M. Garcés E. Beamud J. C. Larrasoaña 《Basin Research》2012,24(4):437-455
A magnetostratigraphy‐based chronological framework has been constructed in the Eocene sediments of the Montserrat alluvial fan/fan‐delta complex (southeast Ebro Basin), in order to unravel forcing controls on their sequential arrangement and to revise the tectonosedimentary history of the region. The palaeomagnetic study is based on 403 sites distributed along an 1880‐m‐thick composite section, and provides improved temporal constraints based on an independent correlation to the geomagnetic polarity time scale. The new chronological framework together with sequence stratigraphy and geohistory analysis allow us to investigate the interplay between factors controlling the sequential arrangement of the Montserrat complex at the different temporal scales and to test for orbitally driven climate forcing. The results suggest that the internal stacking pattern in transgressive and regressive sequences sets within the more than 1000‐m‐thick Milany Composite Megasequence can be explained as the result of subsidence‐driven accommodation changes under a general increase of sediment supply. Composite sequences (tens to hundreds of metres thick) likely reflect orbitally forced cyclicity related to the 400‐kyr eccentricity cycle, possibly controlled by climatically induced sea‐level fluctuations. This study also provides new insights on the deformational history of the area, and shows a correlation between (tectonic) subsidence and forelimb rotation measured on basin‐margin deformed strata. Integration of subsidence curves from different sectors of the eastern Ebro Basin allows us to estimate the variable contribution of tectonic loads from the two active basin margins: the Catalan Coastal Ranges and the Pyrenees. The results support the presence of a double flexure from Late Lutetian to Late Bartonian, associated with the two tectonically active margins. From Late Bartonian to Early Priabonian the homogenization of subsidence values is interpreted as the result of the coupling of the two sources of tectonic load. 相似文献
8.
Anna E. van Yperen John M. Holbrook Miquel Poyatos‐Mor Cody Myers Ivar Midtkandal 《Basin Research》2021,33(1):513-543
The adequate documentation and interpretation of regional‐scale stratigraphic surfaces is paramount to establish correlations between continental and shallow marine strata. However, this is often challenged by the amalgamated nature of low‐accommodation settings and control of backwater hydraulics on fluvio‐deltaic stratigraphy. Exhumed examples of full‐transect depositional profiles across river‐to‐delta systems are key to improve our understanding about interacting controlling factors and resultant stratigraphy. This study utilizes the ~400 km transect of the Cenomanian Mesa Rica Sandstone (Dakota Group, USA), which allows mapping of down‐dip changes in facies, thickness distribution, fluvial architecture and spatial extent of stratigraphic surfaces. The two sandstone units of the Mesa Rica Sandstone represent contemporaneous fluvio‐deltaic deposition in the Tucumcari sub‐basin (Western Interior Basin) during two regressive phases. Multivalley deposits pass down‐dip into single‐story channel sandstones and eventually into contemporaneous distributary channels and delta‐front strata. Down‐dip changes reflect accommodation decrease towards the paleoshoreline at the Tucumcari basin rim, and subsequent expansion into the basin. Additionally, multi‐storey channel deposits bound by erosional composite scours incise into underlying deltaic deposits. These represent incised‐valley fill deposits, based on their regional occurrence, estimated channel tops below the surrounding topographic surface and coeval downstepping delta‐front geometries. This opposes criteria offered to differentiate incised valleys from flood‐induced backwater scours. As the incised valleys evidence relative sea‐level fall and flood‐induced backwater scours do not, the interpretation of incised valleys impacts sequence stratigraphic interpretations. The erosional composite surface below fluvial strata in the continental realm represents a sequence boundary/regional composite scour (RCS). The RCS’ diachronous nature demonstrates that its down‐dip equivalent disperses into several surfaces in the marine part of the depositional system, which challenges the idea of a single, correlatable surface. Formation of a regional composite scour in the fluvial realm throughout a relative sea‐level cycle highlights that erosion and deposition occur virtually contemporaneously at any point along the depositional profile. This contradicts stratigraphic models that interpret low‐accommodation settings to dominantly promote bypass, especially during forced regressions. Source‐to‐sink analyses should account for this in order to adequately resolve timing and volume of sediment storage in the system throughout a complete relative sea‐level cycle. 相似文献
9.
Mauricio Espinoza Diego Montecino Vernica Oliveros Natalia Astudillo Paulina Vsquez Robinson Reyes Christopher Celis Rodrigo Gonzlez Juan Contreras Christian Creixell Amancay Martínez 《Basin Research》2019,31(1):4-32
The geodynamic setting along the SW Gondwana margin during its early breakup (Triassic) remains poorly understood. Recent models calling for an uninterrupted subduction since Late Palaeozoic only slightly consider the geotectonic significance of coeval basins. The Domeyko Basin initiated as a rift basin during the Triassic being filled by sedimentary and volcanic deposits. Stratigraphic, sedimentological, and geochronological analyses are presented in order to determine the tectonostratigraphic evolution of this basin and to propose a tectonic model suitable for other SW Gondwana‐margin rift basins. The Domeyko Basin recorded two synrift stages. The Synrift I (~240–225 Ma) initiated the Sierra Exploradora sub‐basin, whereas the Synrift II (~217–200 Ma) reactivated this sub‐basin and originated small depocentres grouped in the Sierra de Varas sub‐basin. During the rift evolution, the sedimentary systems developed were largely controlled by the interplay between tectonics and volcanism through the accommodation/sediment supply ratio (A/S). High‐volcaniclastic depocentres record a net dominance of the syn‐eruptive period lacking rift‐climax sequences, whereas low‐volcaniclastic depocentres of the Sierra de Varas sub‐basin developed a complete rift cycle during the Synrift II stage. The architecture of the Domeyko Basin suggests a transtensional kinematic where N‐S master faults interacted with ~NW‐SE basement structures producing highly asymmetric releasing bends. We suggest that the early Domeyko Basin was a continental subduction‐related rift basin likely developed under an oblique convergence in a back‐arc setting. Subduction would have acted as a primary driving mechanism for the extension along the Gondwanan margin, unlike inland rift basins. Slab‐induced dynamic can strongly influence the tectonostratigraphic evolution of subduction‐related rift basins through controls in the localization and style of magmatism and faulting, settling the interplay between tectonics, volcanism, and sedimentation during the rifting. 相似文献
10.
Andreu Vinyoles Miguel Lpez‐Blanco Miguel Garcs Pau Arbus Luis Valero Elisabet Beamud Beln Oliva‐Urcia Patricia Cabello 《Basin Research》2021,33(1):447-477
The propagation of the deformation front in foreland systems is typically accompanied by the incorporation of parts of the basin into wedge‐top piggy‐back basins, this process is likely producing considerable changes to sedimentation rates (SR). Here we investigate the spatial‐temporal evolution of SR for the Tremp–Jaca Basin in the Southern Pyrenees during its evolution from a wedge‐top, foreredeep, forebulge configuration to a wedge‐top stage. SR were controlled by a series of tectonic structures that influenced subsidence distribution and modified the sediment dispersal patterns. We compare the decompacted SR calculated from 12 magnetostratigraphic sections located throughout the Tremp–Jaca Basin represent the full range of depositional environment and times. While the derived long‐term SR range between 9.0 and 84.5 cm/kyr, compiled data at the scale of magnetozones (0.1–2.5 Myr) yield SR that range from 3.0 to 170 cm/kyr. From this analysis, three main types of depocenter are recognized: a regional depocenter in the foredeep depozone; depocenters related to both regional subsidence and salt tectonics in the wedge‐top depozone; and a depocenter related to clastic shelf building showing transgressive and regressive trends with graded and non‐graded episodes. From the evolution of SR we distinguish two stages. The Lutetian Stage (from 49.1–41.2 Ma) portrays a compartmentalized basin characterized by variable SR in dominantly underfilled accommodation areas. The markedly different advance of the deformation front between the Central and Western Pyrenees resulted in a complex distribution of the foreland depozones during this stage. The Bartonian–Priabonian Stage (41.2–36.9 Ma) represents the integration of the whole basin into the wedge‐top, showing a generalized reduction of SR in a mostly overfilled relatively uniform basin. The stacking of basement units in the hinterland during the whole period produced unusually high SR in the wedge‐top depozone. 相似文献