首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Provision of accommodation space for aggradation in Holocene deltaic basins is usually ascribed to eustatic sea‐level rise and/or land subsidence due to isostasy, tectonics or sediment compaction. Whereas many Holocene deltas contain peat, the relative contribution of peat compaction to total subsidence has not yet been quantified from field data covering an entire delta. Subsidence due to peat compaction potentially influences temporal and spatial sedimentation patterns, and therefore alluvial architecture. Quantification of the amount and rate of peat compaction was done based on (1) estimates of the initial dry bulk density of peat, derived from a relation between dry bulk density and organic‐matter content of uncompacted peat samples and (2) radiocarbon‐dated basal peat used to reconstruct initial levels of peat formation of currently subsided peat samples. In the Rhine‐Meuse delta, peat compaction has contributed considerably to total basin subsidence. Depending on the thickness of the compressible sequence, weight of the overburden and organic‐matter content of peat, subsidence of up to approximately 3 m in a 10‐m thick Holocene sequence has been calculated. Calculated local subsidence rates of peat levels are up to 0.6 mm year?1, averaged over millennia, which are twice the estimated Holocene‐averaged basin subsidence rates of 0.1–0.3 mm year?1 in the study area. Higher rates of subsidence due to compaction, on the order of a few mm year?1, occur over decades to centuries, following a substantial increase in effective stress caused by sediment loading. Without such an increase in effective stress, peat layers may accumulate for thousands of years with little compaction. Thus, the contribution of peat compaction to total delta subsidence is variable in time. Locally, up to 40% of total Holocene accommodation space has been provided by peat compaction. Implications of the large amount of accommodation space created by peat compaction in deltaic basins are: (1) increased sediment trap efficiency in deltas, which decelerates delta progradation and enhances the formation of relatively thick clastic sequences and (2) enhanced local formation of thick natural levees by renewing existing accommodation space.  相似文献   

2.
We present an interpolation model that describes Holocene groundwater level rise and the creation of accommodation space in 3D in the Rhine‐Meuse delta – the Netherlands. The model area (ca. 12 400 km2) covers two palaeovalleys of Late Pleistocene age (each 30 km wide) and the overlying Holocene deposits of the Rhine‐Meuse delta, the Holland coastal plain, and the Zuiderzee former lagoon. Water table rise is modelled from 10 800 to 1000 cal. BP, making use of age‐depth relations based on 384 basal peat index points, and producing output in the form of stacked palaeo groundwater surfaces, groundwater age‐depth curves, and voxel sets. These products allow to resolve (i) regional change and variations of inland water table slopes, (ii) spatial differences in the timing and pacing of transgression, and (iii) analysis of interplay of coastal, fluvial and subsidence controls on the provision of accommodation space. The interpolation model is a multi‐parameter trend function, to which a 3D‐kriging procedure of the residuals is added. This split design deploys a generic approach for modelling provision of accommodation space in deltas and coastal lowlands, aiming to work both in areas of intermediate data availability and in the most data‐rich environments. Major provision of accommodation space occurred from 8500 cal BP onwards, but a different evolution occurred in each of the two palaeovalleys. In the northern valley, creation of accommodation space began to stall at 7500 cal BP, while in the southern valley provision of new accommodation space in considerable quantities continued longer. The latter is due to the floodplain gradient that was maintained by the Rhine, which distinguishes the fluvial deltaic environment from the rest of the back‐barrier coastal plain. The interpolation results allow advanced mapping and investigation of apparent spatial differences in Holocene aggradation in larger coastal sedimentary systems. Furthermore, they provide a means to generate first‐order age information with centennial precision for 3D geological subsurface models of Holocene deltas and valley fills. As such, the interpolation is of use in studies into past and present land subsidence and into low land sedimentation.  相似文献   

3.
Mass failure deposits in lacustrine settings are some of the most understudied facies associations in the ancient or modern rock record. We integrated seismic data and well logs to investigate the external morphology, internal architecture and deformation and reservoir distribution of the sublacustrine landslides in the Cretaceous Nengjiang Formation of the Songliao Basin (SLB). A large‐scale sublacustrine landslide, named the Qi‐Jia sublacustrine landslide (QJSL), has been identified in the Nengjiang Formation of the SLB. The QJSL is currently the largest known sublacustrine landslide in the world. This landslide covers an area that exceeds 300 km2, with an estimated volume of 30 km3. Seismic imaging and mapping reveal that the QJSL can be recognized by several distinguishing seismic characteristics: discontinuous and internal chaotic seismic facies, compressional structures in the downslope region, irregular top and basal surfaces and erosional grooves in basal shear surfaces. The QJSL is 20–200 m thick, and is composed of a succession of fine‐grained deposits. Sandy layers are present but sparse and thinner than 16 m, and form reservoirs of the petroleum discoveries in this area. Our analyses show that the mechanism that triggered the collapse of the QJSL is attributed to rapid deposition and deltaic progradation. This study demonstrates that sand‐rich sublacustrine landslides formed at delta front slope can serve as conventional reservoirs in the lake centre, and provide a new target for subaqueous hydrocarbon exploration and development.  相似文献   

4.
《Basin Research》2018,30(3):448-479
The onshore central Corinth rift contains a syn‐rift succession >3 km thick deposited in 5–15 km‐wide tilt blocks, all now inactive, uplifted and deeply incised. This part of the rift records upward deepening from fluviatile to lake‐margin conditions and finally to sub‐lacustrine turbidite channel and lobe complexes, and deep‐water lacustrine conditions (Lake Corinth) were established over most of the rift by 3.6 Ma. This succession represents the first of two phases of rift development – Rift 1 from 5.0–3.6 to 2.2–1.8 Ma and Rift 2 from 2.2–1.8 Ma to present. Rift 1 developed as a 30 km‐wide zone of distributed normal faulting. The lake was fed by four major N‐ to NE‐flowing antecedent drainages along the southern rift flank. These sourced an axial fluvial system, Gilbert fan deltas and deep lacustrine turbidite channel and lobe complexes. The onset of Rift 2 and abandonment of Rift 1 involved a 30 km northward shift in the locus of rifting. In the west, giant Gilbert deltas built into a deepening lake depocentre in the hanging wall of the newly developing southern border fault system. Footwall and regional uplift progressively destroyed Lake Corinth in the central and eastern parts of the rift, producing a staircase of deltaic and, following drainage reversal, shallow marine terraces descending from >1000 m to present‐day sea level. The growth, linkage and death of normal faults during the two phases of rifting are interpreted to reflect self‐organization and strain localization along co‐linear border faults. In the west, interaction with the Patras rift occurred along the major Patras dextral strike‐slip fault. This led to enhanced migration of fault activity, uplift and incision of some early Rift 2 fan deltas, and opening of the Rion Straits at ca. 400–600 ka. The landscape and stratigraphic evolution of the rift was strongly influenced by regional palaeotopographic variations and local antecedent drainage, both inherited from the Hellenide fold and thrust belt.  相似文献   

5.
In this study, we integrate 3D seismic reflection, wireline log, biostratigraphic and core data from the Egersund Basin, Norwegian North Sea to determine the impact of syn‐depositional salt movement and associated growth faulting on the sedimentology and stratigraphic architecture of the Middle‐to‐Upper Jurassic, net‐transgressive, syn‐rift succession. Borehole data indicate that Middle‐to‐Upper Jurassic strata consist of low‐energy, wave‐dominated offshore and shoreface deposits and coal‐bearing coastal‐plain deposits. These deposits are arranged in four parasequences that are aggradationally to retrogradationally stacked to form a net‐transgressive succession that is up to 150‐m thick, at least 20 km in depositional strike (SW‐NE) extent, and >70 km in depositional dip (NW‐SE) extent. In this rift‐margin location, changes in thickness but not facies are noted across active salt structures. Abrupt facies changes, from shoreface sandstones to offshore mudstones, only occur across large displacement, basement‐involved normal faults. Comparisons to other tectonically active salt‐influenced basins suggest that facies changes across syn‐depositional salt structures are observed only where expansion indices are >2. Subsidence between salt walls resulted in local preservation of coastal‐plain deposits that cap shoreface parasequences, which were locally removed by transgressive erosion in adjacent areas of lower subsidence. The depositional dip that characterizes the Egersund Basin is unusual and likely resulted from its marginal location within the evolving North Sea rift and an extra‐basinal sediment supply from the Norwegian mainland.  相似文献   

6.
The relationships between large‐scale depositional processes and the stratigraphic record of alluvial systems, e.g. the origin and distribution of channel stacking patterns, changing architecture and correlation of strata, are still relatively poorly understood, in contrast to marine systems. We present a study of the Castillian Branch of the Permo‐Triassic Central Iberian Basin, north‐eastern Spain, using chemostratigraphy and a detailed sedimentological analysis to correlate the synrift Triassic fluvial sandstones for ~80 km along the south‐eastern basin margin. This study investigates the effects of Middle Triassic (Ladinian) Tethyan marine transgression on fluvial facies and architecture. Chemostratigraphy identifies a major, single axially flowing fluvial system lasting from the Early to Middle Triassic (~10 Ma). The fluvial architecture comprises basal conglomerates, followed by amalgamated sandstones and topped by floodplain‐isolated single‐ or multi‐storey amalgamated sandstone complexes with a total thickness up to ~1 km. The Tethyan marine transgression advanced into the basin with a rate of 0.04–0.02 m/year, and is recorded by a transition from the fluvial succession to a series of maximum flooding surfaces characterised by marginal marine clastic sediments and sabkha evaporites. The continued, transgression led to widespread thick carbonate deposition infilling the basin and recording the final stage of synrift to early‐post‐rift deposition. We identify the nonmarine to marine transition characterised by significant changes in the Buntsandstein succession with a transition from a predominantly tectonic‐ to a climatically driven fluvial system. The results have important implications for the temporal and spatial prediction of fluvial architecture and their transition during a marine transgression.  相似文献   

7.
Apatite fission‐track (AFT) thermochronology and (U‐Th)/He (AHe) dating, combined with paleothermometers and independent geologic constraints, are used to model the thermal history of Devonian Catskill delta wedge strata. The timing and rates of cooling determines the likely post‐orogenic exhumation history of the northern Appalachian Foreland Basin (NAB) in New York and Pennsylvania. AFT ages generally young from west to east, decreasing from ~185 to 120 Ma. AHe single‐grain ages range from ~188 to 116 Ma. Models show that this part of the Appalachian foreland basin experienced a non‐uniform, multi‐stage cooling history. Cooling rates vary over time, ~1–2 °C/Myr in the Early Jurassic to Early Cretaceous, ~0.15–0.25 °C/Myr from the Early Cretaceous to Late Cenozoic, and ~1–2 °C/Myr beginning in the Miocene. Our results from the Mesozoic are broadly consistent with earlier studies, but with the integration of multiple thermochronometers and multi‐kinetic annealing algorithms in newer inverse thermal modeling programs, we constrain a Late Cenozoic increase in cooling which had been previously enigmatic in eastern U.S. low‐temperature thermochronology datasets. Multi‐stage cooling and exhumation of the NAB is driven by post‐orogenic basin inversion and catchment drainage reorganization, in response to changes in base level due to rifting, plus isostatic and dynamic topographic processes modified by flexure over the long (~200 Myr) post‐orogenic period. This study compliments other regional exhumation data‐sets, while constraining the timing of post‐orogenic cooling and exhumation in the NAB and contributing important insights on the post‐orogenic development and inversion of foreland basins along passive margins.  相似文献   

8.
The adequate documentation and interpretation of regional‐scale stratigraphic surfaces is paramount to establish correlations between continental and shallow marine strata. However, this is often challenged by the amalgamated nature of low‐accommodation settings and control of backwater hydraulics on fluvio‐deltaic stratigraphy. Exhumed examples of full‐transect depositional profiles across river‐to‐delta systems are key to improve our understanding about interacting controlling factors and resultant stratigraphy. This study utilizes the ~400 km transect of the Cenomanian Mesa Rica Sandstone (Dakota Group, USA), which allows mapping of down‐dip changes in facies, thickness distribution, fluvial architecture and spatial extent of stratigraphic surfaces. The two sandstone units of the Mesa Rica Sandstone represent contemporaneous fluvio‐deltaic deposition in the Tucumcari sub‐basin (Western Interior Basin) during two regressive phases. Multivalley deposits pass down‐dip into single‐story channel sandstones and eventually into contemporaneous distributary channels and delta‐front strata. Down‐dip changes reflect accommodation decrease towards the paleoshoreline at the Tucumcari basin rim, and subsequent expansion into the basin. Additionally, multi‐storey channel deposits bound by erosional composite scours incise into underlying deltaic deposits. These represent incised‐valley fill deposits, based on their regional occurrence, estimated channel tops below the surrounding topographic surface and coeval downstepping delta‐front geometries. This opposes criteria offered to differentiate incised valleys from flood‐induced backwater scours. As the incised valleys evidence relative sea‐level fall and flood‐induced backwater scours do not, the interpretation of incised valleys impacts sequence stratigraphic interpretations. The erosional composite surface below fluvial strata in the continental realm represents a sequence boundary/regional composite scour (RCS). The RCS’ diachronous nature demonstrates that its down‐dip equivalent disperses into several surfaces in the marine part of the depositional system, which challenges the idea of a single, correlatable surface. Formation of a regional composite scour in the fluvial realm throughout a relative sea‐level cycle highlights that erosion and deposition occur virtually contemporaneously at any point along the depositional profile. This contradicts stratigraphic models that interpret low‐accommodation settings to dominantly promote bypass, especially during forced regressions. Source‐to‐sink analyses should account for this in order to adequately resolve timing and volume of sediment storage in the system throughout a complete relative sea‐level cycle.  相似文献   

9.
Salt tectonics have markedly influenced the rapid evolution of the Upper Palaeozoic Cumberland Basin of Atlantic Canada, including the ca. 5 km‐thick Mississippian – Pennsylvanian stratigraphic succession exposed along the UNESCO World Heritage coastline at Joggins, Nova Scotia. A diapiric salt wall is exposed in the Minudie Anticline to the north of the Joggins section on the Maringouin Peninsula of New Brunswick, which corresponds to the fault‐bounded northern margin of the Cumberland Basin. The salt wall is of Visean evaporites of the Windsor Gp that originally were buried by red‐beds of the Mabou Gp in the Serpukhovian, and later by fluvial and floodplain strata (Boss Point Fm, Cumberland Gp) in the Yeadonian (mid‐Bashkirian, Early Pennsylvanian). Folds and faults in the Boss Point and overlying basal Little River formations are truncated by an angular unconformity at the base of overlying red‐beds of the Grande Anse Fm. Re‐evaluation of the palynological data delimits the Grande Anse Fm as Langsettian, providing a tight constraint of less than 2 myr on the timing of deformation. Diversion of palaeoflows by the rising salt structure, noted in previous work on the upper Boss Point Fm, occurs to the north of the diapiric anticline. This is interpreted to signify the development of a mini‐basin on commencement of diapirism once a ~1.5 km‐thick succession of clastic strata had buried the salt. Faults and folds in the succession below the unconformity indicate an initial phase of dextral transpressive strike‐slip motion, which may have promoted halokinesis. Reverse faults indicate shortening associated with northward development and overturn of the Minudie Anticline during transpression; subsequent normal faulting was associated with collapse of the sediment pile and underlying salt structure.  相似文献   

10.
为了深入探讨珠江三角洲的沉积古环境和古气候历史,在三水市区获取了2个高取芯率的钻孔岩芯,进行了12个AMS 14C测年,并结合孢粉、硅藻等分析结果探讨三水地区全新世的海平面与河流水动力变化,以及古植被演替过程。结果表明:钻孔所在区域全新世沉积总体从9 000 cal. a B.P.左右开始,呈现河流相―河湾相―河口湾相―潮坪相―河口湾相―河漫滩相的演变过程。三水区的早全新世沉积阶段年代最早为9 000 cal. a B.P.左右,表现为河口湾相的淤泥质粉砂沉积,硅藻以淡水种类为主,最高沉积速率为1.6 cm/a。海侵初始时间为8 700 cal. a B.P.左右,最高海平面时间为7 600 cal. a B.P.左右,此时海岸带发育红树林,丘陵山地发育较茂盛的亚常绿热带常绿阔叶林;中―晚全新世阶段(6 500―2 200 cal. a B.P.),以泥炭粉砂沉积为主,沉积速率为0.2~0.5 cm/a,河口区高潮线附近及河流弯道低洼滩地在5 000 cal. a B.P.前后形成淡水沼泽、河口三角洲边缘区洼地水松林发育。在晚全新世(2 200 cal. a B.P.左右)以来,陆相黏土质沉积指示河口泥沙快速堆积,三角洲平原迅速扩大,沉积速率高达1.7 cm/a。孢粉结果显示次生的芒箕孢子剧增,陆地植被稀疏,人类活动显著增强。  相似文献   

11.
This article presents combined stratigraphic, sedimentological, subsidence and provenance data for the Cretaceous–Palaeogene succession from the Zhepure Mountain of southern Tibet. This region records the northernmost sedimentation of the Tethyan passive margin of India, and this time interval represents the transition into continental collision with Asia. The uppermost Cretaceous Zhepure Shanpo and Jidula formations record the transition from pelagic into upper slope to delta‐plain environments. The Palaeocene–lower Eocene Zongpu Formation records a carbonate ramp that is overlain by the deep‐water Enba Formation (lower Eocene). The upper part of the Enba Formation records shallowing into a storm‐influenced, outer shelf environment. Detrital zircon U–Pb and Hf isotopic data indicate that the terrigenous strata of the Enba Formation were sourced from the Lhasa terrane. Unconformably overlying the Enba Formation is the Zhaguo Formation comprising fluvial deposits with evidence of recycling from the underlying successions. Backstripped subsidence analysis indicates shallowing during latest Cretaceous‐earliest Palaeocene time (Zhepure Shanpo and Jidula formations) driven by basement uplift, followed by stability (Zongpu Formation) until early Eocene time (Enba Formation) when accelerated subsidence occurred. The provenance, subsidence and stratigraphy suggest that the Enba and Zhaguo formations record foredeep and wedge‐top sedimentation respectively within the early Himalayan foreland basin. The underlying Zongpu Formation is interpreted to record the accumulation of a carbonate ramp at the margin of a submarine forebulge. The precursor tectonic uplift during latest Cretaceous time could either record surface uplift over a mantle plume related to the Réunion hotspot, or an early signal of lithospheric flexure related to oceanic subduction, continental collision or ophiolite obduction. The results indicate that the collision of India with Asia occurred before late Danian (ca. 62 Ma) time.  相似文献   

12.
Fluvio‐deltaic stratigraphy develops under continuous morphodynamic interactions of allogenic and autogenic processes, but the role and relative contribution of these processes to the stratigraphic record are poorly understood. We analysed synthetic fluvio‐deltaic deposits of several accommodation‐to‐supply cycles (sequences) with the aim to relate stratigraphic variability to autogenic and allogenic controls. The synthetic stratigraphy was produced in a series of long time‐scale (105 years) numerical experiments with an aggregated process‐based model using a typical passive‐margin topography with constant rates of liquid and solid river discharge subjected to sinusoidal sea‐level fluctuation. Post‐processing of synthetic stratigraphy allowed us to quantify stratigraphic variability by means of local and regional net sediment accumulation over equally spaced time intervals (1–10 kyr). The regional signal was subjected to different methods of time‐series analysis. In addition, major avulsion sites (>5 km from the coastline) were extracted from the synthetic stratigraphy to confirm the interpretations of our analyses. Regional stratigraphic variability as defined in this study is modulated by a long‐term allogenic signal, which reflects the rate of sea‐level fluctuation, and it preserves two autogenic frequency bands: the intermediate and high‐frequency components. The intermediate autogenic component corresponds to major avulsions with a median inter‐avulsion period of ca. 3 kyr. This component peaks during time intervals in which aggradation occurs on the delta plain, because super‐elevation of channel belts is a prerequisite for large‐scale avulsions. Major avulsions occur occasionally during early stages of relative sea‐level fall, but they are fully absent once the coast line reaches the shelf edge and incision takes place. These results are consistent with a number of field studies of falling‐stage deposition in fluvial systems. The high‐frequency autogenic component (decadal to centennial time scales) represents mouthbar‐induced bifurcations occurring at the terminal parts of the system, and to a lesser extent, partial or small‐scale avulsions (<5 km from the coastline). Bifurcation intensity correlates strongly with the rate of progradation, and thus reaches its maximum during forced regression. However, its contribution to overall stratigraphic variability is much less than that of the large‐scale avulsions, which affect the entire area downstream of avulsion nodes. The results of this study provide guidelines for predicting fluvio‐deltaic stratigraphy in the context of co‐existing autogenic and allogenic processes and underscore the fact that the relative importance and the type of autogenic processes occurring in fluvio‐deltaic systems are governed by allogenic forcing.  相似文献   

13.
Although the structure of the central Peruvian Subandean zone is well defined, the timing of thrust‐related exhumation and Cenozoic sedimentation remain poorly constrained. In this study, we report new apatite (U–Th)/He (AHe) and fission track (AFT) ages from thrust‐belt and foreland strata along three published balanced cross sections. AHe data from the northern, thick‐skinned domain (i.e. Shira Mountain, Otishi Cordillera and Ucayali Basin) show young AHe ages (ranging from 2.6 ± 0.2 to 13.1 ± 0.8 Ma) compared with AFT ages (ranging from 101 ± 5 to 133 ± 11 Ma). In the southern Camisea Basin, where deformation is mainly thin‐skinned, AHe and AFT ages have been both reset and show young cooling ages (3.7 ± 0.8 Ma and 8 ± 2 Ma respectively). Using low‐temperature thermochronology data and the latest fission track annealing and He diffusion codes, the thermal history of the study area has been reconstructed using inverse modelling. This history includes two steps of erosion: Early Cretaceous and late Neogene, but only Neogene sedimentation and exhumation varies in the different sectors of the study area. From a methodological point of view, large AHe data dispersion point to the need for refinement of AHe damage and annealing models. The influence of grain chemistry on damage annealing, multiple age components and the possibility of fission tracks as traps for He need further consideration. For the central Peruvian Subandes, AHe and AFT ages combined with balanced cross sections emphasize the dominant control of Paleozoic inheritance rather than climate on Cenozoic infilling and exhumation histories. Finally, our data provide the first field example of how thick‐skinned thrust‐related deformation and exhumation in the Subandes can be directly dated through AHe thermochronology.  相似文献   

14.
Rifted margins are created as a result of stretching and breakup of continental lithosphere that eventually leads to oceanic spreading and formation of a new oceanic basin. A cornerstone for understanding what processes control the final transition to seafloor spreading is the nature of the continent‐ocean transition (COT). We reprocessed multichannel seismic profiles and use available gravity data to study the structure and variability of the COT along the Northwest subbasin (NWSB) of the South China Sea. We have interpreted the seismic images to discern continental from oceanic domains. The continental‐crust domain is characterized by tilted fault blocks generally overlain by thick syn‐rift sedimentary units, and underlain by fairly continuous Moho reflections typically at 8–10 s twtt. The thickness of the continental crust changes greatly across the basin, from ~20 to 25 km under the shelf and uppermost slope, to ~9–6 km under the lower slope. The oceanic‐crust domain is characterized by a highly reflective top of basement, little faulting, no syntectonic strata and fairly constant thickness (over tens to hundreds of km) of typically 6 km, but ranging from 4 to 8 km. The COT is imaged as a ~5–10 km wide zone where oceanic‐type features directly abut or lap on continental‐type structures. The South China margin continental crust is cut by abundant normal faults. Seismic profiles show an along‐strike variation in the tectonic structure of the continental margin. The NE‐most lines display ~20–40 km wide segments of intense faulting under the slope and associated continental‐crust thinning, giving way to a narrow COT and oceanic crust. Towards the SW, faulting and thinning of the continental crust occurs across a ~100–110 km wide segment with a narrow COT and abutting oceanic crust. We interpret this 3D structural variability and the narrow COT as a consequence of the abrupt termination of continental rifting tectonics by the NE to SW propagation of a spreading centre. We suggest that breakup occurred abruptly by spreading centre propagation rather than by thinning during continental rifting. We propose a kinematic evolution for the oceanic domain of the NWSB consisting of a southward spreading centre propagation followed by a first narrow ridge jump to the north, and then a younger larger jump to the SE, to abandon the NWSB and create the East subbasin of the South China Sea.  相似文献   

15.
《Basin Research》2018,30(3):522-543
We present a source‐to‐sink analysis to explain sediment supply variations and depositional patterns over the Holocene within an active rift setting. We integrate a range of modelling approaches and data types with field observations from the Sperchios rift basin, Central Greece that allow us to analyse and quantify (1) the size and characteristics of sediment source areas, (2) the dynamics of the sediment routing system from upstream fluvial processes to downstream deposition at the coastline, and (3) the depositional architecture and volumes of the Holocene basin fill. We demonstrate that the Sperchios rift comprises a ‘closed’ system over the Holocene and that erosional and depositional volumes are thus balanced. Furthermore, we evaluate key controls in the development of this source‐to‐sink system, including the role of pre‐existing topography, bedrock erodibility and lateral variations in the rate of tectonic uplift/subsidence. We show that tectonic subsidence alone can explain the observed grain size fining along the rift axis resulting in the downstream transition from a braided channel to an extensive meander belt (>15 km long) that feeds the fine‐grained Sperchios delta. Additionally, we quantify the ratios of sediment storage to bypass for the two main footwall‐sourced alluvial fan systems and relate the fan characteristics to the pattern and rates of fault slip. Finally, we show that ≥40% of the sediment that builds the Sperchios delta is supplied by ≤22% of the entire source area and that this can be primarily attributed to a longer‐term (~106 years) transient landscape response to fault segment linkage. Our multidisciplinary approach allows us to quantify the relative importance of multiple factors that control a complex source‐to‐sink system and thus improve our understanding of landscape evolution and stratigraphic development in active extensional tectonic settings.  相似文献   

16.
《Basin Research》2018,30(Z1):1-14
The paleogeographic reconstruction of the Variscan Mountains during late Carboniferous‐Permian post‐orogenic extension remains poorly understood, owing to the subsequent erosion and/or burial of most associated sedimentary basins during the Mesozoic. The Graissessac‐Lodève Basin (southern France) preserves a thick and exceptionally complete record of continental sedimentation spanning late Carboniferous through late Permian time. This section records the localized tectonic and paleogeographic evolution of southern France in the context of the low‐latitude Variscan Belt of Western Europe. This study presents new detrital zircon and framework mineralogy data that address the provenance of siliciclastic strata exposed in the basin. The ages and compositions of units that constitute the Montagne Noire metamorphic core complex (west of the basin) dictate the detrital zircon age populations and sandstone compositions in Permian strata, recording rapid exhumation and unroofing of the Montagne Noire dome. Cambrian‐Archean zircons and metamorphic lithic‐rich compositions record derivation from recycled detritus of the earliest Paleozoic sedimentary cover and Neoproterozoic‐early Cambrian metasedimentary Schistes X, which formerly covered the Montagne Noire dome. Ordovician zircons and subarkosic framework compositions indicate erosion of orthogneiss units that formed a large part of the dome. The youngest zircon population (320–285 Ma) reflects derivation from late Carboniferous‐early Permian granite units in the axial zone of the Montagne Noire. This population appears first in the early Permian, persists throughout the Permian section and is accompanied by sandstone compositions dominated by feldspar, polycrystalline quartz and metamorphic lithic fragments. The most recent migmatization, magmatism and deformation occurred ca. 298 ± 2 Ma, at ca. 17 km depth (based on peak metamorphic conditions). Accordingly, these new provenance data, together with zircon fission‐track thermochronology, demonstrate that exhumation of the Montagne Noire core complex was rapid (1–17 mm year−1) and early (300–285 Ma), reflecting deep‐seated uplift in the southern Massif Central during post‐orogenic extension.  相似文献   

17.
Quantification of allogenic controls in rift basin‐fills requires analysis of multiple depositional systems because of marked along‐strike changes in depositional architecture. Here, we compare two coeval Early‐Middle Pleistocene syn‐rift fan deltas that sit 6 km apart in the hangingwall of the Pirgaki‐Mamoussia Fault, along the southern margin of the Gulf of Corinth, Greece. The Selinous fan delta is located near the fault tip and the Kerinitis fan delta towards the fault centre. Selinous and Kerinitis have comparable overall aggradational stacking patterns. Selinous comprises 15 cyclic stratal units (ca. 25 m thick), whereas at Kerinitis 11 (ca. 60 m thick) are present. Eight facies associations are identified. Fluvial and shallow water facies dominate the major stratal units in the topset region, with shelfal fine‐grained facies constituting ca. 2 m thick intervals between major topset units and thick conglomeratic foresets building down‐dip. It is possible to quantify delta build times (Selinous: 615 kyr; Kerinitis: >450 kyr) and average subsidence and equivalent sedimentation rates (Selinous: 0.65 m/kyr; Kerinitis: >1.77 m/kyr). The presence of sequence boundaries at Selinous, but their absence at Kerinitis, enables sensitivity analysis of the most uncertain variables using a numerical model, ‘Syn‐Strat’, supported by an independent unit thickness extrapolation method. Our study has three broad outcomes: (a) the first estimate of lake level change amplitude in Lake Corinth for the Early‐Middle Pleistocene (10–15 m), which can aid regional palaeoclimate studies and inform broader climate‐system models; (b) demonstration of two complementary methods to quantify faulting and base level signals in the stratigraphic record—forward modelling with Syn‐Strat and a unit thickness extrapolation—which can be applied to other rift basin‐fills; and (c) a quantitative approach to the analysis of stacking patterns and key surfaces that could be applied to stratigraphic pinch‐out assessment and cross‐hole correlations in reservoir analysis.  相似文献   

18.
This study presents an integrated provenance record for ancient forearc strata in southern Alaska. Paleocene–Eocene sedimentary and volcanic strata >2000 m thick in the southern Talkeetna Mountains record nonmarine sediment accumulation in a remnant forearc basin. In these strata, igneous detritus dominates conglomerate and sandstone detrital modes, including plutonic and volcanic clasts, plagioclase feldspar, and monocrystalline quartz. Volcanic detritus is more abundant and increases upsection in eastern sandstone and conglomerate. U‐Pb ages of >1600 detrital zircons from 19 sandstone samples document three main populations: 60–48 Ma (late Paleocene–Eocene; 14% of all grains), 85–60 Ma (late Cretaceous–early Paleocene; 64%) and 200–100 Ma (Jurassic–Early Cretaceous; 11%). Eastern sections exhibit the broadest distribution of detrital ages, including a principal population of late Paleocene–Eocene ages. In contrast, central and western sections yield mainly late Cretaceous–early Paleocene detrital ages. Collectively, our results permit reconstruction of individual fluvial drainages oriented transverse to a dissected arc. Specifically, new data suggest: (1) Detritus was eroded from volcanic‐plutonic sources exposed along the arcward margin of the sampled forearc basin fill, primarily Jurassic–Paleocene magmatic‐arc plutons and spatially limited late Paleocene–Eocene volcanic centers; (2) Eastern deposystems received higher proportions of juvenile volcanic detritus through time from late Paleocene–Eocene volcanic centers, consistent with emplacement of a slab window beneath the northeastern part of the basin during spreading‐ridge subduction; (3) Western deposystems transported volcanic‐plutonic detritus from Jurassic–Paleocene remnant arc plutons and local eruptive centers that flanked the northwestern part of the basin; (4) Diagnostic evidence of sediment derivation from accretionary‐prism strata exposed trenchward of the basin fill is lacking. Our results provide geologic evidence for latest Cretaceous–early Paleocene exhumation of arc plutons and marine forearc strata followed by nonmarine sediment accumulation and slab‐window magmatism. This inferred history supports models that invoke spreading‐ridge subduction beneath southern Alaska during Paleogene time, providing a framework for understanding a mature continental‐arc/forearc‐basin system modified by ridge subduction. Conventional provenance models predict reduced input of volcanic detritus to forearc basins during progressive exhumation of the volcanic edifice and increasing exposure of subvolcanic plutons. In contrast, our results show that forearc basins influenced by ridge subduction may record localized increases in juvenile volcanic detritus during late‐stage evolution in response to accumulation of volcanic sequences formed from slab‐window eruptive centers.  相似文献   

19.
At high‐latitude continental margins, large‐scale submarine sliding has been an important process for deep‐sea sediment transfer during glacial and interglacial periods. Little is, however, known about the importance of this process prior to the arrival of the ice sheet on the continental shelf. Based on new two‐dimensional seismic data from the NW Barents Sea continental margin, this study documents the presence of thick and regionally extensive submarine slides formed between 2.7 and 2.1 Ma, before shelf‐edge glaciation. The largest submarine slide, located in the northern part of the Storfjorden Trough Mouth Fan (TMF), left a scar and is characterized by an at least 870‐m‐thick interval of chaotic to reflection‐free seismic facies interpreted as debrites. The full extent of this slide debrite 1 is yet unknown but it has a mapped areal distribution of at least 10.7 × 103 km2 and it involved >4.1 × 10km3 of sediments. It remobilized a larger sediment volume than one of the largest exposed submarine slides in the world – the Storegga Slide in the Norwegian Sea. In the southern part of the Storfjorden TMF and along the Kveithola TMF, the seismic data reveal at least four large‐scale slide debrites, characterized by seismic facies similar to the slide debrite 1. Each of them is ca. 295‐m thick, covers an area of at least 7.04 × 103 km2 and involved 1.1 × 10km3 of sediments. These five submarine slide debrites represent approximately one quarter of the total volume of sediments deposited during the time 2.7–1.5 Ma along the NW Barents Sea. The preconditioning factors for submarine sliding in this area probably included deposition at high sedimentation rate, some of which may have occurred in periods of low eustatic sea‐level. Intervals of weak contouritic sediments might also have contributed to the instability of part of the slope succession as these deposits are known from other parts of the Norwegian margin and elsewhere to have the potential to act as weak layers. Triggering was probably caused by seismicity associated with the nearby and active Knipovich spreading ridge and/or the old tectonic lineaments within the Spitsbergen Shear Zone. This seismicity is inferred to be the main influence of the large‐scale sliding in this area as this and previous studies have documented that sliding have occurred independently of climatic variations, i.e. both before and during the period of ice sheets repeatedly covering the continental shelf.  相似文献   

20.
西江和北江及珠江三角洲西北部汇流区广泛发育全新世的泥炭-淤泥腐木地层,结合剖面的沉积相特征和14C测年数据,对全新世沉积环境和含腐木地层的分布和环境变化进行探讨,获得以下认识:1)在西江和北江下游海侵北界以上的陆相沉积序列中,厚层泥炭主要形成于中晚全新世(7.5―1.5 cal. ka B.P.),集中堆积时间为5.0―1.5 cal. ka B.P.;2)珠江三角洲全新世海侵对三角洲边缘区陆相泥炭沼泽的形成起决定性作用,早全新世(约9―7 cal. ka B.P.)三角洲西北端的高速率河口相粉砂黏土沉积为后来的半咸水沼泽发育奠定了淤泥深厚的物质基础,而西江―北江下游陆相洪冲积或河漫滩沉积则在8 cal. ka B.P.左右开始发育,也为之后的水松泥炭沼泽繁盛奠定了基础;3)三水西南一带是中全新世西江―北江下游泛滥平原至古河口湾的过渡区,潮汐流与河流的双重作用是造成三角洲边缘区大面积泥炭沼泽湿地形成的主要原因;4)泥炭湿地生态环境大多在2.0―1.5 cal. ka B.P.前后在西江和北江被高位洪水平流沉积物埋藏,而在三角洲区域多被泛滥平原洪积物覆盖。多数剖面泥炭腐木迁移的原因与三角洲的快速加积作用导致的潮流与河流空间位置平衡被破坏和水文条件改变有关,晚全新世不断增强的人类农业活动和森林破坏与水土流失也是导致三角洲天然沼泽湿地消失的重要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号