首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rates of accommodation and sediment supply are the principal controls on stacking patterns in siliciclastic basin fills. Stratigraphic inversion is aimed at reconstruction of these controls from the detrital record. Efforts to ‘explain’ siliciclastic basin fills have been focused on analysis and numerical modelling of sequence geometry in response to changes in accommodation, whereas comparatively few studies have attempted to address the role of sediment supply. The compositional and textural properties of siliciclastic basin fills are linked with the evolution of drainage basins through the principle of climatic–physiographic control of sediment production and supply. Application of this principle leads to a method of compositional analysis for distinguishing sequences controlled by high-frequency changes in the rate of accommodation from sequences controlled by high-frequency variations in the rate of sediment supply (order of 10 kyr). This method does not require detailed time control. Changes in rate and type of sediment supplied to depositional systems in response to environmental perturbations in drainage basins are explored in greater detail by means of a numerical model of sediment production under various scenarios of climatic and tectonic forcing. Simulation experiments suggest that drainage basins respond differently to high-frequency tectonic and climatic perturbations. Synthetic time series of cyclically forced sediment production display different types of asymmetric variations in grain size, accumulation rate and residence time of sediments in response to tectonic and climatic forcing. The results also highlight the role of vegetation as the principal modulator of climate forcing, and show that the nonlinear response to climate change may frustrate any attempts at providing broad generalizations of the system's responses. The modelling results confirm the usefulness of a combined analysis of sediment composition and sequence geometry, and the mathematically rich behaviour of the system suggests that further development of this approach is likely to increase our ability to reconstruct forcing mechanisms and initial boundary conditions from the detrital record.  相似文献   

2.
Formation of alluvial stratigraphy is controlled by autogenic processes that mix their imprints with allogenic forcing. In some alluvial successions, sedimentary cycles have been linked to astronomically‐driven, cyclic climate changes. However, it remains challenging to define how such cyclic allogenic forcing leads to sedimentary cycles when it continuously occurs in concert with autogenic forcing. Accordingly, we evaluate the impact of cyclic and non‐cyclic upstream forcing on alluvial stratigraphy through a process‐based alluvial architecture model, the Karssenberg and Bridge (2008) model (KB08). The KB08 model depicts diffusion‐based sediment transport, erosion and deposition within a network of channel belts and associated floodplains, with river avulsion dependent on lateral floodplain gradient, flood magnitude and frequency, and stochastic components. We find cyclic alluvial stratigraphic patterns to occur when there is cyclicity in the ratio of sediment supply over water discharge (Qs/Qw ratio), in the precondition that the allogenic forcing has sufficiently large amplitudes and long, but not very long, wavelengths, depending on inherent properties of the modelled basin (e.g. basin subsidence, size, and slope). Each alluvial stratigraphic cycle consists of two phases: an aggradation phase characterized by rapid sedimentation due to frequent channel shifting and a non‐deposition phase characterized by channel belt stability and, depending on Qs/Qw amplitudes, incision. Larger Qs/Qw ratio amplitudes contribute to weaker downstream signal shredding by stochastic components in the model. Floodplain topographic differences are found to be compensated by autogenic dynamics at certain compensational timescales in fully autogenic runs, while the presence of allogenic forcing clearly impacts the compensational stacking patterns.  相似文献   

3.
The Miocene sedimentary succession of the southern Browse Basin records the response of a tropical reef system to long‐term, strong subsidence on a passive continental margin. Geological interpretation of a comprehensive two‐dimensional (2D) seismic reflectivity data set documents for the first time the development of a continuous Miocene barrier reef on the Australian North West Shelf. With a length of over 250 km, this barrier reef is among the Earth's largest in the Neogene record. A sequence stratigraphic analysis tied to well data shows that the main controls for the evolution, growth and demise of the reef system were subsidence, third‐order global‐scale eustatic variations and antecedent topography. The generally very high Miocene subsidence rates estimated for the study area cannot be explained by typical passive‐margin subsidence controlled by lithospheric cooling and sedimentary loading alone. Additional dynamic subsidence induced by mantle convection, though documented as unusually large on the northern margin of Australia during the Neogene, can be also regarded as being of only minor importance. Therefore, accelerated tectonic subsidence related to the collision of the Australian and Eurasian Plates 250–500 km north of the study area seems to exert an important influence on reef development and demise, complicated by local tectonic inversion. The Miocene tectonic reactivation and inversion of an older structural grain is interpreted to have controlled the reef development considerably by providing localized topographic highs along transpressional anticlines above basement‐rooted faults that served as preferential sites for reef growth and retreat during times of rapidly rising sea level. This exemplarily shows that the far‐field effects of collision‐induced tectonic subsidence can significantly influence carbonate systems on passive margins.  相似文献   

4.
We describe the tectono‐sedimentary evolution of a Middle Jurassic, rift‐related supra‐detachment basin of the ancient Alpine Tethys margin exposed in the Central Alps (SE Switzerland). Based on pre‐Alpine restoration, we demonstrate that the rift basin developed over a detachment system that is traced over more than 40 km from thinned continental crust to exhumed mantle. The detachment faults are overlain by extensional allochthons consisting of upper crustal rocks and pre‐rift sediments up to several kilometres long and several hundreds of metres thick, compartmentalizing the distal margin into sub‐basins. We mapped and restored one of these sub‐basins, the Samedan Basin. It consists of a V‐shape geometry in map view, which is confined by extensional allochthons and floored by a detachment fault. It can be restored over a minimum distance of 11 km along and about 4 km perpendicular to the basin axis. Its sedimentary infill can be subdivided into basal (initial), intermediate (widening) and top (post‐tectonic) facies tracts. These tracts document (1) formation of the basin initially bounded by high‐angle faults and developing into low‐angle detachment faults, (2) widening of the basin and (3) migration of deformation further outboard. The basal facies tract is made of locally derived, poorly sorted gravity flow deposits that show a progressive change from hangingwall to footwall‐derived lithologies. Upsection the sediments develop into turbidity current deposits that show retrogradation (intermediate facies tract) and starvation of the sedimentary system (post‐tectonic facies tract). On the scale of the distal margin, the syn‐tectonic record documents a thinning‐ and fining‐upward sequence related to the back stepping of the tectonically derived sediment source, progressive starvation of the sedimentary system and migration of deformation resulting in exhumation and progressive delamination of the thinned crust during final rifting. This study provides valuable insights into the tectono‐sedimentary evolution and stratigraphic architecture of a supra‐detachment basin formed over hyper‐extended crust.  相似文献   

5.
Ultra‐large rift basins, which may represent palaeo‐propagating rift tips ahead of continental rupture, provide an opportunity to study the processes that cause continental lithosphere thinning and rupture at an intermediate stage. One such rift basin is the Faroe‐Shetland Basin (FSB) on the north‐east Atlantic margin. To determine the mode and timing of thinning of the FSB, we have quantified apparent upper crustal β‐factors (stretching factors) from fault heaves and apparent whole‐lithosphere β‐factors by flexural backstripping and decompaction. These observations are compared with models of rift basin formation to determine the mode and timing of thinning of the FSB. We find that the Late Jurassic to Late Palaeocene (pre‐Atlantic) history of the FSB can be explained by a Jurassic to Cretaceous depth‐uniform lithosphere thinning event with a β‐factor of ~1.3 followed by a Late Palaeocene transient regional uplift of 450–550 m. However, post‐Palaeocene subsidence in the FSB of more than 1.9 km indicates that a Palaeocene rift with a β‐factor of more than 1.4 occurred, but there is only minor Palaeocene or post‐Palaeocene faulting (upper crustal β‐factors of less than 1.1). The subsidence is too localized within the FSB to be caused by a regional mantle anomaly. To resolve the β‐factor discrepancy, we propose that the lithospheric mantle and lower crust experienced a greater degree of thinning than the upper crust. Syn‐breakup volcanism within the FSB suggests that depth‐dependent thinning was synchronous with continental breakup at the adjacent Faroes and Møre margins. We suggest that depth‐dependent continental lithospheric thinning can result from small‐scale convection that thins the lithosphere along multiple offset axes prior to continental rupture, leaving a failed breakup basin once seafloor spreading begins. This study provides insight into the structure and formation of a generic global class of ultra‐large rift basins formed by failed continental breakup.  相似文献   

6.
The late Palaeozoic to Triassic sedimentary record of the central Argentinean offshore was analysed through the integration of data from exploratory wells and 2D seismic lines. Our interpretations were combined with existing ones in Argentina, Uruguay, Brazil and South Africa for their analysis in the late Palaeozoic south‐western Gondwana context. The mapped upper Palaeozoic‐Lower Triassic stratigraphic record offshore Argentina bears a thickness of +7000 m south of the Colorado basin and encompasses the time span between Pennsylvanian and Lower Triassic; this means that it triples that of the Sierras de la Ventana of Argentina and involves a far larger time span. On the basis of seismic stratigraphic interpretations in localities near the coast, we interpret that a strong denudation process removed a great portion of the stratigraphic record in the Sierras de la Ventana, the surrounding plains and the Tandilia system of Buenos Aires. The seismic stratigraphic configuration of the late Palaeozoic succession shows continuous and parallel reflections in a wide sediment wedge extending for more than 1000 km between the Gondwanides orogen core to the south and offshore Uruguay to the north. Two salient aspects of this sedimentary wedge are that no flexural depocentre was observed at the Ventania fold belt front, and that deformation in the orogenic front is post‐Lower Triassic. The original westwards extent of the basin is interpreted to have encompassed the whole of Buenos Aires province in continuity with the Chacoparaná basin; to the east continuity and a straightforward correlation with the Karoo basin was interpreted. The name of Hespérides Basin is proposed herein to refer to a Pennsylvanian to Lower Triassic basin mainly controlled by dynamic subsidence that encompasses and exceeds the area of the Sauce Grande and Colorado basins and the Claromecó fore‐deep in Argentina. The Hespérides basin is interpreted to have been in lateral continuity with the Kalahari, Karoo and Chacoparaná basins of Africa and South America forming a +3 000 000 sq. km depocentre.  相似文献   

7.
In this study, we integrate 3D seismic reflection, wireline log, biostratigraphic and core data from the Egersund Basin, Norwegian North Sea to determine the impact of syn‐depositional salt movement and associated growth faulting on the sedimentology and stratigraphic architecture of the Middle‐to‐Upper Jurassic, net‐transgressive, syn‐rift succession. Borehole data indicate that Middle‐to‐Upper Jurassic strata consist of low‐energy, wave‐dominated offshore and shoreface deposits and coal‐bearing coastal‐plain deposits. These deposits are arranged in four parasequences that are aggradationally to retrogradationally stacked to form a net‐transgressive succession that is up to 150‐m thick, at least 20 km in depositional strike (SW‐NE) extent, and >70 km in depositional dip (NW‐SE) extent. In this rift‐margin location, changes in thickness but not facies are noted across active salt structures. Abrupt facies changes, from shoreface sandstones to offshore mudstones, only occur across large displacement, basement‐involved normal faults. Comparisons to other tectonically active salt‐influenced basins suggest that facies changes across syn‐depositional salt structures are observed only where expansion indices are >2. Subsidence between salt walls resulted in local preservation of coastal‐plain deposits that cap shoreface parasequences, which were locally removed by transgressive erosion in adjacent areas of lower subsidence. The depositional dip that characterizes the Egersund Basin is unusual and likely resulted from its marginal location within the evolving North Sea rift and an extra‐basinal sediment supply from the Norwegian mainland.  相似文献   

8.
This article presents combined stratigraphic, sedimentological, subsidence and provenance data for the Cretaceous–Palaeogene succession from the Zhepure Mountain of southern Tibet. This region records the northernmost sedimentation of the Tethyan passive margin of India, and this time interval represents the transition into continental collision with Asia. The uppermost Cretaceous Zhepure Shanpo and Jidula formations record the transition from pelagic into upper slope to delta‐plain environments. The Palaeocene–lower Eocene Zongpu Formation records a carbonate ramp that is overlain by the deep‐water Enba Formation (lower Eocene). The upper part of the Enba Formation records shallowing into a storm‐influenced, outer shelf environment. Detrital zircon U–Pb and Hf isotopic data indicate that the terrigenous strata of the Enba Formation were sourced from the Lhasa terrane. Unconformably overlying the Enba Formation is the Zhaguo Formation comprising fluvial deposits with evidence of recycling from the underlying successions. Backstripped subsidence analysis indicates shallowing during latest Cretaceous‐earliest Palaeocene time (Zhepure Shanpo and Jidula formations) driven by basement uplift, followed by stability (Zongpu Formation) until early Eocene time (Enba Formation) when accelerated subsidence occurred. The provenance, subsidence and stratigraphy suggest that the Enba and Zhaguo formations record foredeep and wedge‐top sedimentation respectively within the early Himalayan foreland basin. The underlying Zongpu Formation is interpreted to record the accumulation of a carbonate ramp at the margin of a submarine forebulge. The precursor tectonic uplift during latest Cretaceous time could either record surface uplift over a mantle plume related to the Réunion hotspot, or an early signal of lithospheric flexure related to oceanic subduction, continental collision or ophiolite obduction. The results indicate that the collision of India with Asia occurred before late Danian (ca. 62 Ma) time.  相似文献   

9.
Fluid inclusion homogenization temperatures and three‐dimensional hydro‐thermo‐mechanical modelling were combined to constrain fluid flow, solute and heat transport in the Paris basin, France, focusing on the two main petroleum reservoirs i.e. the Dogger and the Triassic (Keuper) formations. The average homogenization temperatures of two‐phase aqueous inclusions in different samples range from 66 °C to 88 °C in the Dogger calcite cement, from 106 °C to 118 °C in the Keuper dolomite cement and from 89 °C to 126 °C in the Keuper quartz and K‐feldspar cements. The maximum homogenization temperatures for inclusions in the Keuper quartz and K‐feldspar cements were 17–47 °C higher than present‐day temperatures in the boreholes at similar depths. Processes that might explain higher temperatures in the past were examined through numerical simulations and sensitivity tests. A warmer climate in the Late Cretaceous–Early Tertiary resulted in a temperature rise of only 8 °C. Late Cretaceous chalk had a thermal blanketing effect that resulted in simulated temperatures as high as 15–20 °C above the present day ones. An additional 300 m deposition and subsequent erosion of chalk, not taken into account so far, has to be considered to simulate the high palaeo‐temperatures recorded by fluid inclusions in both reservoirs. In view of the simulated thermal history of the basin, in the Keuper, an age of about 85 Ma is consistent with quartz/K‐feldspar temperatures and an age of about 65 Ma is in agreement with the precipitation temperature of the dolomite cement. Our models suggest an age of about 50 Ma for the Dogger calcite cementation.  相似文献   

10.
Multichannel high‐resolution seismic data along the northwestern margin of the Great Bahama Bank (GBB), Bahamas, detail the internal geometry and depositional history of a Neogene‐Quaternary carbonate slope‐to‐basin area. The stratigraphic architecture through this period evolves from (i) a mud‐dominated slope apron during the Miocene, (ii) a debris‐dominated base‐of‐slope apron during the Late Pliocene and then (iii) return to a slope apron with very short prograding clinoformal aprons during the Pleistocene. This geometric evolution was broadly constrained by the development of the Santaren Drift by bottom current since the Langhian. The drift expands along the northwestern GBB slope, forming a continuous correlative massive feature that shows successive phases of growth and retreat and influenced the downslope sediments distribution. Indeed, Late Pliocene deposits are confined into the moat, forming a strike‐continuous coarse debrites belt along the mid‐slope, preventing their free expansion into the basin. The occurrence of basinal drift that operated since 15 Ma showed a significant upslope growth around 3.6 Ma and is interpreted as resulting from the closure of the Central American Seaway which also coincides with a global oceanographic re‐organization and climate changes in the Northern Hemisphere.  相似文献   

11.
《Basin Research》2018,30(2):321-343
This natural‐scale experimental study combines structural modelling of soft‐linked normal‐fault relays with a CFD (computational fluid dynamics) numerical simulation of a range of unconfined turbidity currents overrunning the relay‐system topography. The flow, released from an upslope inlet gate 2000‐m wide and 50‐m to 100‐m high, rapidly expands and adjusts its thickness, velocity and sediment load to the substrate slope of 1.5°. A lower initial sediment concentration or smaller thickness renders the quasi‐steady flow slower and its sediment‐transport capacity lower. A 3D pattern of large interfering Kelvin‐Helmholtz waves causes fluctuations of the local flow velocity magnitude and sediment concentration. Four zones of preferential sediment deposition are recognized: a near‐gate zone of abrupt flow expansion and self‐regulation; a flow‐transverse zone on the counter‐slope of fault footwall edges; a flow‐transverse zone at the fault‐scarp toes and a similar transverse zone near the crest of the hanging wall counter‐slopes. The sand deposited on the counter‐slope tends to be re‐entrained and fed back to the current by a secondary reverse underflow. The spatial extent and sediment accumulation capacity of depozones depend upon the released current volume. The impact of relay system on an overrunning current depends upon the fault separation distance and stage of tectonic evolution. An early‐stage relay system, with small vertical displacement and little overlap of faults, is bypassed by the current with minimum flow disturbance and no pronounced deposition. An advanced‐stage system, with greater fault displacement and overlap, gives a similar hydraulic effect as a single fault segment if the fault separation is small. If the separation is relatively large, the flow tends to be internally redirected sideways from the ramp into the hanging wall synclinal depressions. Since normal‐fault relays are common features in extensional basins, the study bears important implications for turbiditic slope‐fan models and for the spatial sand prediction in subsurface exploration of faulted submarine slopes.  相似文献   

12.
Late Paleocene to Middle Eocene strata in the easternmost part of the Southern Pyrenees, up to 4 km thick, provide information on tectono-sedimentary evolution of faults transversal to the Pyrenean chain. To know how changes in tectonic plate processes control the structural evolution of transverse faults and the synchronous thickness and lithological distribution of sedimentary strata in a foreland basin, field observations, interpretation of 2D seismic lines tied to lithostratigraphic data of exploration wells and gravity modelling constrains were carried out. This resulted in the following two tectono-sedimentary phases in a foreland basin: first phase, dominated by transverse extensional faulting, synchronous with deposition of marine carbonates (ca. 57 to 51 Ma); and second phase, characterized by transverse contractional faulting, coeval to accumulation of marine and transitional siliciclastics (51 to 44 Ma). During the first phase, Iberia and Adria were moving to the east and west respectively. Therefore, lithospheric flexure in the easternmost part of the Iberian plate was developed due to that Sardinia was over-thrusting Iberia. Consequently, activation of E-dipping normal faults was generated giving rise to thick-deep and thin-shallow carbonate platform deposits across the hanging walls and footwalls of the transverse structures. During the second phase, a shearing interaction between Iberia and Sardinia prevailed re-activating the transverse faults as contractional structures generating thin-shelf and thick-submarine fan deposits across the hanging walls and footwalls of the transverse structures. In the transition between the first and second phases, evaporitic conditions dominated in the basin suggesting a tectonic control on basin marine restriction. The results of our study demonstrate how thickness and lithology distribution, controlled by transverse faulting in a compressional regimen, are influenced by phases related to processes affecting motions and interactions between tectonic plates and continental blocks.  相似文献   

13.
The evolution from Late Cretaceous to early Eocene of the well dated Amiran foreland basin in the NW Iranian Zagros Mountains is studied based on the reconstruction of successive thickness, palaeobathymetry and subsidence maps. These maps show the progressive forelandwards migration of the mixed carbonate‐siliciclastic system associated with a decrease in creation of accommodation. Carbonate facies variations across the basin suggest a structural control on the carbonate distribution in the Amiran foreland basin, which has been used as initial constraint to study the control exerted by syndepositional folding in basin architecture and evolution by means of stratigraphic numerical modelling. Modelled results show that shallow bathymetries on top of growing folds enhance carbonate production and basin compartmentalization. As a consequence, coarse clastics become restricted to the internal parts of the basin and only the fine sediments can by‐pass the bathymetric highs generated by folding. Additionally, the development of extensive carbonate platforms on top of the anticlines favours the basinwards migration of the depositional system, which progrades farther with higher fold uplift rates. In this scenario, build‐ups on top of anticlines record its growth and can be used as a dating method. Extrapolation of presented modelling results into the Amiran foreland basin is in agreement with an early folding stage in the SE Lurestan area, between the Khorramabad and Kabir Kuh anticlines. This folding stage would enhance the development of carbonate platforms on top of the anticlines, the south‐westward migration of the system and eventually, the complete filling of the basin north of the Chenareh anticline at the end of the Cuisian. Incremental thickness maps are consistent with a thin (0.4–2 km) ophiolite complex in the source area of the Amiran basin.  相似文献   

14.
Velocity and mass fields from a constant-density, near-global ocean model, driven with observed twice-daily surface wind stresses and atmospheric pressures for the period October 1992-September 1993, are used to calculate oceanic excitation functions for the length of day (LOD) and for polar motion (PM), and results are analysed as a function of the frequency band. Variable currents and mass redistributions are both important in determining oceanic excitation functions. For bands with periods longer than one month, wind-driven variability is the primary cause of oceanic excitation signals. At higher frequency bands, larger deviations from the inverted barometer response occur, and pressure-driven signals contribute more significantly to the variance in the excitation functions. Oceanic LOD excitation is generally small compared to that of the atmosphere, except for the 2-10 day band. At these scales, adding oceanic to atmospheric excitation series does not lead to better agreement with the observed LOD, although this result may be related to data quality issues. With regard to the excitation of PM, the ocean is in general as important as the atmosphere at most time scales. Combined oceanic and atmospheric excitation series compare visibly better with geodetic series than do atmospheric series alone, pointing to the ocean as a source of measurable signals in PM.  相似文献   

15.
The Molasse Basin of Switzerland evolved through a distinct late Neogene history with initial development as a classic foredeep or foreland basin in response to loading of the lithosphere by the Alpine orogen. In the central and western foreland, the foredeep behaviour was terminated by deformation and uplift of the Jura Mountains in the distal regions of the foredeep. Following the Jura deformation the Plateau Molasse remained largely undeformed as it rode ‘piggy‐back’ style above the decollement feeding displacement into the Jura. Sediment accumulation data for the Molasse suggests that sedimentation in the Plateau Molasse region continued until the basin was inverted at about 5 Ma. We present a mechanical model for this sequence of events in which deformation jumps across much of the basin to the distal Jura because of the dip on the weak evaporitic decollement and the wedge‐shape of the foredeep basin. Subsequently, the Plateau Molasse remained largely undeformed as a result of continued sedimentation in a wedgetop basin, where the physical properties and geometry of the orogenic wedge combine to produce a critical wedge whose critical surface slope would be less than zero and thus should dip towards the Alpine interior. Accommodation space is created over this negative surface–slope segment of the wedge and sedimentation maintains this slope near zero, stabilizing the wedge. We present a simple analytical theory for the necessary conditions for such a ‘negative‐alpha basin’ to develop and be maintained. We compare this theory to the late Neogene evolution of the Alps, Molasse Basin and Jura Mountains and infer physical properties for the decollement.  相似文献   

16.
Constraining the thermal and denudational evolution of continental margins from extensional episodes to early orogenic stages is critical in the objective to better understand the sediment routing during the growth of orogenic topography. Here, we report 160 detrital zircon U/Pb ages and 73 (U‐Th)/He ages from Albian, Upper Cretaceous and Eocene sandstones from the south‐central Pyrenees. All samples show dominant zircon U/Pb age peaks at 310–320 Ma, indicating a primary contribution from Variscan granites of the central Pyrenean Axial Zone. A secondary population at 450–600 Ma documents zircon grains sourced from the eastern Pyrenees. Zircon (U‐Th)/He ages recovered from older samples document, a Triassic age peak at ca. 241 Ma, corresponding to denudation coeval with the initiation of Atlantic rifting. An Early Cretaceous cooling event at ca. 133 Ma appears consistent with rift‐related exhumation and thermal overprint on the Iberian margin. The (U‐Th)/He age peaks from ca. 80 Ma to ca. 68 Ma with decreasing depositional ages are interpreted to reflect the southward‐migrating thrust‐related exhumation on the pro‐wedge side of the Pyrenean orogen. The increase in lag times, from ca. 15 Ma in the Tremp Formation (ca. 65 Ma) to 28 Ma in the Escanilla Formation (ca. 40 Ma), suggests decreasing exhumation rates from 0.4 km Myr–1 to 0.2 km Myr–1. The apparent inconsistency with convergence rates is used to infer that rocks cooled at 68 Ma may have resided in the crust before final exhumation to the surface. Finally, the cooling event observed at 68 Ma provides support to the inferred acceleration of convergence, shortening and exhumation during Late Cretaceous times.  相似文献   

17.
Detailed seismic stratigraphic analysis of 2D seismic data over the Faroe‐Shetland Escarpment has identified 13 seismic reflection units that record lava‐fed delta deposition during discrete periods of volcanism. Deposition was dominated by progradation, during which the time shoreline migrated a maximum distance of ~44 km in an ESE direction. Localised collapse of the delta front followed the end of progradation, as a decrease in volcanic activity left the delta unstable. Comparison with modern lava‐fed delta systems on Hawaii suggests that syn‐volcanic subsidence is a potential mechanism for apparent relative sea level rise and creation of new accommodation space during lava‐fed delta deposition. After the main phase of progradation, retrogradation of the delta occurred during a basinwide syn‐volcanic relative sea level rise where the shoreline migrated a maximum distance of ~75 km in a NNW direction. This rise in relative sea level was of the order of 175–200 m, and was followed by the progradation of smaller, perched lava‐fed deltas into the newly created accommodation space. Active delta deposition and the emplacement of lava flows feeding the delta front lasted ~2600 years, although the total duration of the lava‐fed delta system, including pauses between eruptions, may have been much longer.  相似文献   

18.
Abstract

As interest in outdoor activities in remote areas is increasing, there is a strong need for improved avalanche forecasting at the regional scale. Due to important logistical and safety matters, avalanche terrain measurements (avalanche observations, snowpack profiles, and stability tests) are not always possible for practitioners/forecasters. An interesting alternative would be to analyze the snowpack without these challenges by using snow model outputs. The SNOWPACK model is currently used operationally for avalanche forecasting and research in the Swiss Alps. Thus, this paper presents a summary of analyses that have been conducted to assess the potential of using the SNOWPACK model driven with both in-situ and forecasted meteorological data in three different Canadian climate and geomorphological contexts. A comparison of meteorological data from in-situ and predicted datasets for two winters shows that the GEMLAM weather model is the most accurate for the three climatic contexts of this project, but also showed a bias proportional to precipitation intensity/rate. Snow simulations forced with GEMLAM are the closest to field measurements. Finally, predictions of persistent weak layers have been validated using the InfoEx platform from Avalanche Canada. Crust and surface hoar formation dates agree with the information reported in InfoEx.  相似文献   

19.
20.
Two end‐member models have been proposed for the Paleogene Andean foreland: a simple W‐E migrating foreland model and a broken‐foreland model. We present new stratigraphic, sedimentological and structural data from the Paleogene Quebrada de los Colorados (QLC) Formation, in the Eastern Cordillera, with which to test these two different models. Basin‐wide unconformities, growthstrata and changes in provenance indicate deposition of the QLC Formation in a tectonically active basin. Both west‐ and east‐vergent structures, rooted in the basement, controlled the deposition and distribution of the QLC Formation from the Middle Eocene to the Early Miocene. The provenance analysis indicates that the main source areas were basement blocks, like the Paleozoic Oire Eruptive Complex, uplifted during Paleogene shortening, and that delimits the eastern boundary of the present‐day intraorogenic Puna plateau. A comparison of the QLC sedimentary basin‐fill pattern with those of adjacent Paleogene basins in the Puna plateau and in the Santa Bárbara System highlights the presence of discrete depozones. These reflect the early compartmentalization of the foreland, rather than a stepwise advance of the deformation front of a thrust belt. The early Tertiary foreland of the southern central Andes is represented by a ca. 250‐km‐wide area comprising several deformation zones (Arizaro, Macón, Copalayo and Calchaquí) in which doubly vergent or asymmetric structures, rooted in the basement, were generated. Hence, classical foreland model is difficult to apply in this Paleogene basin; and our data and interpretation agree with a broken‐foreland model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号