首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
With accelerated melting of alpine glaciers, understanding the future state of the cryosphere is critical. Because the observational record of glacier response to climate change is short, palaeo‐records of glacier change are needed. Using proglacial lake sediments, which contain continuous and datable records of past glacier activity, we investigate Holocene glacier fluctuations on northeastern Baffin Island. Basal radiocarbon ages from three lakes constrain Laurentide Ice Sheet retreat by ca. 10.5 ka. High sedimentation rates (0.03 cm a?1) and continuous minerogenic sedimentation throughout the Holocene in proglacial lakes, in contrast to organic‐rich sediments and low sedimentation rates (0.005 cm a?1) in neighbouring non‐glacial lakes, suggest that glaciers may have persisted in proglacial lake catchments since regional deglaciation. The presence of varves and relatively high magnetic susceptibility from 10 to 6 ka and since 2 ka in one proglacial lake suggest minimum Holocene glacier extent ca. 6–2 ka. Moraine evidence and proglacial and threshold lake sediments indicate that the maximum Holocene glacier extent occurred during the Little Ice Age. The finding that glaciers likely persisted through the Holocene is surprising, given that regional proxy records reveal summer temperatures several degrees warmer than today, and may be due to shorter ablation seasons and greater accumulation‐season precipitation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, we present new information on the glacial history of the Greenland Ice Sheet (GrIS) and a local ice cap in Qaanaaq, northwest Greenland. We use geomorphological mapping, 10Be exposure dating of boulders, analysis of lake cores, and 14C dating of reworked marine molluscs and subfossil plants to constrain the glacial history. Our 14C ages of reworked marine molluscs reveal that the ice extent in the area was at or behind its present‐day position from 42.2 ± 0.4 to 30.6 ± 0.3k cal a BP after which the GrIS expanded to its maximum position during the Last Glacial Maximum. We find evidence of early ice retreat in the deep fjord (Inglefield Bredning) at 11.9 ± 0.6 ka whereas the Taserssuit Valley was deglaciated ~4 ka later at 7.8 ± 0.1k cal a BP. A proglacial lake record suggests that the local ice cap survived the Holocene Thermal Maximum but moss kill‐dates reveal that it was smaller than present for a period of time before 3.3 ± 0.1k until 0.9 ± 0.1k cal a BP, following which the ice in the area expanded towards its Little Ice Age extent. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
早全新世降温事件的湖泊沉积证据   总被引:12,自引:1,他引:12  
我国华北干旱-半干旱区封闭湖泊流域化学风化历史记录了全新世以来次级的气候环境波动过程。高精度的沉积物地球化学、物理及生物参数变化表明,在全新世早-中期过渡阶段存在一次强降温气候事件,具体表现为流域化学风化减弱(高Rb/Sr比)、湖泊产生力减弱(低有机碳)以及湖泊水位下降。虽然该事件的寒冷程度比Younger Dryas弱,但是其与来自湖沼(包括北极、非洲、北美、西欧、青藏高原、祁连山等)、海洋(比北大西洋、地中海、加勒比海等)、欧-美大陆生物组合、极地冰芯等在内的环境记录的冷事件发生时间基本一致,集中发生于8.0-8.5ka B.P.之间。  相似文献   

4.
西藏阿里阿伊拉日居山脉第四纪冰川作用   总被引:3,自引:1,他引:3       下载免费PDF全文
在西藏阿里阿伊拉日居山脉南北两麓及切割山脉的各沟谷中,分布着4套早更新世以来的冰川沉积物。根据这些冰川沉积物的地层层序和冰川沉积物的电子自旋共振(ESR)年龄测定结果,将阿伊拉日居山脉南北两麓所发生的4次早更新世以来的冰川作用,分别命名为札达冰期(1161-952 ka BP)、阿伊拉日居冰期(762-730 ka BP)、学朗冰期(336-211 ka BP)和弄穷冰期(105-15 ka BP),并与青藏高原及其他地区冰期进行了对比。各次冰期的冰川性质分别为大型山岳冰川、冰帽、山麓冰川和中小型山谷冰川。全新世时期,现代冰川有过冰川推进。近期冰川则发生了明显的后退。  相似文献   

5.
This paper is the first to summarize research on fluctuations of local glaciers in Greenland (e.g. ice caps and mountain glaciers independent of the Greenland Ice Sheet) during latest Pleistocene and Holocene time. In contrast to the extensive data available for fluctuations of the Greenland Ice Sheet, surprisingly little data exist to constrain local glacier extents. Much of the available research was conducted prior to wide-spread use of AMS radiocarbon dating and the advent of surface-exposure and luminescence dating. Although there is a paucity of data, generally similar patterns of local glacier fluctuations are observed in all regions of Greenland and likely reflect changes in paleoclimate, which must have influenced at least the margins of the Inland Ice. Absolute-age data for late-glacial and early Holocene advances of local glaciers are reported from only two locations: Disko (island) and the Scoresby Sund region. Subsequent to late-glacial or early Holocene time, most local glaciers were smaller than at present or may have disappeared completely during the Holocene Thermal Maximum. In general, local glacier advances that occurred during Historical time (1200–1940 AD) are the most extensive since late-glacial or early Holocene time. Historical documents and more recent aerial photographs provide useful information about local glacier fluctuations during the last 100 yrs. In all but one area (North Greenland), local glaciers are currently receding from Historical extents.  相似文献   

6.
The marine record shows that over the last 350 ka Northern Hemisphere ice sheet volumes have fluctuated widely and only on rare short occasions have they been reduced to the present interglacial state. The fluctuations are well synchronized with hemispheric average summer insolation variations of 20 ka periodicity caused by changing orbital parameters. The development of a model which explains the varied amplitudes of the fluctuations and is consistent with the geological record embodies the following arguments: The transition from an interglacial state like today's to a glacial state is initiated when a summer insolation deficit causes a southerly extension of the North Atlantic-Arctic pack ice to 60°N latitude. The extension alters the subpolar low pressure patterns and thus causes a southward diversion of the European Gulf Stream flow. It also produces an enhanced warm West Greenland current. This current causes open seas as far north as Baffin Bay which provides moisture for rapid northern Laurentide ice sheet growth. After several glacial fluctuations driven by insolation variations, the southern Laurentide ice front may reach an extreme extension. This diverts the westerlies and the Gulf Stream thus weakening a dominant subpolar North Atlantic gyre and consequently producing a prolonged cutoff of the West Greenland current and a reduction of high latitude glacial precipitation. The subsequent high insolation can then melt back the eastern pack ice and restore the northern European Gulf Stream. This warms the high latitudes for a time sufficient to melt the continental ice, thus causing the transition back to the interglacial state.An analysis of the record in the context of model suggests that the threshold deficit in average summer insolation that is required to initiate major glacial growth is influenced by the cooling effect of the Greenland ice cap on the seas to the east. The threshold level under conditions like today's is found to lie between ?7 and ?17 ly/day relative to the present. This threshold will not be crossed for at least 54 millenia due to an interval of smaller orbital eccentricity. Probable melting of the Greenland ice cap about 30 ka AP would ensure the extension of the present interglacial beyond 120 ka AP.  相似文献   

7.
Oxygen isotope variations spanning the last glacial cycle and the Holocene derived from ice‐core records for six sites in Greenland (Camp Century, Dye‐3, GRIP, GISP2, Renland and NorthGRIP) show strong similarities. This suggests that the dominant influence on oxygen isotope variations reflected in the ice‐sheet records was regional climatic change. Differences in detail between the records probably reflect the effects of basal deformation in the ice as well as geographical gradients in atmospheric isotope ratios. Palaeotemperature estimates have been obtained from the records using three approaches: (i) inferences based on the measured relationship between mean annual δ18O of snow and of mean annual surface temperature over Greenland; (ii) modelled inversion of the borehole temperature profile constrained either by the dated isotopic profile, or (iii) by using Monte Carlo simulation techniques. The third of these approaches was adopted to reconstruct Holocene temperature variations for the Dye 3 and GRIP temperature profiles, which yields remarkably compatible results. A new record of Holocene isotope variations obtained from the NorthGRIP ice‐core matches the GRIP short‐term isotope record, and also shows similar long‐term trends to the Dye‐3 and GRIP inverted temperature data. The NorthGRIP isotope record reflects: (i) a generally stronger isotopic signal than is found in the GRIP record; (ii) several short‐lived temperature fluctuations during the first 1500 yr of the Holocene; (iii) a marked cold event at ca. 8.2 ka (the ‘8.2 ka event’); (iv) optimum temperatures for the Holocene between ca. 8.6 and 4.3 ka, a signal that is 0.6‰ stronger than for the GRIP profile; (v) a clear signal for the Little Ice Age; and (vi) a clear signal of climate warming during the last century. These data suggest that the NorthGRIP stable isotope record responded in a sensitive manner to temperature fluctuations during the Holocene. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
新龙古冰帽的若干特征   总被引:2,自引:0,他引:2  
新龙古冰帽位于沙鲁里山北部,古冰帽面积为2000km~2。海拔4600m以上湖群遍布,冰碛物撒满高原面,此即为古冰帽的判识标志。古冰帽分中心区与外围山谷冰川区,遗留有冰蚀湖、蚀碛均夷面、冰蚀丘陵、冰川槽谷、羊背石、鼓丘、侧碛堤等多种地貌类型。本冰帽演化经历了三次冰期。  相似文献   

9.
Here we present Holocene organic carbon, nitrogen, sulphur, carbon isotope ratio and macrofossil data from a small freshwater lake near Sisimiut in south‐west Greenland. The lake was formed c. 11 cal ka BP following retreat of the ice sheet margin and is located above the marine limit in this area. The elemental and isotope data suggest a complex deglaciation history of interactions between the lake and its catchment, reflecting glacial retreat and post‐glacial hydrological flushing probably due to periodic melting of local remnant glacial ice and firn areas between 11 and 8.5 cal ka BP. After 8.5 cal ka BP, soil development and associated vegetation processes began to exert a greater control on terrestrial–aquatic carbon cycling. By 5.5 cal ka BP, in the early Neoglacial cooling, the sediment record indicates a change in catchment–lake interactions with consistent δ13C while C/N exhibits greater variability. The period after 5.5 cal ka BP is also characterized by higher organic C accumulation in the lake. These changes (total organic carbon, C/N, δ13C) are most likely the result of increasing contribution (and burial) of terrestrial organic matter as a result of enhanced soil instability, as indicated by an increase in Cenococcum remains, but also Sphagnum and Empetrum. The impact of glacial retreat and relatively subdued mid‐ to late Holocene climate variation at the coast is in marked contrast to the greater environmental variability seen in inland lakes closer to the present‐day ice sheet margin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Understanding Arctic glacier sensitivity is key to predicting future response to air temperature rise. Previous studies have used proglacial lake sediment records to reconstruct Holocene glacier advance–retreat patterns in South and West Greenland, but high‐resolution glacier records from High Arctic Greenland are scarce, despite the sensitivity of this region to future climate change. Detailed geochemical analysis of proglacial lake sediments close to Zackenberg, northeast Greenland, provides the first high‐resolution record of Late Holocene High Arctic glacier behaviour. Three phases of glacier advance have occurred in the last 2000 years. The first two phases (c. 1320–800 cal. a BP) occurred prior to the Little Ice Age (LIA), and correspond to the Dark Ages Cold Period and the Medieval Climate Anomaly. The third phase (c. 700 cal. a BP), representing a smaller scale glacier oscillation, is associated with the onset of the LIA. Our results are consistent with recent evidence of pre‐LIA glacier advance in other parts of the Arctic, including South and West Greenland, Svalbard, and Canada. The sub‐millennial glacier fluctuations identified in the Madsen Lake succession are not preserved in the moraine record. Importantly, coupled XRF and XRD analysis has effectively identified a phase of ice advance that is not visible by sedimentology alone. This highlights the value of high‐resolution geochemical analysis of lake sediments to establish rapid glacier advance–retreat patterns in regions where chronological and morphostratigraphical control is limited.  相似文献   

11.
We constrain, in detail, fluctuations of two former ice caps in NW Scotland with multibeam seabed surveys, geomorphological mapping and cosmogenic 10Be isotope analyses. We map a continuous sequence of 40 recessional moraines stretching from ~10 km offshore to the Wester Ross mountains. Surface‐exposure ages from boulders on moraine ridges in Assynt and the Summer Isles region show that substantial, dynamic, ice caps existed in NW Scotland between 13 and 14 ka BP. We interpret this as strong evidence that large active glaciers probably survived throughout the Lateglacial Interstadial, and that during the Older Dryas period (ca. 14 ka BP) ice caps in NW Scotland were thicker and considerably more extensive than in the subsequent Younger Dryas Stadial. By inference, we suggest that Lateglacial ice‐cap oscillations in Scotland reflect the complex interplay between changing temperature and precipitation regimes during this climatically unstable period (ca. 15–11 ka BP). © Natural Environment Research Council (NERC) copyright 2008. Reproduced with the permission of NERC. Published by John Wiley & Sons, Ltd.  相似文献   

12.
During the last glacial stage, Washington Land in western North Greenland was probably completely inundated by the Greenland Ice Sheet. The oldest shell dates from raised marine deposits that provide minimum ages for the last deglaciation are 9300 cal. yr BP (northern Washington Land) and 7600 cal. yr BP (SW Washington Land). These dates indicate that Washington Land, which borders the central part of Nares Strait separating Greenland from Ellesmere Island in Canada, did not become free of glacier ice until well into the Holocene. The elevation of the marine limit falls from 110 m a.s.l. in the north to 60 m a.s.l. in the southwest. The recession was followed by readvance of glaciers in the late Holocene, and the youngest shell date from Neoglacial lateral moraines north of Humboldt Gletscher is 600 cal. yr BP. Since the Neoglacial maximum, probably around 100 years ago, glaciers have receded. The Holocene marine assemblages comprise a few southern extralimital records, notably of Chlamys islandica dated to 7300 cal. yr BP. Musk ox and reindeer disappeared from Washington Land recently, perhaps in connection with the cold period that culminated about 100 years ago.  相似文献   

13.
The retreat of the Barents Sea Ice Sheet on the western Svalbard margin   总被引:1,自引:0,他引:1  
The deglaciation of the continental shelf to the west of Spitsbergen and the main fjord, Isfjorden. is discussed based on sub-bottom seismic records and scdirncnt cores. The sea lloor on the shelf to the west of Isfjorden is underlain by less than 2 m of glaciomarine sediments over a firm diamicton interpreted as till. In central Isfjordcn up to 10 m of deglaciation sediments were recorded, whereas in cores from the innermost tributary, Billefjorden, less than a meter of ice proximal sediments was recognized between the till and the 'normal' Holocene marine sediments. We conclude that the Barents Sea Ice Sheet terminated along the shelf break during the Late Weichselian glacial maximum. Radiocarbon dates from thc glaciomarine sediments above the till indicate a stepwise deglaciation. Apparently the ice front rctrcatcd from the outermost shelf around 14. 8 ka A dramatic increase in the flux of line-grained glaciomarine sediments around 13 ka is assumed to reflect increased melting and/or current activity due to a climatic warming. This second stage of deglaciation was intcrruptcd by a glacial readvance culminating on the mid-shelf area shortly after 12.4 ka. The glacial readvance, which is correlated with a simultaneous readvance of the Fennoscundian ice sheet along the western coast of Norway, is attributed to the so-called 'Older Dryas' cooling event in the North Atlantic region. Following this glacial readvance the outer part of Isljorden became rapidly deglaciated around 12.3 ka. During the Younger Dryas the inner fjord branches were occupied by large outlet glaciers and possibly the ice liont terminated far out in the main fjord. The remnants of the Harcnts Sea Ice Shcet melted quickly away as a response to the Holocene warming around 10 ka.  相似文献   

14.
A sedimentological and geochemical study of the Lago Enol sequence (Cantabrian Mountains, northern Spain), together with detailed geomorphological mapping, provides a first record of glacier evolution and climate change over the last 40 ka in the Picos de Europa National Park. The Enol glacier retreated from its maximum extent prior to 40 ka BP as demonstrated by the onset of proglacial lacustrine sedimentation in two glaciated depressions: the Comella hollow to the north (before 40 ka BP) and the Lago Enol (before 38 ka BP). These results support previous evidence that the maximum extent of southern European glaciers occurred earlier than in northern Europe. Alternation of homogeneous and laminated proglacial sediments during the glacier retreat illustrate a dynamic glacial evolution during the Marine Isotope Stage (MIS) 3 (40–26 ka BP). A slight warming is detected at 26 ka ago with the change from proglacial sediments (in a lake located in contact to the glacier) to glaciolacustrine sedimentation (in a non‐contact or distal lake). Finally, the onset of organic‐rich sediments took place at 18 ka ago. This last transition occurred in two phases, similarly to the North Atlantic Last Termination, suggesting a link between North Atlantic Deep Water formation oscillations and palaeohydrological variability in the Cantabrian Mountains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Melting glaciers and ice caps on Baffin Island contribute roughly half of the sea-level rise from all ice in Arctic Canada, although they comprise only one-fourth of the total ice in the region. The uncertain future response of arctic glaciers and ice caps to climate change motivates the use of paleodata to evaluate the sensitivity of glaciers to past warm intervals and to constrain mechanisms that drive glacier change. We review the key patterns and chronologies of latest Pleistocene and Holocene glaciation on Baffin Island. The deglaciation by the Laurentide Ice Sheet occurred generally slowly and steadily throughout the Holocene to its present margin (Barnes Ice Cap) except for two periods of rapid retreat: An early interval 12 to 10 ka when outlet glaciers retreated rapidly through deep fiords and sounds, and a later interval 7 ka when ice over Foxe Basin collapsed. In coastal settings, alpine glaciers were smaller during the Younger Dryas period than during the Little Ice Age. At least some alpine glaciers apparently survived the early Holocene thermal maximum, which was several degrees warmer than today, although data on glacier extent during the early Holocene is extremely sparse. Following the early Holocene thermal maximum, glaciers advanced during Neoglaciation, beginning in some places as early as 6 ka, although most sites do not record near-Little Ice Age positions until 3.5 to 2.5 ka. Alpine glaciers reached their largest Holocene extents during the Little Ice Age, when temperatures were 1–1.5 °C cooler than during the late 20th century. Synchronous advances across Baffin Island throughout Neoglaciation indicate sub-Milankovitch controls on glaciation that could involve major volcanic eruptions and solar variability. Future work should further elucidate the state of glaciers and ice caps during the early Holocene thermal maximum and glacier response to climate forcing mechanisms.  相似文献   

16.
Glaciers and ice sheets are important constituents of the Earth's land surface. Current worldwide retreat of glaciers has implications for the environment and for civilisation. There are a range of geomorphic changes occurring in cold environments and it is anticipated that these will be accentuated as a consequence of climate change. In particular, the number and size of proglacial lakes is currently increasing as a result of deglaciation and their significance for the physical environment and for society is becoming increasingly apparent. This article provides an overview of the major interdependent relationships between climate change, glaciers and proglacial lake development. In particular, it describes the key processes and impacts associated with proglacial lake evolution with reference to examples drawn from the European Alps, North America, the Himalayas, the Andes, Greenland, New Zealand and Iceland.  相似文献   

17.
A suite of environmental proxies in annually laminated sediments from Hvítárvatn, a proglacial lake in the central highlands of Iceland, are used to reconstruct regional climate variability and glacial activity for the past 3000 years. Sedimentological analysis is supported by tephrostratigraphy to confirm the continuous, annual nature of the laminae, and a master varve chronology places proxies from multiple lake cores in a secure geochronology. Varve thickness is controlled by the rate of glacial erosion and efficiency of subglacial discharge from the adjacent Langjökull ice cap. The continuous presence of glacially derived clastic varves in the sediment fill confirms that the ice cap has occupied the lake catchment for the duration of the record. Varve thickness, varve thickness variance, ice-rafted debris, total organic carbon (mass flux and bulk concentration), and C:N of sedimentary organic matter, reveal a dynamic late Holocene climate with abrupt and large-scale changes in ice-cap size and landscape stability. A first-order trend toward cooler summers and ice-cap expansion is punctuated by notable periods of rapid ice cap growth and/or landscape instability at ca 1000 BC, 600 BC, 550 AD and 1250 AD. The largest perturbation began ca 1250 AD, signaling the onset of the Little Ice Age and the termination of three centuries of relative warmth during Medieval times. Consistent deposition of ice-rafted debris in Hvítárvatn is restricted to the last 250 years, demonstrating that Langjökull only advanced into Hvítárvatn during the coldest centuries of the Little Ice Age, beginning in the mid eighteenth century. This advance represents the glacial maximum for at least the last 3 ka, and likely since regional deglaciation 10 ka. The multi-centennial response of biological proxies to the Hekla 3 tephra deposition illustrates the significant impact of large explosive eruptions on local environments, and catchment sensitivity to perturbations.  相似文献   

18.
Multiproxy climate records from Iceland document complex changes in terrestrial climate and glacier fluctuations through the Holocene, revealing some coherent patterns of change as well as significant spatial variability. Most studies on the Last Glacial Maximum and subsequent deglaciation reveal a dynamic Iceland Ice Sheet (IIS) that responded abruptly to changes in ocean currents and sea level. The IIS broke up catastrophically around 15 ka as the Polar Front migrated northward and sea level rose. Indications of regional advance or halt of the glaciers are seen in late Alleröd/early Younger Dryas time and again in PreBoreal time. Due to the apparent rise of relative sea level in Iceland during this time, most sites contain evidence for fluctuating, tidewater glacier termini occupying paleo fjords and bays. The time between the end of the Younger Dryas and the Preboreal was characterized by repeated jökulhlaups that eroded glacial deposits. By 10.3 ka, the main ice sheet was in rapid retreat across the highlands of Iceland. The Holocene thermal maximum (HTM) was reached after 8 ka with land temperatures estimated to be 3 °C higher than the 1961–1990 reference, and net precipitation similar to modern. Such temperatures imply largely ice-free conditions across Iceland in the early to mid-Holocene. Several marine and lacustrine sediment climate proxies record substantial summer temperature depression between 8.5 and 8 ka, but no moraines have been detected from that time. Termination of the HTM and onset of Neoglacial cooling took place sometime after 6 ka with increased glacier activity between 4.5 and 4.0 ka, intensifying between 3.0 and 2.5 ka. Although a distinct warming during the Medieval Warm Period is not dramatically apparent in Icelandic records, the interval from ca AD 0 to 1200 is commonly characterized by relative stability with slow rates of change. The literature most commonly describes Little Ice Age moraines (ca AD 1250–1900) as representing the most extensive ice margins since early Holocene deglaciation, with temperature depressions of 1–2 °C compared to the AD 1961–1990 average. Steep north–south and west–east temperature gradients are reconstructed in the Holocene records of Iceland, suggesting a strong maritime influence on the terrestrial climate of Iceland.  相似文献   

19.
A 30 m-deep drill core from a glacially overdeepened trough in Northern Switzerland recovered a ~180 ka old sedimentary succession that provides new insights into the timing and nature of erosion–sedimentation processes in the Swiss lowlands. The luminescence-dated stratigraphic succession starts at the bottom of the core with laminated carbonate-rich lake sediments reflecting deposition in a proglacial lake between ~180 and 130 ka ago (Marine Isotope Stage MIS 6). Anomalies in geotechnical properties and the occurrence of deformation structures suggest temporary ice contact around 140 ka. Up-core, organic content increases in the lake deposits indicating a warming of climate. These sediments are overlain by a peat deposit characterised by pollen assemblages typical of the late Eemian (MIS 5e). An abrupt transition following this interglacial encompasses a likely hiatus and probably marks a sudden lowering of the water level. The peat unit is overlain by deposits of a cold unproductive lake dated to late MIS 5 and MIS 4, which do not show any direct influence from glaciers. An upper peat unit, the so-called «Mammoth peat», previously encountered in construction pits, interrupts this cold lacustrine phase and marks more temperate climatic conditions between 60 and 45 ka (MIS 3). In the upper part of the core, a succession of fluvial and alluvial deposits documents the Late Glacial and Holocene sedimentation in the basin. The sedimentary succession at Wehntal confirms that the glaciation during MIS 6 did not apparently cause the overdeepening of the valley, as the lacustrine basin fill covering most of MIS 6 is still preserved. Consequently, erosion of the basin is most likely linked to an older glaciation. This study shows that new dating techniques combined with palaeoenvironmental interpretations of sediments from such overdeepened troughs provide valuable insights into the past glacial history.  相似文献   

20.
Alpine glacier fluctuations provide important paleoclimate proxies where other records such as ice cores, tree rings, and speleothems are not available. About 20 years have passed since a special issue of Quaternary Science Reviews was published to review the worldwide evidence for Holocene glacier fluctuations. Since that time, numerous sites have been discovered, new dating techniques have been developed, and refined climatic hypotheses have been proposed that contribute to a better understanding of Earth's climate system. This special volume includes 12 papers on Holocene and latest Pleistocene alpine glacier fluctuations that update the seven review papers from 1988.Major findings of these 12 papers include the following: many, but certainly not all, alpine areas record glacier advances during the Younger Dryas cold interval. Most areas in the Northern Hemisphere witnessed maximum glacier recession during the early Holocene, with some glaciers disappearing, although a few sites yield possible evidence for advances during the 8.2 ka cooling event. In contrast, some alpine areas in the Southern Hemisphere saw glaciers reach their maximum post-glacial extents during the early to middle Holocene. In many parts of the globe, glaciers reformed and/or advanced during Neoglaciation, beginning as early as 6.5 ka. Neoglacial advances commonly occurred with millennial-scale oscillations, with many alpine glaciers reaching their maximum Holocene extents during the Little Ice Age of the last few centuries. Although the pattern and rhythm of these glacier fluctuations remain uncertain, improved spatial coverage coupled with tighter age control for many events will provide a means to assess forcing mechanisms for Holocene and latest Pleistocene glacial activity and perhaps predict glacier response to future impacts from human-induced climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号