首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
张人禾  周顺武 《气象学报》2008,66(6):916-925
利用台站探空观测资料和卫星观测资料,分析了1979—2002年青藏高原上空温度的变化趋势。结果表明:高原地区上空平流层低层和对流层上层的温度与对流层中低层具有反相变化趋势。平流层低层和对流层上层降温,温度出现降低趋势,降温幅度无论是年平均还是季节平均都比全球平均降温幅度更大。高原上空对流层中低层增温,温度显示出增加的趋势,并且比同纬度中国东部非高原地区有更强的增温趋势。对1979—2002年卫星臭氧资料的分析表明,青藏高原上空臭氧总量在每个季节都呈现出明显的下降趋势,并且比同纬度带其他地区下降得更快。由于青藏高原上空臭氧有更大幅度的减少,造成高原平流层对太阳紫外辐射吸收比其他地区更少,使进入对流层的辐射更多,从而导致高原上空平流层低层和对流层上层降温比其他地区更强,而对流层中低层增温更大。因此,高原上空比其他地区更大幅度的臭氧总量减少可能是造成青藏高原上空与同纬度其他地区温度变化趋势差异的一个重要原因。  相似文献   

2.
利用咸阳市12个国家气象观测站1960—2019年冬季(12月至翌年2月)平均气温、平均最高气温、平均最低气温等资料,采用一元线性趋势、累积距平、M ann-Kendall趋势和检验等分析方法,对咸阳市近60年的冬季气温变化特征进行分析.结果表明:近60年来咸阳市冬季平均气温、平均最高最低气温、极端最高最低气温和年均气...  相似文献   

3.
利用1961—2010年青藏高原91个观测站以及全国320个观测站逐日气温资料,采用统计方法对青藏高原与全国气温变化及其相关性进行对比分析,结果表明:青藏高原与全国年均气温之间有较好的相关性;青藏高原与全国年平均气温均变暖趋势明显,其中青藏高原年平均气温的线性趋势为0.228℃/10a,全国为0.226℃/10a,增温幅度略低于青藏高原;青藏高原与全国年平均气温突变年基本一致,小波分析均具有3类尺度的周期变换规律,第一主周期均值均为28a,青藏高原年平均气温周期变化显著性强于全国。  相似文献   

4.
青藏高原气温变化的研究进展   总被引:1,自引:0,他引:1  
王楠  李栋梁  张杰 《干旱气象》2010,28(3):265-269,290
青藏高原(简称高原,下文同)是全球气候系统的重要组成部分,其气候因子、动力及热力作用对全球气候系统的变化有着深刻的影响。本文就近代高原地表气温不同年代际的变化、空间分布及其与我国其它区域同期气温变化的关系等方面的研究进展进行回顾和总结。经过研究分析表明,高原的气温变化呈明显的年代际特征。近百年来高原的气温可分2个冷期2个暖期,其间有3次突变,即1920年代以前偏冷,1920~1950年代气温回升,1950~1980年代气温下降,1980年代至今气温持续偏高。各次气温突变时间中高原均提前于我国其它地区,且全国有北方提前于南方,高纬提前于低纬的现象;高原上大多数区域日最低气温增温幅度是日最高温度的增温幅度的1~3倍,日较差变小,4季中冬季增温最为明显;由于地域辽阔,地形复杂,就高原本身主体而言,各区域的温度变化也存在差异。已有的研究成果表明,高原主体的气温变化最先出现在高原东南部和海拔较高的区域。  相似文献   

5.
塔吉克斯坦百年气温变化趋势分析   总被引:2,自引:0,他引:2  
利用塔吉克斯坦百年气温资料,运用一元回归分析法、Kriging空间差值法、非参数检验方法的Mann-Kendall趋势检验和突变检验法以及小波分析法,进行了气温变化的趋势分析。结果表明:1)在时间变化上,塔吉克斯坦过去百年平均气温总体呈现增加趋势,其中19011908年和19151908年和19151960年为变冷期,19091960年为变冷期,19091914年和19611914年和19612011年为变暖期;四季气温总体都有增温,同时也都呈现冷暖交替变化但最后变暖的趋势,其中冬季气候变暖趋势最为明显;四季的平均气温和年平均气温都存在气温突变并在突变后呈现了显著的增温趋势;春季和夏季都有27a的准变化周期,秋季存在12a为准变化周期,冬季存在20a的准变化周期,年平均气温以24a为准变化周期;2)空间变化上,在19012011年为变暖期;四季气温总体都有增温,同时也都呈现冷暖交替变化但最后变暖的趋势,其中冬季气候变暖趋势最为明显;四季的平均气温和年平均气温都存在气温突变并在突变后呈现了显著的增温趋势;春季和夏季都有27a的准变化周期,秋季存在12a为准变化周期,冬季存在20a的准变化周期,年平均气温以24a为准变化周期;2)空间变化上,在19011960年,塔吉克斯坦大部分地区都呈现降温趋势,在19611960年,塔吉克斯坦大部分地区都呈现降温趋势,在19612011年,大部分地区则呈现增温趋势,其中19312011年,大部分地区则呈现增温趋势,其中19311960年的降温最明显,19911960年的降温最明显,19912011年的增温趋势最明显。  相似文献   

6.
安阳市近58a气温及降水量的变化趋势分析   总被引:2,自引:4,他引:2  
对中国地面国际交换站安阳站的气候资料进行统计分析,得到了安阳地区气温和降水量的年际及季节变化的一些特征:安阳市年平均气温有增加的趋势,春季气温增幅最大;标准差及变差系数都是冬季较大,冬季气温变化比较剧烈;气温变化存在准20 a的波动周期;安阳市的年降水量有一个由增加到减少的波动变化.  相似文献   

7.
全球变暖背景下青藏高原气温周期变化与突变分析   总被引:8,自引:2,他引:8       下载免费PDF全文
吕少宁  李栋梁  文军  王磊  刘蓉  王欣 《高原气象》2010,29(6):1378-1385
利用青藏高原地区自1956年建站以来126个站的逐月平均温度与北半球温度距平序列,分析了高原地区气温变化的时空特征。利用相关方法研究了高原温度分布型的变化特征。通过Mann-Kendall方法和小波分析方法分析了高原内部不同区域温度周期变化和均值突变的时间顺序和空间变化。结果表明:在全球变化背景下,青藏高原温度突变存在空间上的不一致,1980年代和1990年代均有突变发生,高原东部、东南部突变较早,北部、西北部和西部次之。高原南部的突变时间最晚。均值突变和周期变化并不是同步一致的,两者在空间分布上没有必然的联系。最后,通过温度变化的对比分析,讨论了其预测结果和实际观测的差异。  相似文献   

8.
利用六盘水市1961—2004年的逐月平均气温资料,平均最高、最低气温,采用线性倾向估计对六盘水市年平均气温、年平均最高、最低气温的年际、年代际变化进行统计分析,并利用Mann-Kendall方法进行突变检测,结果表明:六盘水市年平均气温、年平均最高、最低气温均呈上升趋势,其线性倾向率分别为0.097℃/10 a、0.054℃/10 a、0.184℃/10 a;六盘水年平均气温比较明显的突变点出现在1992年;年平均最高气温突变点1963、2001年,年平均最低气温在1978年发生突变。  相似文献   

9.
王淼 《陕西气象》2019,(2):19-21
采用宜君气象站1968—2017年地面观测资料,分析宜君县近50 a年平均气温、季平均气温、月平均气温及年极端最高气温、极端最低气温的气候变化特征。结果表明:宜君县近50 a年平均气温总体呈上升趋势,其线性变化趋势率为0.362℃/10 a,20世纪90年代末(1997年)之前为偏冷期,之后为偏暖期;冬季和春季气温变化显著,夏、秋季变化不明显;年平均最高气温和平均最低气温变化趋势与年平均气温变化趋势一致。  相似文献   

10.
利用1958~2000年气温资料,对河南省四季和全年的平均气温进行滑动t检验,研究近40年来全省气温的突变情况.结果表明,夏季气温有下降的趋势,而冬、春、秋季和全年气温则稳定上升.  相似文献   

11.
青藏高原暖季与冷季气温的时空演变分析   总被引:3,自引:0,他引:3  
;利用1974—2003年青藏高原地区海拔高度>3000 m以上的49个气象站月平均气温,分析了暖季与冷季气温的时空演变特征。结果表明,青藏高原暖季气温的空间分布可以分为三部分:大致在85°E以西的高原西部地区,大致以85°E和33°N为界的高原东北部地区和高原东南部地区;西部高温区、柴达木盆地高温区和藏南高温带很明显。冷季气温的空间分布基本上为南暖北冷,南北分界大约在32°N。青藏高原暖、冷季气温空间分布有较一致的年代际变暖现象,主要表现在北部地区,尤其是西北部地区。青藏高原北部暖季升温明显,五道梁站暖季长期升温趋势为0.035℃/a;青藏高原南部冷季升温明显,拉萨站冷季长期升温趋势达0.060℃/a。青藏高原暖、冷季气温为大体一致的年际变化,江河源区有明显的高值区,为气温变化的关键区;暖、冷季气温长期变化趋势虽然都是上升的,但近10年的变化趋势却相反,暖季为降温趋势,冷季为明显的增温趋势。  相似文献   

12.
青藏高原温泉群对高原平均温度场的贡献   总被引:2,自引:2,他引:2  
江灏  汤懋苍  高晓清 《高原气象》2003,22(6):640-642
用线性回归法消除青藏高原地面气温场中的背景场后,发现雅鲁藏布江和川西高原是两块高温区,它与高原温泉密集区相合。根据地面能量平衡方程估算的地热通量与羊八井地区实测地热释放参数估算的结果均支持温泉群的地热释放可维持全年l~2℃的附加增温。  相似文献   

13.
青藏高原地表温度的变化分析   总被引:51,自引:15,他引:51  
利用青藏高原86个气象观测站建站~2001年历年各月地面0cm温度资料,在分析高原冬季、夏季和年平均地表温度基本气候特征的基础上,通过主成分分析、主值函数和功率谱分析等方法,对高原地表温度异常变化的空间结构和时间演变趋势作了诊断研究。结果表明:高原地表温度主要受海拔高度与纬度的影响,海拔越高温度越低,纬度越高温度越低。年平均温度最高值在雅鲁藏布江河谷的察隅为14.9℃;夏季平均温度最高值在柴达木盆地的格尔木为23.0℃。高原外围的南疆盆地南缘,川西温度更高,但其中心不在高原。高原地表温度最低值在中部的托托河、五道梁,年平均温度为-0.2℃,冬季更低,平均为~14.2~-15.8℃;夏季平均地表温度最低值在清水河为9.8℃,7月平均温度为10.7℃。高原地表温度第一载荷向量除南部小范围为负值外,大部分地方为一致的正值,即第一空间尺度表现为整体一致性;第二空间尺度有南正(负)北负(正)之差异。第一主分量在近30年中表现为明显的上升趋势,主要反映了高原主体偏北和东北部地区地表温度显著升温趋势,而第二主分量的缓慢下降说明高原中部和东南部地表温度呈下降趋势。代表站温度变化表现出准3年和准6年的周期振荡。铁路线北段和南段线性升温率较大,在0.42~0.58℃/10a之间;铁路线中段的高海拔地区升温率较小,为0.32~0.39℃/10a。  相似文献   

14.
青藏高原气温分布的空间插值方法比较   总被引:66,自引:9,他引:66  
李新  程国栋  卢玲 《高原气象》2003,22(6):565-573
使用反距离平方、趋势面、Kriging插值、Cokriging插值和综合方法对青藏高原1961-1990年30年平均1月气温进行空间插值比较研究,其中后两种方法能够把影响青藏高原气温分布的关键因素——高程置于插值算法之中。反距离平方和趋势面插值的结果都与实际情况相差较远;普通Kriging插值能够反映出青藏高原气温分布的一定的空间结构,但结果依然不好;由于考虑了高度变量,Cokriging插值表现出一定程度的性能改进,但因为台站海拔高度偏低,插值结果依然不理想。前4种方法效果不好的原因主要是因为青藏高原上气象台站稀少且高原西北地区无气象台站。综合方法把气温分解为结构化分量和随机分量,使用直减率把气温订正到同一海拔高度后,再对它们做Kriging插值分析,其结果较为正确地反映了青藏高原气温空间分布的特征,误差远小于其它方法。研究结果表明:样本本身的空间分布是影响插值精度的重要因素,合理的采样设计是必要的前提;对于台站稀少的地区,必须把随机插值方法和确定性方法结合起来估计气候变量的空间分布。同时给出了青藏高原1月的气温空间分布状况。  相似文献   

15.
青藏高原气温变化及其异常类型的研究   总被引:31,自引:16,他引:31  
利用青藏高原81个气象台站近30年年平均气温、午平均最高、最低气温资料,采用EOF、REOF、气候线性趋势分析以及累积距平法等方法对青藏高原气温的时空分布特征及其异常类型进行了分析。结果表明:青藏高原年平均气温、年平均最高、最低气温空间变化在具有很好的主体一致性的同时,存在着南北及东西分布的差异,大地形特别是高原主要山脉走向对气温的空间分布具有十分明显的影响;其年际波动呈现出明显的上升趋势,并在20世纪80年代中后期发生过突变;其空间异常类型主要受地形和冷空气活动的影响较为显著。  相似文献   

16.
近40年郑州冬夏气温突变的诊断分析   总被引:2,自引:0,他引:2  
采用Mann-Kendall方法,分析了郑州市南郊气象观测站近40年来冬季和夏季气温突变的特点,并进一步分析了其与北郊城市站的温差序列的突变特点,结果表明,冬季和夏季的气温均存在突变,且在20世纪90年代后期冬季气温增温较快。  相似文献   

17.
青藏高原气温与印度洋海温遥相关的初步研究   总被引:1,自引:0,他引:1  
张平  高丽  毛晓亮 《高原气象》2006,25(5):800-806
利用1960—2000年青藏高原54个常规气象观测站的年平均地面气温资料,考察了高原气温的空间分布和气候变异特征;利用同期印度洋海温资料和奇异值分解方法,着重研究了青藏高原气温与印度洋海温之间的遥相关关系,并初步探讨了物理机制问题。分析结果表明:在空间分布上,青藏高原气温中部低,四周高,41年来呈逐步上升趋势,振幅不断加大;高原气温与印度洋海温之间存在显著的主要遥相关模态,这与印度洋海温异常激发遥相关波列影响到高原气温有关。  相似文献   

18.
青藏高原雷暴天气层结特征分析   总被引:9,自引:8,他引:9  
青藏高原那曲地区夏季雷暴活动相当频繁,这种雷暴主要是受地形的影响,在地形的热力和动力作用下形成雷暴,但强度不大,最大反射率一般不超过4 0 dBz,相对云顶高度可伸展到1 0.0~13.0 km,强弱雷暴差别不大。雷暴持续时间大约为30 min左右,主要发生在13:00~19:00(北京时,下同)之间,峰值出现在16:00左右。此外,在晚上也有弱对流,最大反射率约为20 dBz。高原雷暴天气层结具有与平原雷暴完全不同的特征,一般为整层弱不稳定,高度可以伸展到100 hPa,整层不稳定能量不大,强雷暴CAPE值平均为782 J.kg-1,弱雷暴约为406 J.kg-1,分布较均匀,不出现能量特别大的不稳定层次。近地层相对湿度有“逆湿”现象,厚度约1~2 km,平均为60%~80%(雨季后)。无论是强雷暴天气还是弱雷暴天气都具有上述相似层结。这种层结可触发对流,发展高度很高,但强度不大,能量较小。这种特殊层结揭示了高原雷暴的特殊结构。雷暴的闪电频数可以表征雷暴发展强度,通常可以建立闪电频数与雷暴单一参量(云顶高度)之间的统计关系式,从而可以利用测量闪电频数来预报雷暴的强弱,但上述关系对于高原雷暴并不适用,必须建立闪电频数与多参量之间的综合关系。  相似文献   

19.
刘珊  李栋梁 《高原气象》2009,28(4):711-722
利用青海、 西藏59个测站1971-2004年夏季(6~8月)的月平均气温和北太平洋(10°S~50°N、 120°E~80°W)1970-2003年的冬季(上年12月~次年2月)平均海表温度, 通过EOF、 REOF、 SVD等方法, 对青藏高原地区夏季气温和前期冬季北太平洋海温的异常特性以及两者之间的空间遥相关特征进行了研究, 并对北太平洋冬季海温及青藏高原夏季气温的年代际空间特征进行了分析。结果表明, 北太平洋冬季海温的异常分布型有: (1)赤道中东太平洋与西北太平洋海温相反分布型, (2)副热带北太平洋海温东西反相分布型, (3)北太平洋海温南北反相分布型, (4)北太平洋海温东西一致分布型。其中赤道中东太平洋与西北太平洋海温反相变化是冬季北太平洋SSTA的主要空间分布特征。进一步分析表明, 北太平洋冬季海温可分为6个气候区: 赤道中东太平洋区、 加利福尼亚海流区、 黑潮区、 亲潮区、 阿拉斯加海流区和中太平洋区。青藏高原地区夏季气温的异常分布型主要为(1)全区一致的偏高(低)型, (2)南北相反分布型, (3)周边地区与腹地相反分布型。青藏高原夏季气温可分为4个主要气候区: 东北部区、 西藏东南部区、 中部区和南部边缘区。冬季赤道中东太平洋SSTA 与次年夏季青藏高原地区区域性温度异常之间有较为明显的负相关关系, 这种关系在两者的其它空间关系中是第一位的。  相似文献   

20.
青藏高原近50年来气温的年代际变化   总被引:66,自引:27,他引:66  
根据青藏高原及周边地区一百多个气象台站的月平均气温资料,利用统计方法,分析了近50年来气温的年代际变化。结果表明:整个高原地区温度变化可分为6个不同的区域。在时间演变上可划分出相对高温时段(1963年以前)、相对低温时段(1963—1987年)和另一个相对高温时段(1987年以后)。还从天文因素、地球系统各圈层及气候系统内各因子相互作用和相互制约出发,探讨了引起高原气候变化的可能原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号