首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a three‐dimensional elastoplastic constitutive model for predicting the hydraulic and mechanical behaviour of unsaturated soils. It is based on experimental results obtained from a series of controlled‐suction triaxial tests on unsaturated compacted clay with different initial densities. Hydraulic hysteresis in the water‐retention behaviour is modelled as an elastoplastic process, with the elastic part modelled by a series of scanning curves and the elastoplastic part modelled by the main drying and wetting curves. The effect of void ratio on the water‐retention behaviour is studied using data obtained from controlled‐suction wetting–drying cyclic tests on unsaturated compacted clay with different initial densities. The effect of the degree of saturation on the stress–strain‐strength behaviour and the effect of void ratio on the water‐retention behaviour are considered in the model, as is the effect of suction on the hydraulic and mechanical behaviour. The initial density dependency of the compacted soil behaviour is modelled by experimental relationships between the initial density and the corresponding yield stress and, thereby, between the initial density and the normal compression line. The model is generalized to three‐dimensional stress states by assuming that the shapes of the failure and yield surfaces in the deviatoric stress plane are given by the Matsuoka–Nakai criterion. Model predictions of the stress–strain and water‐retention behaviour are compared with those obtained from triaxial tests with different initial densities under isotropic compression, triaxial compression and triaxial extension, with or without variation in suction. The comparisons indicate that the model accurately predicts the hydraulic and mechanical behaviour of unsaturated compacted soils with different initial densities using the same material constant. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
A simple thermo‐hydro‐mechanical (THM) constitutive model for unsaturated soils is described. The effective stress concept is extended to unsaturated soils with the introduction of a capillary stress. This capillary stress is based on a microstructural model and calculated from attraction forces due to water menisci. The effect of desaturation and the thermal softening phenomenon are modelled with a minimal number of material parameters and based on existing models. THM process is qualitatively and quantitatively modelled by using experimental data and previous work to show the application of the model, including a drying path under mechanical stress with transition between saturated and unsaturated states, a heating path under constant suction and a deviatoric path with imposed suction and temperature. The results show that the present model can simulate the THM behaviour in unsaturated soils in a satisfactory way. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The Barcelona basic model cannot predict the mechanical behaviour of unsaturated expansive soils, whereas the Barcelona expansive model (BExM) can only predict the stress–strain behaviour of unsaturated expansive soils without the water‐retention behaviour being incorporated. Moreover, the micro‐parameters and the coupling function between micro‐structural and macro‐structural strains in the BExM are difficult to determine. Experimental data show that the compression curves for non‐expansive soils under constant suctions are shifted towards higher void ratios with increasing suction, whereas the opposite is true for expansive soils. According to the observed water‐retention behaviour of unsaturated expansive soils, the air‐entry value increases with density, and the relationship between the degree of saturation and void ratio is linear at constant suction. According to the above observation, an elastoplastic constitutive model is developed for predicting the hydraulic and mechanical behaviour of unsaturated expansive soils, based on the existing hydro‐mechanical model for non‐expansive unsaturated soil. The model takes into consideration the effect of degree of saturation on the mechanical behaviour and that of void ratio on the water‐retention behaviour. The concept of equivalent void ratio curve is introduced to distinguish the plastic potential curve from the yield curve. The model predictions are compared with the test results of an unsaturated expansive soil, including swelling tests under constant net stress, isotropic compression tests and triaxial shear tests under constant suction. The comparison indicates that the model offers great potential for quantitatively predicting the hydraulic and mechanical behaviour of unsaturated expansive soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A large strain analysis of undrained expansion of a spherical/cylindrical cavity in a soil modelled as non‐linear elastic modified Cam clay material is presented. The stress–strain response of the soil is assumed to obey non‐linear elasticity until yielding. A power‐law characteristic or a hyperbolic stress–strain curve is used to describe the gradual reduction of soil stiffness with shear strain. It is assumed that, after yielding, the elasto‐plastic behaviour of the soil can be described by the modified Cam clay model. Based on a closed‐form stress–strain response in undrained condition, a numerical solution is obtained with the aid of simple numerical integration technique. The results show that the stresses and the pore pressure in the soil around an expanded cavity are significantly affected by the non‐linear elasticity, especially if the soil is overconsolidated. The difference between large strain and small strain solutions in the elastic zone is not significant. The stresses and the pore pressure at the cavity wall can be expressed as an approximate closed‐form solution. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
This article focuses on modeling the strain hardening‐softening response of statically compacted silty sand as observed from a comprehensive series of suction‐controlled, consolidated‐drained triaxial tests accomplished in a fully automated, double‐walled triaxial test system via the axis‐translation technique. The constitutive model used in this work is based on the theory of Bounding Surface (BS) plasticity and is formulated within a critical state framework. The essential BS model parameters are calibrated using the full set of triaxial test results and then used for predictions of compacted silty sand response at matric suction states varying from 50 to 750 kPa. Complementary simulations using the Barcelona Basic Model have also been included, alongside BS model predictions, in order to get further enlightening insights into some of the main limitations and challenges facing both frameworks within the context of the experimental evidence resulting from the present research effort. In general, irrespective of the value of matric suction applied, the Barcelona Basic Model performs relatively well in predicting response at peak and critical state failure under low net confining pressure while the Bounding Surface Model performs relatively well under high net confining pressures.  相似文献   

6.
Determination of transport properties of geomaterials is an important issue in many fields of engineering analysis and design. For example, in petroleum engineering, in situ permeability of an oil reservoir may be crucial in establishing its viability for exploitation, whilst prevention of leakage from underground storage facilities for oil and gas, nuclear waste as well as viability of CO2 sequestration projects crucially depends on its long‐term values. Permeability is indirectly related to the porosity, pore‐size distribution and pore architecture of the porous media. These parameters evolve when a strain field is imposed. Physical measurement of permeability under a strain field in laboratory conditions is difficult, expensive and prone to a number of uncertainties. In the past, pore network models have been used to compute permeability of materials under stress/strain‐free conditions. In this paper, we propose an enhanced pore network model to compute permeability of rocks and rock‐like porous media under a stress/strain field. Data of pore‐size distribution obtained from mercury intrusion porosimetry are used to compute permeability of rock samples from various unspecified oilfields in the world. It is shown that the two permeabilities can be predicted from the model with sufficient accuracy. A hypothesis for change in porosity, pore‐size distribution and pore architecture as a result of imposed mechanical strains is then proposed. Based on this, permeability is computed again for one of the rock samples under uniaxial and triaxial compressive and tensile strain fields. It is shown that depending on the state of strain field imposed, permeability evolves in an anisotropic manner. Permeability under tensile strain field increases dramatically compared with the reduction that takes place under compressive strain field of the same magnitude. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the onset of mechanical instability in time‐sensitive elasto‐viscoplastic solids is theoretically analyzed at the constitutive level and associated with the occurrence of ‘spontaneous accelerations’ under stationary external perturbations. For this purpose, a second‐order form of Perzyna's constitutive equations is first derived by time differentiation, and a sufficient stability condition is identified for general mixed loading programs. These loading conditions are in fact the most general in both laboratory tests and real boundary value problems, where a combination of certain stress and strain components is known/prescribed. The theoretical analysis leads to find precise stability limits in terms of material hardening modulus. In the case of constitutive relationships with isotropic strain‐hardening, no instabilities are possible while the hardening modulus is larger than the so‐called ‘controllability modulus’ defined for (inviscid) elasto‐plastic materials. It is also shown that the current stress/strain rate may also directly influence the occurrence of elasto‐viscoplastic instability, which is at variance with elasto‐plastic inviscid media. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Unsaturated soils are highly heterogeneous 3‐phase porous media. Variations of temperature, the degree of saturation, and density have dramatic impacts on the hydro‐mechanical behavior of unsaturated soils. To model all these features, we present a thermo‐hydro‐plastic model in which the hydro‐mechanical hardening and thermal softening are incorporated in a hierarchical fashion for unsaturated soils. This novel constitutive model can capture heterogeneities in density, suction, the degree of saturation, and temperature. Specifically, this constitutive model has 2 ingredients: (1) it has a “mesoscale” mechanical state variable—porosity and 3 environmental state variables—suction, the degree of saturation, and temperature; (2) both temperature and mechanical effects on water retention properties are taken into account. The return mapping algorithm is applied to implement this model at Gauss point assuming an infinitesimal strain. At each time step, the return mapping is conducted only in principal elastic strain space, assuming no return mapping in suction and temperature. The numerical results obtained by this constitutive model are compared with the experimental results. It shows that the proposed model can simulate the thermo‐hydro‐mechanical behavior of unsaturated soils with satisfaction. We also conduct shear band analysis of an unsaturated soil specimen under plane strain condition to demonstrate the impact of temperature variation on shear banding triggered by initial material heterogeneities.  相似文献   

9.
This paper presents an elasto‐plastic model for unsaturated compacted soils and experimental results obtained from a series of suction‐controlled triaxial tests on unsaturated compacted clay with different initial densities. The initial density dependency of the compacted soil behaviour is modelled by establishing experimental relationships between the initial density and the corresponding yield stress and thereby between the initial density and the location and slope of normal compression line. The model is generalized to three‐dimensional stress states by assuming that the shapes of the failure surface and the yield surface in the deviatoric plane are given by the extended SMP criterion. A considerable number of the isotropic compression, triaxial compression and extension tests on unsaturated compacted clay with different initial densities were performed using a suction‐controllable triaxial apparatus, to measure the stress–strain–volume change in different stress paths and wetting paths. The model has well‐predicting capabilities to reproduce the mechanical behaviour of specimens compacted under different conditions not only in isotropic compression but also in triaxial compression and triaxial extension. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Material behaviour that exhibits characteristics of creep induced by a spontaneous mineral dissolution enhanced by material damage is studied. It is believed that the characteristic rates of the chemical processes involved determine the time‐rate dependence of the resulting strain. A basic model of a combined chemo‐plastic softening and chemically enhanced deviatoric strain hardening for saturated geomaterials is presented. Chemical softening is postulated to occur as a consequence of the net mass removal resulting from dissolution and precipitation of specific minerals occurring at the damage‐generated inter‐phase interfaces. Closed and open systems are discussed. In the former case, deformation at constant stress results entirely from a local compensation mechanism between the chemical softening and strain hardening. The classical three stages of creep are interpreted in terms of mechanisms of dissolution and precipitation, as well as the variation in the reaction surface areas involved in the mass exchange. In an open system, the above local mechanism is enhanced by the removal of mass via diffusion of species affecting the mass balance. Such a system is addressed via a boundary value problem as shown in an example. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Based on the damage mechanism of rock during excavation, the maximum tensile strain criterion for pinpointing relaxation region or excavation‐disturbed (damage) zone (EDZ) is introduced. To simulate the deformation and stress redistribution caused by the deterioration of the deformation and strength parameters in the EDZ, the ‘restraint‐relaxation’ finite element algorithm is formulated using the deformation and strength parameters of pre‐and post‐relaxation. The Xiaowan arch dam project (292 m high) is studied by the proposed method, in which the permissible tensile strain and fluidity parameter are evaluated using back analysis. The computation results have good agreement with the field monitoring. An important inference from the study is the necessity of considering the relaxation effects on the dam/foundation system during the construction and operation period. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A new phenomenological macroscopic constitutive model for the numerical simulation of quasi‐brittle fracture and ductile concrete behavior, under general triaxial stress conditions, is presented. The model is particularly addressed to simulate a wide range of confinement stress states, as also, to capture the strong influence of the mean stress value in the concrete failure mechanisms. The model is based on a two‐surface damage‐plastic formulation. The mechanical behavior in different domains of the stress space is separately described by means of a quasi‐brittle or ductile material response:

13.
14.
In quasi‐brittle material the complex process of decohesion between particles in microcracks and localization of the displacement field into macrocracks is limited to a narrow fracture zone, and it is often modelled with cohesive crack models. Since the anisotropic nature of the decohesion process in separation and sliding is essential, it is particularly focused in this paper. Moreover, for cyclic and dynamic loading the unloading, load reversal (including crack closure) and rate dependency are essential features that are included in a new model. The modelling of degradation is based on a ‘localized’ version of anisotropic continuum damage coupled to inelasticity. The concept of strain energy equivalence between the states in the effective and nominal settings is adopted in order to define the free energy of the interface. The proposed fracture criterion is of the Mohr type, with a smooth transition of the failure and kinematics (slip and dilatation) characteristics between tension and shear. The chosen potential, of the Lemaitre‐type, for evolution of the dissipative processes is additively decomposed into plastic and damage parts, and non‐associative constitutive equations are obtained. The constitutive equations are integrated by applying the backward Euler rule and by using Newton iteration. The proposed model is assessed analytically and numerically and a typical calibration procedure for concrete is proposed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The mechanical behaviour of bonded geomaterials is described by means of an elastoplastic strain‐hardening model. The internal variables, taking into account the ‘history’ of the material, depend on the plastic strains experienced and on a conveniently defined scalar measure of damage induced by weathering and/or chemical degradation. For the sake of simplicity, it is assumed that only internal variables are affected by mechanical and chemical history of the material. Despite this simplifying assumption, it can be shown that many interesting phenomena exhibited by weathered bonded geomaterials can be successfully described. For instance, (i) the transition from brittle to ductile behaviour with increasing pressure of a calcarenite with collapsing internal structure, (ii) the complex behaviour of chalk and other calcareous materials in oedometric tests, (iii) the chemically induced variation of the stress and strain state of such kind of materials, are all phenomena that can be qualitatively reproduced. Several comparisons with experimental data show that the model can capture the observed behaviour also quantitatively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A delayed plastic model, based on the theory of plasticity, is proposed to represent the time‐dependent behaviour of materials. It is assumed in this model that the stress can lie outside the yield surface and the conjugate stress called static stress is defined on the yield surface. The stress–strain relation is calculated based on the plastic theory embedding the static stress. Thus, the stress–strain relation of the model practically corresponds to that of the inviscid elastoplastic model under fairly low rate deformation. The delayed plastic model is coupled with the Cam‐clay model for normally consolidated clays. The performance of the model is then examined by comparing the model predictions with reported time‐dependent behaviour of clays under undrained triaxial conditions. It is shown that the model is capable of predicting the effect of strain rate during undrained shear and the undrained creep behaviour including creep rupture. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
张玉军  琚晓冬 《岩土力学》2015,36(3):877-884
考虑裂隙的连通率、间距、孔隙基质和裂隙材料在表征单元(REV)中的体积分数,并假定双重孔隙-裂隙介质的等效内摩擦角保持常数,而等效黏聚力是固有黏聚力、等效塑性应变、基质吸力、溶质浓度及温度的函数,提出了一种在热-水-应力-迁移耦合条件下确定表征单元内任一平面上等效的黏聚力及内摩擦角的方法。针对一个假定的位于非饱和双重孔隙-裂隙岩体中的高放废物地质处置模型进行了数值模拟及分析。结果表明,基质吸力对于等效黏聚力的增强作用大于等效塑性应变和溶质浓度的减弱作用,使得等效黏聚力得到了提高,故减少了围岩中的塑性区;由此岩体应力、孔(裂)隙水压力及流速、孔(裂)隙溶质浓度的分布及量值也发生相应的改变。  相似文献   

18.
An elasto‐viscoplastic constitutive model for asphaltic materials is presented within the context of bounding surface plasticity theory, taking into account the effects of the stress state, void binder degree of saturation, temperature and strain rate on the material behaviour. A stress state dependent non‐linear elasticity model is introduced to represent time‐independent recoverable portion of the deformation. The consistent visco‐plasticity framework is utilised to capture the rate‐dependent, non‐recoverable strain components. The material parameters introduced in the model are identified, and their determination from conventional laboratory tests is discussed. The capability of the model to reproduce experimentally observed response of asphaltic materials is demonstrated through numerical simulations of several laboratory test data from the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with FE investigations of shear localization in dilatant granular bodies. The calculations were carried out with a hypoplastic constitutive law enhanced by micro‐polar terms to properly model the shear zone evolution. The behaviour of an initially medium dense sand specimen with very smooth and very rough horizontal boundaries was analyzed during a plane strain compression test. A stochastic distribution of the initial void ratio was assumed to be spatially correlated. Attention was focused on the non‐coaxiality of the directions of the principal strain increments and principal stresses in the shear zone and on the stress–dilatancy rule. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Most existing hydromechanical models for unsaturated soils are not able to fully capture the nonlinearity of stress–strain curves at small strains (less than 1%). They cannot therefore, for example, accurately predict ground movements and the performance of many earth structures under working conditions. To tackle this problem, a state‐dependent bounding surface plasticity model has been newly developed. Particularly, the degradation of shear modulus with strain at small strains ranging from 0.001% to 1% is focused. The proposed model is formulated in terms of mean average skeleton stress, deviator stress, suction, specific volume and degree of saturation. Void ratio‐dependent hydraulic hysteresis is coupled with the stress–strain behaviour. Different from other elastoplastic models for unsaturated soils, plastic strains are allowed inside bounding surfaces. In this paper, details of model formulations and calibration procedures of model parameters are presented. To evaluate the capability of the new model, it is applied to simulate a series of triaxial compression tests on compacted unsaturated silt at various suctions. Effects of suction, drying and wetting as well as net stress on unsaturated soil behaviour are well captured. The model shows good predictions of the degradation of shear modulus with strain over a wide range of strains from 0.001% to 1%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号