共查询到20条相似文献,搜索用时 15 毫秒
1.
Time‐domain analysis of dynamic soil–structure interaction based on the substructure method plays an increasing role in practical applications as compared with the frequency‐domain analysis. Efficient and accurate modelling of the unbounded soil or rock medium has been a key issue in such an analysis. This paper presents a subregional stepwise damping‐solvent extraction formulation for solving large‐scale dynamic soil–structure problems in the time domain. Accuracy and efficiency of the formulation are evaluated in detail for a classical problem involving a rigid strip foundation embedded in a half‐space. A practical large‐scale soil–structure interaction problem, which represents a high concrete gravity dam subjected to seismic load, is then analysed using the proposed method. Various responses of the dam, including time histories of the crest displacement and acceleration and contours of the peak principal stresses within the dam body, are presented. Comparisons are also made between these results with those obtained using other models for the unbounded medium. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
2.
An efficient finite–discrete element method applicable for the analysis of quasi‐static nonlinear soil–structure interaction problems involving large deformations in three‐dimensional space was presented in this paper. The present method differs from previous approaches in that the use of very fine mesh and small time steps was not needed to stabilize the calculation. The domain involving the large displacement was modeled using discrete elements, whereas the rest of the domain was modeled using finite elements. Forces acting on the discrete and finite elements were related by introducing interface elements at the boundary of the two domains. To improve the stability of the developed method, we used explicit time integration with different damping schemes applied to each domain to relax the system and to reach stability condition. With appropriate damping schemes, a relatively coarse finite element mesh can be used, resulting in significant savings in the computation time. The proposed algorithm was validated using three different benchmark problems, and the numerical results were compared with existing analytical and numerical solutions. The algorithm performance in solving practical soil–structure interaction problems was also investigated by simulating a large‐scale soft ground tunneling problem involving soil loss near an existing lining. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
An analytical procedure to obtain the response of soil–structure interaction problems, time domain is described. The procedure makes use of large domain for descritization along with co-ordinate transformation using Lanczos vectors. The responses are obtained in time domain using an adaptive direct integration method. The scheme has the ability to estimate errors due to temporal discretization as well as co-ordinate transformation. The procedure has been applied to half-space problems and non-convex domains for validation of the scheme, and the scheme obeys causality condition in both the situations. The present method has all the advantages of time domain scheme which is local both in space and time with small computational effort. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
4.
This paper presents a non‐linear soil–structure interaction (SSI) macro‐element for shallow foundation on cohesive soil. The element describes the behaviour in the near field of the foundation under cyclic loading, reproducing the material non‐linearities of the soil under the foundation (yielding) as well as the geometrical non‐linearities (uplift) at the soil–structure interface. The overall behaviour in the soil and at the interface is reduced to its action on the foundation. The macro‐element consists of a non‐linear joint element, expressed in generalised variables, i.e. in forces applied to the foundation and in the corresponding displacements. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. Mechanisms of yielding and uplift are modelled through a global, coupled plasticity–uplift model. The cyclic model is dedicated to modelling the dynamic response of structures subjected to seismic action. Thus, it is especially suited to combined loading developed during this kind of motion. Comparisons of cyclic results obtained from the macro‐element and from a FE modelization are shown in order to demonstrate the relevance of the proposed model and its predictive ability. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
5.
This paper presents a non‐linear interface element to compute soil–structure interaction (SSI) based on the macro‐element concept. The particularity of this approach lies in the fact that the foundation is supposed to be infinitely rigid and its movement is entirely described by a system of global variables (forces and displacements) defined in the foundation's centre. The non‐linear behaviour of the soil is reproduced using the classical theory of plasticity. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. The macro‐element is appropriate for modelling the cyclic or dynamic response of structures subjected to seismic action. More specifically, the element is able to simulate the behaviour of a circular rigid shallow foundation considering the plasticity of the soil under monotonic static or cyclic loading applied in three directions. It is implemented into FedeasLab, a finite element Matlab toolbox. Comparisons with experimental monotonic static and cyclic results show the good performance of the approach. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
6.
This paper endows the recently‐proposed granular element method (GEM) with the ability to perform 3D discrete element calculations. By using non‐uniform rational B‐Splines to accurately represent complex grain geometries, we proposed an alternative approach to clustering‐based and polyhedra‐based discrete element methods whereby the need for complicated and ad hoc approaches to construct 3D grain geometries is entirely bypassed. We demonstrate the ability of GEM in capturing arbitrary‐shaped 3D grains with great ease, flexibility, and without excessive geometric information. Furthermore, the applicability of GEM is enhanced by its tight integration with existing non‐uniform rational B‐Splines modeling tools and ability to provide a seamless transition from binary images of real grain shapes (e.g., from 3D X‐ray CT) to modeling and discrete mechanics computations.Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
7.
地震分析中人工边界处理与地震动输入方法研究 总被引:8,自引:0,他引:8
基于柱面波波动方程,推导建立了适用于土-结构地震动力相互作用分析的地震动输入和人工边界的处理方法.其中,地震动的输入是通过在人工边界上施加等效节点力来实现的,等效节点力的大小与入射地震波波速成正比;而人工边界的处理方法使得人工边界条件不仅在时间上是局部的,而且在空间上也是局部的.这种处理方法简单、有效,物理意义清晰,且很容易在有限元法中实现,结合Newmark时间积分是无条件稳定的.为了验证方法的有效性和精度,给出了两个算例,分别用于检验人工边界条件的性能以及地震动输入方法的正确性.算例分析结果表明,所提出的方法是十分有效的. 相似文献
8.
The failure mechanisms induced by a wedge‐shaped tool indenting normally against a rock surface are investigated using the discrete element method (DEM). The main focus of this study is to explore the conditions controlling the transition from a ductile to a brittle mode of failure. The development of a damage zone and the initiation and propagation of a brittle fracture is well captured by the DEM simulations. The numerical results support the conjecture that initiation of brittle fractures is governed by a scaled flaw length Λ, a ratio between the flaw size λ and the characteristic length (where KIc is the toughness and σc the uniaxial compressive strength). The size of the damage zone agrees well with analytical predictions based on the cavity expansion model. The effects of a far‐field confining stress and the existence of a relief surface near the indenter are also examined.Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
9.
Tool‐rock interaction processes can be classified as indentation or cutting depending on the direction of motion of the tool with respect to the rock surface. The modes of failure induced in the rock by an indenting or a cutting tool can be ductile and/or brittle. The ductile mode is associated with the development of a damage zone, whereas the brittle mode involves the growth of macrocracks. This is the first part of a series of two papers concerned with an analysis of the cutting and the indentation processes based on using the discrete element method. In this paper, numerical simulations of the cutting process are conducted to reproduce the transition from a ductile to a brittle failure mode with increasing depth of cut, which is observed in experiments. The numerical results provide evidence that the critical depth of cut d * controlling the failure mode transition is related to the characteristic length ? = (KIc ∕ σc)2 with KIc denoting the material toughness and σc its unconfined compressive strength. The nature of frictional contact between the cutter face and the rock in the ductile failure mode is also examined. It is shown that the inclination of the total cutting force is controlled by a multi‐directional flow mechanism ahead of the cutter that is related to the formation of a wedge of failed material, intermittently adhering to the cutter. As a result, the inclination of the total cutting force varies with the rake angle of the cutter and cannot be considered an intrinsic measure of the interfacial friction between the cutter and the rock. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
10.
层状地基-非线性结构系统地震响应特性分析 总被引:1,自引:0,他引:1
根据从系统能量导出的地震动力方程,采用渐近解析法对层状地基 非线性结构系统的地震响应进行了分析,给出了共振区的振幅-频率以及相位-频率的解析公式,并对地基参数的不同取值,给出了一系列相应的计算结果。进而根据计算结果分析了地基参数对结构地震响应特性的影响,讨论了共振区畸变、振幅的分叉和突变现象以及“路径”效应等非线性动力特性。分析结果表明,同一类别地基的参数变化对结构的动力特性有显著的影响,按现行抗震设计方法对层状地基 非结构系统进行抗震分析时,可能产生较大的偏差,需考虑相互作用和非线性特性,以使设计参数更合理和优化。 相似文献
11.
土-地下结构体系地震反应的简化分析方法 总被引:1,自引:0,他引:1
基于Penzien提出的土-结构动力相互作用分析的集中质量模型,考虑等价土体的层间剪切刚度与阻尼效应,提出了土-地下结构动力相互作用体系地震反应分析的简化分析方法,选取具有不同地震动特性的Taft波、汶川地震什邡八角波和松潘波作为基岩水平向输入地震动,采用该简化方法和二维有限元法对土-地铁地下车站结构体系的地震加速度反应特性进行了对比分析,结果表明:简化方法计算的地铁地下车站结构峰值加速度反应大于二维有限元法计算的地铁地下车站结构峰值加速度反应,两者的差异与输入地震动特性有关,但其随地铁地下车站结构高度变化的总体趋势较为一致;随着输入地震动强度的增大,其差异程度也有所加大。该简化方法可合理反映土-地下结构体系的动力相互作用效应,可作为地下结构抗震设计分析的一种辅助方法。 相似文献
12.
This paper concerns analysis of the impact of construction of urban tunnels on adjacent pile foundations. It is carried out using an elastoplastic three‐dimensional finite element modelling. Numerical simulations are performed in two stages, which concern, respectively, the application of the pile axial loading and the construction of the tunnel in presence of the pile foundations. Analysis is carried out for both single piles and groups of piles. Results of numerical simulations show that tunneling induces significant internal forces in adjacent piles. The distribution of internal forces depends mainly on the position of the pile tip regarding the tunnel horizontal axis and the distance of the pile axis from the centre of the tunnel. Analysis of the interaction between tunneling and a group of piles reveals a positive group effect with a high reduction of the internal forces in rear piles. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
13.
In view of rapid developments in iterative solvers, it is timely to re‐examine the merits of using mixed formulation for incompressible problems. This paper presents extensive numerical studies to compare the accuracy of undrained solutions resulting from the standard displacement formulation with a penalty term and the two‐field mixed formulation. The standard displacement and two‐field mixed formulations are solved using both direct and iterative approaches to assess if it is cost‐effective to achieve more accurate solutions. Numerical studies of a simple footing problem show that the mixed formulation is able to solve the incompressible problem ‘exactly’, does not create pressure and stress instabilities, and obviate the need for an ad hoc penalty number. In addition, for large‐scale problems where it is not possible to perform direct solutions entirely within available random access memory, it turns out that the larger system of equations from mixed formulation also can be solved much more efficiently than the smaller system of equations arising from standard formulation by using the symmetric quasi‐minimal residual (SQMR) method with the generalized Jacobi (GJ) preconditioner. Iterative solution by SQMR with GJ preconditioning also is more elegant, faster, and more accurate than the popular Uzawa method. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
14.
15.
Some of the available stochastic finite element methods are adapted and evaluated for the analyses of response of soils with uncertain properties subjected to earthquake induced random ground motion. In this study, the dynamic response of a soil mass, with finite element discretization, is formulated in the frequency domain. The spectral density function of the response variables are obtained from which the evaluation of the root-mean-squared and the most probable extreme values of the response are made. The material non-linearities are incorporated by using strain compatible moduli and damping of soils using an equivalent linear model for stress–strain behaviour of soils and an iterative solution of the response. The spatial variability of the shear modulus is described through a random field model and the earthquake included motion is treated as a stochastic process. The available formulations of direct Monte-Carlo simulation, first-order perturbation method, a spectral decomposition method with Neumann expansion and a spectral decomposition method with Polynomial Chaos are used to develop stochastic finite element analyses of the seismic response of soils. The numerical results from these approaches are compared with respect to their accuracy and computational efficiency. © 1998 John Wiley & Sons Ltd. 相似文献
16.
We investigate the quasi‐static simple shear flow of a two‐dimensional assembly of cohesionless particles using discrete element method (DEM) simulations. We focus on the unsteady flow regime where the solid would experience significant evolution of stresses, mobilised shear strength and dilation. We construct the DEM model using a discretised‐wall confined granular cell where the apparent boundary is allowed to dilate or contract synchronously with the confined solid. A rather uniform simple shear field is achieved across the whole assembly, which benefits rheological studies in generalising constitutive laws for continuum methods. We examine two aspects of the simple shear behaviour: macroscopic stress and strain rate evolution, particularly the non‐coaxiality between the principal directions of the two; and micromechanics such as evolution of fabric. For an initially anisotropic specimen sheared under constant normal pressure, the direction of principal stress rotates towards that of the principal strain rate, gradually reducing the degree of non‐coaxiality from about 45° to fluctuating around 0°. The rate in approaching coaxiality is slower in samples with larger initial porosity, stress ratio and mean stress. Generally, a faster rate in approaching coaxiality in simple shear is observed in a more dilatant sample, which often shows a larger degree of mobilised fabric anisotropy, suggesting the possible important role of instantaneous internal friction angle. The evolution of principal fabric direction resembles that of the principal stress direction. © 2013 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons, Ltd. 相似文献
17.
In the absence of initial cracks, the material behavior is limited by its strength, usually defined in homogeneous conditions (of stress and strain). Beyond this limit, in quasi‐brittle case, cracks may propagate and the material behavior tends to be well described by fracture mechanics. Discrete element approaches show consistent results dealing with this transition during rupture. However, the calibration of the parameters of the numerical models (i.e., stiffness, strength, and toughness) may be quite complex and sometimes only approximative. Based on a brittle rupture criterion, we analyze the biaxial response of uncracked samples. Thus, tensile and compressive strengths are analytically identified and become direct parameters of our discrete model. Furthermore, a physically reliable crack initiation (and subsequent propagation) is shown to be induced during rupture and verified by the simulation of three‐point bending and diametral compression tests. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
针对我国现行《城市轨道交通结构抗震设计规范》(GB50909-2014)推荐采用的地下结构抗震分析的反应位移法存在一定的局限性,在借鉴反应位移法基本原理的基础上,提出一种适用于复杂断面地下结构地震反应分析的广义反应位移法。首先,基于子结构方法从理论上论证该方法与反应位移法基本原理的一致性,详细介绍了该方法的力学模型和实施步骤;其次,结合某马蹄形断面的区间隧道实际工程,并以整体动力时程分析方法为基准,分析了不同地震动强度工况下,两种不同广义子结构选取范围的广义反应位移法的计算效果。结果表明,提出的广义反应位移法是一个操作简便、精度较高、实用性较强的简化分析方法,可以在各种断面形式的地下结构的抗震分析与设计中推广使用。 相似文献
19.
Wind‐blown sand movement, considered as a particle‐laden two‐phase flow, was simulated by a new numerical code developed in the present study. The discrete element method was employed to model the contact force between sand particles. Large eddy simulation was used to solve the turbulent atmospheric boundary layer. Motions of sand particles were traced in the Lagrangian frame. Within the near‐surface region of the atmospheric boundary layer, interparticle collisions will significantly alter the velocity of sand. The sand phase is quite dense in this region, and its feedback force on fluid motion cannot be ignored. By considering the interparticle collision and two‐phase interaction, four‐way coupling was achieved in the numerical code. Profiles of sand velocity from the simulations were in good agreement with experimental measurements. The mass flux shows an exponential decay and is comparable to reported experimental and field measurements. The turbulence intensities and shear stress of sand particles were estimated from particle root‐mean‐square velocities. Distributions of slip velocity and feedback force were analysed to reveal the interactions between sand particles and the continuous fluid phase. 相似文献
20.