首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈领  马巍  穆彦虎  虞洪  张坤  栗晓林 《冰川冻土》2021,43(2):474-483
路基高度是影响冻土路基工程热力稳定性的一个重要指标。同时,不同高度的路基对其周边风场的扰动也将不同,进而影响到局地的地-气能量交换过程。为揭示不同高度路基对其周边风场特征的影响规律及程度,基于风洞实验,研究了3种环境风速条件下青藏高原典型高度公路路基周边风场分布特征,并进行了量化分区。结果表明:路基坡前为流场减速区,不同高度情况下路基坡前减速区水平范围差异显著。10 m·s-1环境风速条件下,3、4和5 m高路基坡前减速区水平范围约为1.8、2.2和2.5倍路基高度(H)。在路基坡前减速区0.3~1.1 m高度范围内,随环境风速增加,同一水平高度流场在靠近路基过程中风速的变化率呈下降趋势。路基上部为流场加速区,路肩处风速增长幅度与路基高度呈正相关。路基坡后为低速回流区,路基高度越大,低速回流区水平范围越大,10 m·s-1环境风速条件下,3、4和5 m高度路基坡后低速回流区水平范围分别约为2.0H、3.0H和4.1H。低速回流区后,流场逐渐恢复到初始运动状态,其消散恢复区水平范围与环境风速密切相关,但与路基高度关系不显著,10 m·s-1环境风速条件下,3、4和5 m高度路基坡后消散恢复区水平范围均约为9.8H。通过考虑路基高度对其周边风场分布的影响,可为块石、通风管、热管等冻土路基结构的设计和布局优化提供参考。  相似文献   

2.
许宏发  佟佺  王广建  王德荣 《岩土力学》2012,33(11):3219-3224
正确评估管棚加固围岩的抗爆性能,对坑道口部防护设计十分重要。基于相似模拟理论,用不同配比的水泥土替代自然岩体和注浆岩体,用塑料管替代钢管,模拟管棚超前支护坑道口部在爆炸荷载作用下的抗爆性能。制作了口部相似模型3件,模型长×宽×高为2 m×2.2 m×2 m,在顶部直接爆炸,分别模拟无管棚、1层管棚和3层管棚下,坑道口部动力响应和破坏特征。试验表明:管棚超前支护能有效加固坑道围岩,整体性增强,受力分布合理;随着管棚层数增加,口部破坏明显减弱,拱顶破坏范围从1.55 m减小到0.45 m、主裂缝最大宽度由25 mm减小到3 mm、网状裂缝最大宽度由24 mm减小到0.3 mm、裂缝条数由14条减少到3条、模型顶部爆坑体积由0.12 m3减小到0.05 m3。管棚超前支护能有效地将爆炸荷载的破坏作用控制在管棚加固层之外,抗打击能力明显增强。  相似文献   

3.
The origins and sedimentary features of grainfall-, avalanche-, and ripple-produced strata have been studied experimentally in a wind sedimentation tunnel. Rate of deposition, wind velocity and wind duration have been shown to control specific sedimentary features of these types of strata. Grainfall-produced strata were deposited on a horizontal surface, and surfaces sloping up to the angle of initial yield for dry sand (about 34°). Thickness of a grainfall-produced stratum depended upon rate of deposition and duration of a specific wind event. Grainfall-produced strata were both non-graded and graded. Graded strata were produced by changes in wind velocity which controlled size of sand in transport and flying distances of individual grains. Distinctive features of grainfall-produced strata are: (a) gradual thinning, or tapering downwind (e.g. down the simulated slipface and across the simulated interdune; (b) extreme variability of thickness from less than 1 mm (wind gusts of a few seconds) to 10 cm or more (sustained gusts). Aeolian avalanche-produced strata were formed when grainfall-produced strata steepened above the angle of initial yield and sheared downslope. A rapid transition in sedimentary features from top to bottom of the slipface characterized avalanche-produced strata of the slump degeneration type in dry sand derived from grainfall deposition. Fadeout laminae formed near the top of the simulated slipface and about 1 m farther down the slipface were flame structures and drag folds. Near the base of the slipface, the avalanche truncated and then overrode grainfall-produced deposits. Distinctive features of avalanche-produced strata for a 2.5 m long slipface are the deformation structures, a thickness of 1 or 2 cm, sandflow toes, and steep dip (34°). Each avalanche-produced stratum was roughly tabular in cross-section parallel to wind direction, with gradual pinchout upslope. Aeolian ripple-produced strata were deposited on horizontal surfaces, and surfaces sloping to as much as 28°. Thickness of a ripple-produced stratum depended upon rate of deposition, morphology of the ripple, and rate of ripple migration. A maximum thickness of several centimetres was observed for a single ripple-produced stratum. Shape and attitude of ripple foresets was controlled by ripple morphology. Distinctive features of aeolian ripple-produced strata are: (a) presence of ripple foresets; (b) abrupt changes in thickness of a stratum or pinchout over downwind distances of a few centimetres; (c) low average foreset-to-diastem angle (10–15°); (d) low ripple-climb angle (<10°).  相似文献   

4.
The Three-North Shelter Forest Programme (TNSFP) covers 551 Chinese counties and an area of 4,069,000 km2 mostly in arid and semi-arid regions. In this paper, we discuss the temporal and spatial changes in value of the normalized-difference vegetation index (NDVI) in this region, and the relationships between NDVI and climatic factors (temperature and precipitation) based on NOAA Advanced Very High Resolution Radiometer Global Inventory Modeling and Mapping Studies NDVI data with 8-km resolution from 1982 to 2006. During the past 25 years, the vegetation cover has generally increased in eastern regions of China and the oasis in the north piedmont of Tianshan Mountains, but has decreased northwest of Xinjiang and in the Hulunbeier Plateau. The multi-year monthly average NDVI distribution map showed that NDVI increased from April to August, but in the western and northern plateau areas, the lower temperatures and high altitude created a shorter growing season (1 or 2 months). The vegetation of the study area has generally increased in the regions covered by the TNSFP. Linear regression analysis of the vegetation cover showed an increasing trend over large areas. The largest annual growth rate per pixel (the slope of the regression) was 0.009; the largest negative annual change was −0.004. The correlation between NDVI and precipitation was higher than that between NDVI and temperature, suggesting that precipitation is the most important factor that affects NDVI changes in the study area, especially for temperate desert vegetation in northwestern China.  相似文献   

5.
Radio-sounding experiments using signals from the Japanese NOZOMI spacecraft to probe the circum solar plasma were performed from December 2000 through January 2001. They can be used to obtain information about the properties of the solar wind plasma in the region where it is accelerated at heliocentric distances of 12.8–36.9R s (where R s is the radius of the Sun). Measurements of the intensity and frequency of the received signals were carried out with high time resolution (~0.05 s for the frequency and ~0.0064 s for the intensity), making it possible to investigate the anisotropy of inhomogeneities and the spatial spectrum of the turbulence of the circum solar plasma. Analysis of these radio-sounding data has shown that the scintillation index and intensity of the frequency fluctuations decrease approximately according to a power law with increasing distance of the line of sight from the Sun. Measurements of the amplitude fluctuations and estimates of the solar wind velocity derived from spatially separated observations indicate the presence of small-scale inhomogeneities with sizes of the order of 50 km at heliocentric distances less than 25R s , which are elongated in the radial direction with anisotropy coefficients from 2.3 to 3.0. The inhomogeneities at heliocentric distances exceeding 30R s become close to isotropic.  相似文献   

6.
Peng  Qinge  Liu  Xingnian  Huang  Er  Yang  Kejun 《Natural Hazards》2019,98(2):751-763

Due to the steep slope of mountainous watersheds and large changes in vegetation coverage degree, flood response processes after rainstorms are complicated. The flow concentration time of the slope is a key parameter for the simulation of flood processes. The most widely used flow concentration time formula currently in the distributed hydrological model is T?=?L0.6n0.6i?0.4S?0.3, which is derived from the kinematic wave theory (Melesse and Graham in J Am Water Resour As 40(4):863–879, 2004; Lee in Hydrol Sci 53(2):323–337, 2008). The flow confluence time T is characterized by the constant exponent of the slope length L, roughness n, effective rainfall intensity i and slope S, and the influence of vegetation on the flow concentration time is implied by the roughness. In this study, a series of heavy rainfall slope surface confluence tests under different slopes and vegetation coverage were carried out, a vegetation coverage factor, C, which was introduced, a statistical analysis method was used, and the vegetation coverage index was fitted. The results showed that the types of vegetation have a certain influence on the flow concentration time of slope, and the flow confluence time under turf vegetation was larger than the flow confluence time under shrubs vegetation; especially in the slope of the larger slope, the relative impact is more significant; at the same time, the influence of vegetation coverage on the flow concentration time of slope was more significant; no matter the condition of turf or shrub, the slope confluence time increased obviously with the increase in vegetation coverage. The index of vegetation coverage factor C varied with the slope and rain intensity. In general, the index of vegetation coverage factor C increased with the decrease in slope and decreased with the increase in rain intensity. In regard to the turf vegetation coverage index, when the slope is 45° and 30°, the decreasing trend of the vegetation coverage index a0 is obvious with increasing rainfall intensity. When the slope is 15°, the vegetation coverage index a0 also decreases with increasing rainfall intensity. When the slope is 5°, the vegetation coverage index a0 basically has no change. In regard to the shrubs vegetation coverage index, when the slope is 45° and 30°, the decreasing trend of the vegetation coverage index a0 is obvious with increasing rainfall intensity. When the slope is 15°, the vegetation coverage index a0 also decreases with increasing rainfall intensity. When the slope is 5°, the vegetation coverage index a0 basically has no change.

  相似文献   

7.
Desertification is the major environmental threat in the arid and semiarid regions. The soil-adjusted vegetation index (SAVI) was used as an indicator to monitor the desertification change in Egypt. A multi-temporal satellite data of moderate-resolution imaging spectroradiometer were used to estimate SAVI and land surface temperature. Also, Global Multi-resolution Terrain Elevation Data 2010 and climatic data were used for the analysis. This research focuses on assessing the trend of the vegetation cover change in the seasons of January, March, June, September, and December for the years 2002, 2005, 2008, and 2011. The magnitude of the vegetation cover change in periods 2002–2005, 2005–2008, and 2008–2011 at ≤100 and >100 m elevation was analyzed. A major increase in the vegetation cover that occurred in the period 2002–2005 was about 3,400 km2, as a result of two national megaprojects (Toshka Project and El-Salam Canal). In contrast, vegetation cover decreased by 5,500 km2 in March during the period 2005–2008, coinciding with the period when the management of the megaprojects failed. Vegetation cover changed again by 1,500 km2 in the period of 2008–2011, and the vegetated areas in the Nile Delta were affected by the sea level rising which was responsible for the soil salinization. Three sites were chosen in this investigation (Kom Ombo, El-Oweinat, and Nile Delta) in order to observe the difference of desertification dynamics and to understand the relationship between the vegetation cover distribution and other environmental variables. Anti-desertification policies and advanced agricultural management are highly required in Egypt to decrease any environmental crises and food shortage.  相似文献   

8.
To understand the generation and development mechanism of soil erosion, data of the wind profile from wind tunnel experiments were used, and the characteristics of the turbulent transmission with free stream velocity and the properties of the surfaces in arid and semi-arid regions were studied by the atmospheric aerodynamic method. The result showed that the turbulent momentum fluxes are proportional to the velocity and the roughness of the surfaces. In addition, they are closely related to the density of the roughness elements; the turbulent exchange coefficient over the near surface layer increases with height.  相似文献   

9.
刘诚  沈永明 《水科学进展》2008,19(6):851-856
水生植物的存在改变了明渠内水流的流动结构,也影响着泥沙的输运。建立三维湍流模型,在水流控制方程中加入植被阻力项和植被密度项来考虑刚性植物对水动力特性和泥沙输运特性的影响。应用该三维数值模型计算了矩形水槽内淹没植被对水流水平时均流速垂向分布的影响、复式明渠边滩栽种挺水植被对水流深度、平均流速分布以及植被岛周围泥沙床面的冲淤变形的影响。数值计算结果与实测结果吻合良好,表明本模型可以有效地描述刚性水生植物对水流泥沙运动的影响。  相似文献   

10.
不同含沙量水流对河床形态调整影响的实验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
水沙条件变化后河床形态的调整是河流地貌学中一个极为重要的问题.但国内外学者基于不同的含沙量变化范围得出的结论刚好相反.采用过程响应模型实验方法,研究和验证了河床形态调整对于不同含沙量水流过程的复杂响应现象,从实验的角度部分地修正了Schumm关于水沙条件变化后河床形态调整方向的定性预测关系.  相似文献   

11.
This research evaluates the effect of both organic and ammonia loading rates and the presence of plants on the removal of chemical oxygen demand and ammonia nitrogen in horizontal subsurface flow constructed wetlands, 2 years after the start-up. Two sets of experiments were carried out in two mesocosms at different organic and ammonia loading rates (the loads were doubled); one without plants (control bed), the other colonized with Phragmites australis. Regardless of the organic loading rate, the organic mass removal rate was improved in the presence of plants (93.4 % higher for the lower loading rate, and 56 % higher for the higher loading rate). Similar results were observed for the ammonia mass removal rate (117 % higher for the lower loading rate, and 61.3 % higher for the higher loading rate). A significant linear relationship was observed between the organic loading rate and the respective removal rates in both beds for loads between 10 and 13 g m?2 day?1. The presence of plants markedly increase removal of organic matter and ammonia, as a result of the role of roots and rhizomes in providing oxygen for aerobic removal pathways, a higher surface area for the adhesion and development of biofilm and nitrogen uptake by roots.  相似文献   

12.
This article reported a wind tunnel test of sediment transport related to surface moisture content and wind velocity using sands from tropical humid coastal area. A 1 mm-thick portion of surface sand was scraped using a self-made sediment sampler, and the gravimetric moisture content was determined. Sand transport was measured via a standard vertical sand trap with a 60 cm height. The result shows that the sand transport profile above the wet surface can be expressed with an exponential equation. In general, the influence of moisture content on sand transport profile mainly focuses on the bottom of the blowing sand cloud. Meanwhile, with moisture content increased, total sand transport dropped, and a relatively larger proportion is transported at greater heights. The vertical movement of particles on higher moisture surface (0.587% < M < 1.448%) is more sensitive to moisture content variation as compared to those on low wet surface (M < 0.587%), total sand transport rate tends to be rather low (0.99 g cm−1 s−1) when M > 1.448%. The total sand transport rate varying with moisture content is divided into three regions of differing gradient at the moisture contents of 0.587 and 1.448%. The gradient of the curve reflected the different influences of the various water forms in surface sediments. The higher moisture surface (M > 1.448%) merely functions as a transport plain for the saltation material. Surface moisture content was the dominant control factor for saltation activity between the moisture contents of 0.587 and 1.448%, wind velocity could resume control saltation after the surface dried to the extent (M < 0.587%).  相似文献   

13.
Karst systems show high spatial variability of hydraulic parameters over small distances and this makes their modeling a difficult task with several uncertainties. Interconnections of fractures have a major role on the transport of groundwater, but many of the stochastic methods in use do not have the capability to reproduce these complex structures. A methodology is presented for the quantification of tortuosity using the single normal equation simulation (SNESIM) algorithm and a groundwater flow model. A training image was produced based on the statistical parameters of fractures and then used in the simulation process. The SNESIM algorithm was used to generate 75 realizations of the four classes of fractures in a karst aquifer in Iran. The results from six dye tracing tests were used to assign hydraulic conductivity values to each class of fractures. In the next step, the MODFLOW-CFP and MODPATH codes were consecutively implemented to compute the groundwater flow paths. The 9,000 flow paths obtained from the MODPATH code were further analyzed to calculate the tortuosity factor. Finally, the hydraulic conductivity values calculated from the dye tracing experiments were refined using the actual flow paths of groundwater. The key outcomes of this research are: (1) a methodology for the quantification of tortuosity; (2) hydraulic conductivities, that are incorrectly estimated (biased low) with empirical equations that assume Darcian (laminar) flow with parallel rather than tortuous streamlines; and (3) an understanding of the scale-dependence and non-normal distributions of tortuosity.  相似文献   

14.
Innovative flume experiments were conducted in a recirculating straight flume. Zostera noltei meadows were sampled in their natural bed sediments in the field at contrasting stages of their seasonal growth. The aims of this study were: (i) to quantify the combined effects of leaf flexibility and development characteristics of Zostera noltei canopies on their interaction with hydrodynamics; and (ii) to quantify the role of Zostera noltei meadows in suspended sediment trapping and bed sediment resuspension related with changes in hydrodynamic forcing caused by the seasonal development of seagrasses. Velocity within the canopy was significantly damped. The attenuation in velocity ranged from 34 to 87% compared with bare sediments and was associated with a density threshold resulting from the flow‐induced canopy reconfiguration. The reduction in flow was higher in dense canopies at higher velocities than in less dense canopies, in which the reduction in flow was greater at low velocities. These contrasted results can be explained by competition between a rough‐wall boundary layer caused by the bed and a shear layer caused by the canopy. The velocity attenuation was associated with a two to three‐fold increase in bottom shear stress compared with unvegetated sediment. Despite the increase in near‐bed turbulence, protection of the sediment against erosion increased under a fully developed meadow, while sediment properties were found to be the main factor controlling erosion in a less developed meadow. Deposition fluxes were higher on the vegetated bed than on bare sediments, and these fluxes increased with leaf density. Fewer freshly deposited sediments were resuspended in vegetated beds, resulting in an increase in net sediment deposition with meadow growth. However, in the case of a very high leaf area index, sediment was mostly deposited on leaves, which facilitated subsequent resuspension and resulted in less efficient sediment trapping than in the less developed meadow.  相似文献   

15.
地铁联络通道冻结加固融沉注浆研究   总被引:9,自引:0,他引:9  
介绍了国内首个地铁联络通道强制解冻融沉注浆工艺的设计与施工。整个施工过程中对土体温度和地表变形进行了监测,得到了温度和地表变形的变化规律。由于冻结法施工中存在冻胀和融沉问题,过量的冻胀、融沉会对地表建筑和地下管线产生危害。结合工程实例,对强制解冻融沉注浆进行了研究,该工程对冻结加固体分区强制解冻、及时进行融沉注浆、二次加固土体,消除了后期压密沉降发生的可能,地表变形的监测表明强制解冻融沉注浆技术在该类工程中应用效果良好。  相似文献   

16.
17.
A nabkha is a vegetated sand mound, which is typical of the aeolian landforms found in the Hotan River basin in Xinjiang, China. This paper compares the results of a series of wind tunnel experiments with an on-site field survey of nabkhas in the Hotan River basin of Xinjiang. Wind tunnel experiments were conducted on semi-spherical and conical sand mounds without vegetation or shadow dunes. Field mounds were 40 times as large as the size of the wind tunnel models. In the wind tunnel experiments, five different velocities from 6 to 14 m/s were selected and used to model the wind flow pattern over individual sand mound using clean air without additional sand. Changes in the flow pattern at different wind speeds resulted in changes to the characteristic structure of the nabkha surface. The results of the experiments for the semi-spherical sand mound at all wind velocities show the formation of a vortex at the bottom of the upwind side of the mound that resulted in scouring and deposition of a crescentic dune upwind of the main mound. The top part of the sand mound is strongly eroded. In the field, these dunes exhibited the same scouring and crescentic dune formation and the eroded upper surface was often topped by a layer of peat within the mound suggesting destroyed vegetation due to river channel migration or by possible anthropogenic forces such as fuel gathering, etc. Experiments for the conical mounds exhibit only a small increase in velocity on the upwind side of the mound and no formation of a vortex at the bottom of the upwind side. Instead, a vortex formed on the leeward side of the mound and overall, no change occurred in the shape of the conical mound. In the field, conical mounds have no crescentic dunes on the upwind side and no erosion at the top exposed below peat beds. Therefore, the field and laboratory experiments show that semi-spherical and conical sand mounds respond differently to similar wind conditions with different surface configuration and development of crescent-shaped upwind deposits when using air devoid of additional sediment. __________ Translated from Journal of Desert Research, 2007, 27(1): 9–14 [译自:中国沙漠]  相似文献   

18.
陈权  李震  王磊 《水科学进展》2007,18(5):756-761
用土壤水分试验(SMEX02)中获取的机载雷达和辐射计(PALS)数据进行反演土壤水分的研究。首先利用PALS数据中雷达和辐射计对土壤水分最敏感的波段,进行主被动结合的多元线性回归反演土壤水分。结果表明,这种方法并不能有效地提高反演精度;然后,改进了一个新提出的适用于大尺度星载C波段辐射计数据的土壤水分获取方法,提高其运算效率,并将该算法应用到PALS数据,一方面验证了该方法在机载高分辨率数据和非C波段下的适用性,另一方面对该方法进行了定量化评价。  相似文献   

19.
Ten cores were obtained from a marsh developed along Mad Island Slough, Texas, USA, upstream of a weir constructed in 1948. The cores were analyzed for cesium-137 to identify time-stratigraphic marker horizons and calculate recent sedimentation rates. The cesium-137 analysis provided a 1954 marker horizon in nine of the ten cores. A second marker horizon, present in all ten cores, consisted of an abrupt downcore change in lithology from dark organic-rich muds to grey organic-poor sands. This transition was tentatively identified as coinciding with 1948 and the beginning of marsh sedimentation. Resulting sedimentation rates show that surprisingly little sedimentation has occurred behind the weir, averaging only 27 cm in almost 50 years. Sedimentation rates in the marsh declined from an average of 2.4 cm yr–1 in 1948–1954 to 0.32 cm yr–1 in 1954–1994. A similar trend of declining sedimentation has been documented for adjoining Mad Island Lake, suggesting that land-use changes in the lake's watershed have reduced the sediment supply in recent decades. The results also suggest that the weir is not a very efficient sediment trap in this watershed.  相似文献   

20.
The relationship between climate change and vegetation dynamics in the southwestern karst region of China has been identified by recent studies. Based on previous researches and AVHRR (Advanced Very High Resolution Radiometer) GIMMS (Global Inventory Monitoring and Modeling Studies) NDVI (Normalized Difference Vegetation Index) (1982–2003) and AVHRR GloPEM (Global Production Efficiency Model) NPP (Net Primary Production) (1981–2000) datasets, vegetation dynamics impacted by climate change in the southwestern karst region of China were assessed. The results show that: (1) since the early 1980s, both vegetation cover density and net primary production have insignificant ascending tendencies. However, the inter-annual variation rates of vegetation indexes have apparent spatial differentiations; (2) the correlation coefficients between the inter-annual variations of vegetation indexes and the inter-annual variations of climate factors vary geographically; (3) as indicated by NDVI and NPP, various vegetation types have different responses to climate change, and the annual mean temperature variation has more significant impact on vegetation dynamics than the annual precipitation variation in the study area; (4) distribution laws of correlation coefficients between the inter-annual variations of vegetation indexes and the inter-annual variations of climate factors in different climate conditions are apparent. All these findings will enrich our knowledge of the natural forces which impact the stability of the karst ecosystems and provide scientific basis for the management of the karst ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号