首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous silica can polymerize in distilled water, in 0.6 N NaCl solution and in seawater to form a colloidal suspension that contains approximately 200 ppm Si. Solid amorphous alumina can prevent this polymerization in seawater and in 0.6 N NaCl, and can inhibit but not prevent it in distilled water. This prevention of polymerization may be an important factor in authigenic mineral formation.The presence of solid amorphous alumina with solid silica in the same solutions causes the final concentrations of dissolved silica to be lower than those attained by solid silica in the absence of solid alumina. The effects are similar whether the final levels are approached from above or below the saturation concentration for amorphous silica. This indicates that the observed concentration of dissolved silica will be a function of available alumina as well as of the silica solubility.The presence of solid amorphous alumina with quartz in seawater, 0.6 N NaCl solution and distilled water causes dissolved silica levels to remain below 0.7 ppm Si for at least 38 days. The same systems in the absence of alumina approach the solubility levels of quartz within that time period.  相似文献   

2.
Dissolved silica can coprecipitate with zinc from seawater or distilled water that has been enriched with both elements. More than 2 ppm Si are necessary for the reaction to begin. The coprecipitation shows pH dependence. The addition of pulverized illite or natural sediment as suspended particulate material does not enhance the reaction in seawater. The organic material present in the nearshore seawater samples decreases the rate and extent of reaction, as indicated by comparisons of results of experiments using natural seawater with results obtained using UV-irradiated seawater. In unbuffered distilled water the reaction must compete with hydrolysis of zinc; however, reaction does occur, which indicates that the seawater matrix is not essential for the reaction. The coprecipitation can limit the concentration of zinc in seawater to less than the solubility concentration assumed for ZnCO3 or Zn(OH)2. The results suggest that a zinc silicate can precipitate directly from seawater or interstitial water as an authigenic mineral.  相似文献   

3.
Natural marine sediments can release dissolved silica to silica-poor seawater and can remove silica from seawater enriched with dissolved silica. These are fast reactions, with sufficient reaction occurring within the first 48 hours to indicate clearly the direction of the reaction. The relative importance of these two processes varies with the ratio of clays to biogenic silica in the sediment. Both the release and the uptake reactions approach the interstitial water concentration of dissolved silica as an end point, which suggests that these reactions may influence this concentration. No change in sediment reactivity with respect to silica uptake or release reactions was observed with increasing depth in core for the three sediment cores investigated; this indicates that uptake sites are not saturated, and silica is available for dissolution for a long time after deposition.  相似文献   

4.
The behavior of dissolved and particulate iron and manganese and dissolved silicon has been studied as a function of chlorinity in the Peconic River estuary, New York. This study sought to identify important geochemical processes in a relatively pristine estuary facing increasing anthropogenic impact.Dissolved iron behaved in the classical non-conservative manner exhibiting removal of nearly 80% at very low chlorinities, while particulate iron increased by a corresponding amount over the same chlorinity range. Dissolved manganese was enriched by up to 200% over its predicted concentration at low and intermediate chlorinities by desorption from suspended particulates and by a probable benthic flux. Dissolved silicon was enriched by up to 100% at low and intermediate chlorinities also from a probable benthic flux. These fluxes were estimated to be 5 μg cm?2 day?1 for dissolved manganese and 70 μg cm?2 day?1 for dissolved silicon.The quantity of both particulate iron and manganese increased at high chlorinities due to an influx of suspended inorganic particulates. In the intermediate to high chlorinity region, oxidation of sediment-derived manganese is believed to contribute to the observed increase in particulate manganese.Total iron was essentially conservative throughout most of the estuary, while total manganese was non-conservative presumably due to extensive remobilization of dissolved manganese from the sediments.  相似文献   

5.
Dissolved and particulate Mn concentrations were investigated on a seasonal scale in surface waters of the NW German Wadden Sea (Spiekeroog Island) in 2002 and 2003. As the Wadden Sea forms the transition zone between the terrestrial and marine realms, Mn was analysed in coastal freshwater tributaries and in the adjoining German Bight as well. Additionally, sediments and porewaters of the tidal flat sediments were analysed for Mn partitioning and microbial activity.Dissolved Mn concentrations show strong tidal and seasonal variation with elevated concentrations during summer at low tide. Summer values in the Wadden Sea (av. 0.7 μM) are distinctly higher than in the central areas of the German Bight (av. 0.02 μM), suggesting a possible impact of the Wadden Sea environment on the Mn budget of the North Sea. Seasonality is also observed for particulate Mn in the Wadden Sea (winter av. 800 mg kg 1; summer av. 1360 mg kg 1). Although particles are relatively Mn-poor during winter, the high SPM load during this season causes elevated excess concentrations of particulate Mn, which in part exceed those of the dissolved phase. Therefore, winter values cannot be ignored in balance calculations for the Wadden Sea system.Porewater Mn concentrations differ depending on sediment type and season. Maximum concentrations are found in surface sediments at a mixed flat site (190 μM) during summer, while winter values are distinctly lower. This indicates that enhanced microbial activity owing to higher temperature during summer leads to increased reduction of Mn-oxides in surface sediments and enhances the corresponding diffusive and advective Mn flux across the sediment-water interface. Draining of Mn-rich porewaters from sediments is also documented by analyses of tidal creek waters, which are highly enriched in Mn during summer.Furthermore, an important Mn source is freshwater discharged into the Wadden Sea via a flood-gate. The concentration of dissolved Mn in freshwater was highly variable during the sampling campaigns in 2002 and 2003, averaging 4 μM. In contrast, particulate Mn displayed a seasonal behaviour with increasing contents during summer. On the basis of salinity variations in the Wadden Sea, the total amount of Mn contributed to the Wadden Sea via freshwater was estimated. This balance shows the importance of the freshwater environment for the Mn inventory of the Wadden Sea. During winter the total Mn inventory of the Wadden Sea water column may be explained almost completely by freshwater discharge, whereas in summer the porewater system forms the dominating source.  相似文献   

6.
海口湾海水重金属的行为特征   总被引:11,自引:2,他引:9  
本文对海口湾溶解态铜、铅、锌、镉进行了测定.铜的变化范围为:0.47~1.16μg/dm3,平均值为0.78μg/dm3;铅的变化范围为:0.94~2.36μg/dm3,平均值为1.36μg/dm3;锌的变化范围为:1.28~4.83μg/dm3,平均值为3.14μg/dm3;镉的变化范围为:0.005~0.072μg/dm3,平均值为0.030μg/dm3,Cu、Zn的溶解态含量在龙昆路生活污水排污沟口、秀英工业排污沟口及海甸溪口的测站相对较高,Pb、Cd溶解态含量较低,湾内各站平面分布较为均匀.它们的溶解态含量垂直变化趋势为:Cu、Pb、Zn底层大于表层,而Cd表层大于底层.对Cu、Pb、Zn、Cd的颗粒态含量也进行了测定,指出海口湾海水中的颗粒物对重金属的净化起一定作用.对铜的溶解态中的强络合态和不稳态铜也进行了研究,强络合态占总溶解态的比例均在85%以上,对生物起毒性作用有关的不稳态铜含量很低,均小于5nmol/dm3,表明目前海口湾海水中的重金属铜不会对生物生长产生影响.  相似文献   

7.
Said Tlig 《Marine Geology》1982,50(3):257-274
The REE distribution in size fractions of sediments and associated ferromanganese nodules from the Indian Ocean was studied. Bulk-sample patterns of sediments result from the combination of coarsest fractions depleted in Ce and fine fractions enriched in Ce. Ce depletion of the coarsest fractions is related to biogenic silica; on the contrary, REE distribution patterns of fine fractions are closely similar to those of associated ferromanganese nodules. The Ce excess in fine fractions is probably of continental origin, but it could also be derived from submarine weathering of volcanic glass or related to Ce oxydation in the marine environment. In fine fractions Ce is probably in its tetravalent state, hence it can easily be scavenged by fine clays and oxyhydroxydes. Trivalent REE can be incorporated in nodules, partly by occlusion of fine clays or oxyhydroxydes and partly by surface to surface transfer as was proposed by Ehrlich (1968). Comparison between REE patterns of fine-sized fractions, nodules and seawater also supported adsorption as a possible mechanism governing the incorporation of REE of sediments and nodules from seawater. Light REE are probably incorporated as oxyhydroxyde complexes, whereas heavy REE are markedly fractionated with increasing atomic number. This fractionation reflects the complexed form of the heavy REE in seawater.  相似文献   

8.
《Marine Chemistry》1986,20(2):131-140
The free-solution diffusion coefficient for boron, which is necessary for diffusional flux calculations, was measured in a variety of media, including seawater, by the diaphragm-cell method. Results show that, over a wide range of solution compositions, the free-solution diffusion coefficient for boron, at ionic strengths of 0.5–0.6 M, is constant at 1.12 ± 0.02 × 10−5 cm2 s−1. In the presence of dissolved organic matter from pore waters of marine sediments, corresponding to 30 mg l−1 dissolved organic carbon, boron diffusion is significantly slowed relative to other cases. Quantitative results allow calculation of a composite distribution coefficient that should be useful for approximately correcting total dissolved boron concentrations in marine sediments for organic-boron complexes.  相似文献   

9.
The pore water concentrations of dissolved silica in sediment cores from the continental slope offshore from Cape Hatteras, North Carolina, varied from 150 to almost 700 μ,M with depth in the top 40 cm of sediment. Sediment cores from 630 to 2010 m depth had very similar profiles of dissolved silica in their pore waters, even though these cores came from regions greatly different in slope, topography, sedimentation rate, and abundance of benthic macrofauna. Cores from 474 to 525 m were more variable, both with respect to pore water dissolved silica profiles, and with respect to sediment texture. Experiments indicate that both the rate of dissolution of silica and the saturation concentration decrease as sediment depth below the sediment-seawater interface increases. These data are consistent with depletion of a reactive silica phase in surface sediment, which may be radiolarian tests, or the alteration of biogenic silica to a less reactive form over time. Experimental results suggest that the pore water dissolved silica concentration in sediments below the top few centimeters may be higher than the sediments could now achieve. The flux of dissolved silica out of these sediments is estimated to be 15 μmoles cm−2 yr−1.  相似文献   

10.
The use of dissolved Al as a tracer for oceanic water masses and atmospheric dust deposition of biologically important elements, such as iron, requires the quantitative assessment of its sources and sinks in seawater. Here, we address the relative importance of oceanic versus atmospheric inputs of Al, and the relationship with nutrient cycling, in a region of high biological productivity in coastal Antarctica. We investigate the concentrations of dissolved Al in seawater, sea ice, meteoric water and sediments collected from northern Marguerite Bay, off the West Antarctic Peninsula, from 2005 to 2006. Dissolved Al concentrations at 15 m water depth varied between 2 and 27 nM, showing a peak between two phytoplankton blooms. We find that, in this coastal setting, upwelling and incorporation of waters from below the surface mixed layer are responsible for this peak in dissolved Al as well as renewal of nutrients. This means that changes in the intensity and frequency of upwelling events may result in changes in biological production and carbon uptake. The waters below the mixed layer are most likely enriched in Al as a result of sea ice formation, either causing the injection of Al-rich brines or the resuspension of sediments and entrainment of pore fluids by brine cascades. Glacial, snow and sea ice melt contribute secondarily to the supply of Al to surface waters. Total particulate Al ranges from 93 to 2057 mg/g, and increases with meteoric water input towards the end of the summer, indicating glacial runoff is an important source of particulate Al. The (Al/Si)opal of sediment core top material is considerably higher than water column opal collected by sediment traps, indicative of a diagenetic overprint and incorporation of Al at the sediment–water interface. Opal that remains buried in the sediment could represent a significant sink of Al from seawater.  相似文献   

11.
Behavior features of heavy metals in the Haikou Bay waters   总被引:1,自引:0,他引:1  
INThonUCrIONBecause of the discharge of industrial waste water, waste residue, waste gas and acid rain theheavy metals concentration in river and lake and eventually in seawater have been increasing.Therefore many studies on heavy metals innuencing marine ecological environment have beencarried out (Sun et al., 1990; Sunda and Guillard, 1976; Zhu et al., 1992). After entering intothe sea, heavy metals change, transfer and transform, and these processes have gained attentionfrom marine envi…  相似文献   

12.
Authigenic silicate minerals similar to Chamosite were synthesized under laboratory conditions, demonstrating that there may exist a geochemical process of authigenic silicate minerals formation by coagulation, adsorption, structural rearrangement and crystallization from dissolved substances in estuarine and marine environments. This also further confirms our previous geochemical removal pattern of dissolved silica in the estuarine region. Results show that the authigenic silicate minerals is one of the significant sinks of the chemical removal of dissolved silica from seawater.  相似文献   

13.
Dissolution experiments in batch and flow-through reactors were combined with data on sediment composition and pore water silicic acid profiles to identify processes controlling the solubility of biogenic silica and the build-up of silicic acid in marine sediments. The variability of experimentally determined biogenic silica solubilities is due, in part, to variations in specific surface area and Al content of biosiliceous materials. Preferential dissolution of delicate skeletal structures and frustules with high surface areas leads to a progressive decrease of the specific surface area. This may cause a reduction of the solubility of deposited biosiliceous debris by 10–15%, relative to fresh planktonic assemblages. Dissolution of lithogenic (detrital) minerals in sediments releases dissolved aluminum to the pore waters. This aluminum becomes structurally incorporated into deposited biogenic silica, further decreasing its solubility. Compared to Al-free biogenic silica, the solubility of diatom frustules is lowered by as much as 25% when one out of every 70 Si atoms is substituted by an Al(III) ion.The build-up of silicic acid in pore waters of sediments with variable proportions of detrital matter and biogenic silica was simulated in batch experiments using kaolinite and basalt as model detrital constituents. The steady-state silicic acid concentrations measured in the experiments decreased with increasing detrital-to-opal ratios of the mixtures. This trend is similar to the observed inverse relationship between asymptotic pore water silicic acid concentrations and detrital-to-opal ratios in Southern Ocean sediments. Flow-through reactor experiments further showed that in detrital-rich sediments, precipitation of authigenic alumino-silicates may prevent the pore waters from reaching equilibrium with the dissolving biogenic silica. This agrees with data from Southern Ocean sediments where, at sites containing more than 30 wt.% detrital material, the pore waters remain undersaturated with respect to the experimentally determined in situ solubility of biogenic silica.The results of the study show that interactions between deposited biogenic silica and detrital material cause large variations in the asymptotic silicic acid concentration of marine sediments. The production of Al(III) by the dissolution of detrital minerals affects the build-up of silicic acid by reducing the apparent silica solubility and dissolution kinetics of biosiliceous materials, and by inducing precipitation of authigenic alumino-silicate minerals.  相似文献   

14.
基于全球海洋及其上空大气中关于有机磷酸酯(OPEs)的数据,分析了目前OPEs在全球海洋及其上空大气的分布特征、影响因素以及当前研究存在的不足。总结发现,海水中的OPEs主要来自河流输送,且浓度分布特征表现为由近及远、由浅及深逐渐递减。磷酸三(2-氯乙基)酯(TCEP)、磷酸三(1-氯-2-丙基)酯(TCPP)和磷酸三(1,3-二氯异丙基)酯(TDCPP)三种卤化OPEs是海水中主要污染物;输入到海水中的OPEs经过颗粒沉降等作用沉积到海洋沉积物中,随之,沉积物中的OPEs可能反析出或直接累积,在海洋沉积物中形成一个大的OPEs储存库。分析北太平洋到北冰洋表层沉积物中OPEs的浓度发现,从白令海峡到北冰洋,随着纬度的增加OPEs的浓度也普遍增加,且相对于非卤化OPEs,卤化OPEs更易被运输到偏远海域。总有机碳(TOC)与大洋沉积物中OPEs的浓度无相关性,但与近海海洋沉积物中OPEs的浓度呈正相关,TCEP和磷酸三异丁酯(TiBP)为海洋沉积物中主要污染物;海洋上空大气与水体中的OPEs是不可分割的,海洋上空大气中的OPEs一部分通过大气沉降进入海水,一部分继续迁移到更偏远区域,气团来源是影响其分布的主要因素。对比OPEs在全球海洋上空大气中的浓度分布发现,南北半球并无明显差异,TCEP和TCPP是海洋上空大气中主要污染物。  相似文献   

15.
Sandy sediments of continental shelves and most beaches are often thought of as geochemical deserts because they are usually poor in organic matter and other reactive substances. The present study focuses on analyses of dissolved biogenic compounds of surface seawater and pore waters of Aquitanian coastal beach sediments. To quantitatively assess the biogeochemical reactions, we collected pore waters at low tide on tidal cross-shore transects unaffected by freshwater inputs. We recorded temperature, salinity, oxygen saturation state, and nutrient concentrations. These parameters were compared to the values recorded in the seawater entering the interstitial environment during floods. Cross-shore topography and position of piezometric level at low tide were obtained from kinematics GPS records. Residence time of pore waters was estimated by a tracer approach, using dissolved silica concentration and kinetics estimate of quartz dissolution with seawater. Kinetics parameters were based on dissolved silica concentration monitoring during 20-day incubations of sediment with seawater. We found that seawater that entered the sediment during flood tides remained up to seven tidal cycles within the interstitial environment. Oxygen saturation of seawater was close to 100%, whereas it was as low as 80% in pore waters. Concentrations of dissolved nutrients were higher in pore waters than in seawater. These results suggest that aerobic respiration occurred in the sands. We propose that mineralised organic matter originated from planktonic material that infiltrated the sediment with water during flood tides. Therefore, the sandy tidal sediment of the Aquitanian coast is a biogeochemical reactor that promotes or accelerates remineralisation of coastal pelagic primary production. Mass balance calculations suggest that this single process supplies about 37 kmol of nitrate and 1.9 kmol of dissolved inorganic phosphorus (DIP) to the 250-km long Aquitanian coast during each semi-diurnal tidal cycle. It represents about 1.5% of nitrate and 5% of DIP supplied by the nearest estuary.  相似文献   

16.
Seasonal variations in dissolved nitrogen and silica loadings were related to seasonal variability in river discharge. Dissolved nutrient concentrations measured weekly at three stations in the Yaquina River, Oregon from 1999 through 2001, and then monthly in 2002 were used as the basis for developing a nutrient loading regression as part of a larger agency program for evaluating nutrient processes. Because realistic models of nutrient transport require dense data sets to capture both long and short term fluctuations in nutrient concentrations, data at one freshwater station also were collected hourly for the same years using an in-stream monitor.The effects of storm events on dissolved nutrient transport were examined during three storms, including one in a high rainfall-discharge year, and two in average years, one of which followed a drought year. During the drought year (WY2001), total dissolved nitrate input was considerably less than in wetter years. Dissolved nitrate concentrations, however, were unusually high in the first winter storm runoff after the drought. The freshwater dissolved nitrate nitrogen loads varied from 40,380 kg day−1 during a high-flow storm event to 0.11 kg day−1 during late summer, low flow conditions. Dissolved silica dynamics differed from those of nitrate because during storm events, silica concentrations in the Yaquina River decreased to near zero at the storm height, probably due to dilution by near surface or overland flow, and later recovered.During the time interval studied, over 94% of the dissolved nitrate and silica were transported from the watershed during the winter months of greater rainfall, indicating that seasonality and river flow are primary factors when considering nutrient loadings from this watershed system.  相似文献   

17.
A detailed study of particulate and dissolved cadmium distributions on 83 seawater samples from six profiles in the open North Atlantic Ocean showed a relatively homogenous distribution. The mean concentration of cadmium was 60 ± 27 ng/kg and the median concentration of particulate cadmium was 0.2 ng/kg. Although there are regional differences in dissolved cadmium concentrations among stations, it is suggested that cadmium behaves essentially as an inert element in sea water.Particulate cadmium is enriched by about a factor of four in samples from less than 400 m compared to samples from deeper than 1000 m. The high concentrations in surface waters are suggested to be due to aeolian transport of anthropogenically derived cadmium.Additional analyses of cadmium in the Gulf of Maine show a mean value of 230 ng/kg. The higher values in the Gulf of Maine are ascribed to the influence of continental runoff. Twelve sediment samples from the open North Atlantic show a relatively homogenous distribution, ranging from 0.13 to 0.21 ppm on a dry-weight basis.  相似文献   

18.
In this study, we demonstrate that dissolved silica obtained from mineral (crystalline quartz), biogenic amorphous (diatomaceous earth) and artificial amorphous sources (Aerosil) influence the growth rate of two marine diatoms, Chaetoceros sp. and Skeletonema marinoi. Diatoms were reared in four different experimental conditions in artificial seawater containing either dissolved silica previously obtained through dissolution of the mineral crystalline quartz or two amorphous substrates, biogenic diatomaceous earth or artificial Aerosil silica. Sodium metasilicate was used as control. When the silica in the different media reached concentrations higher than 107 μm , particles were eliminated by filtration and the diatom cells were inoculated. Maximum cell density, growth and silica assimilation rates of both species in the presence of dissolved silica derived from crystalline quartz and metasilicate were higher than those obtained with the other silica sources. These results are discussed against the background of previous geochemical studies that have shown that silica–water interactions are strictly dependent on the silica polymorphs involved and on the ionic composition of the solution. Our results demonstrate that the soluble silicon compounds generated in seawater by crystalline sources are highly bioavailable compared with those generated by biogenic and amorphous materials. These findings are potentially of considerable ecological importance and may contribute to clarifying anomalous spatial and temporal distributions of siliceous organisms with respect to the presence of lithogenic or biogenic silica sources in marine environments.  相似文献   

19.
深海富稀土沉积物因其资源潜力巨大,近年来备受关注。一般认为,沉积物中稀土元素和钇(总称REY)的主要来源为上覆海水,但针对富稀土海区上覆海水中REY的研究较少。本研究针对南太平洋富稀土海区采集的3个站位的全水深海水样品,测试出了15种溶解态REY,并对比了邻近海域已发表的数据,分析了该海区REY的空间分布特征。研究区表层水中溶解态REY浓度主要受风尘输入影响,而中层和深层水体中溶解态REY浓度主要受水团控制。经过澳大利亚后太古代页岩(PAAS)和北太平洋深层水(NPDW)归一化后的配分模式可确定REY间的分馏特征,分辨出不同水团。与其他大洋中报道的REY数据比较发现,表层水中REY浓度受风尘和河流输入影响导致差别较大,中层水中REY浓度与印度洋较为接近,深层水中REY浓度与不同大洋的水团年龄表现为正相关趋势,即REY浓度由小到大依次为大西洋、印度洋、南太平洋、北太平洋。  相似文献   

20.
溶解氧是海洋水质监测的常规关键参数,基于荧光猝灭原理研制的溶解氧传感器具有准确度高、稳定性好和可长期在线测量等优点,已经被广泛用于海水溶解氧浓度监测.针对传感器可能发生的数据漂移和显著偏差可能造成的准确度问题,本文设计了一套专门的校准装置和校准方法.通过严格控制校准水体的温度和溶解氧浓度,测量待校准传感器和参比传感器的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号