首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a yield and failure criterion for cohesive and frictional materials. The function is given by the combination of a Lode dependence for the behaviour in the deviatoric plane and a meridian function for the pressure‐dependent behaviour. A variety of shapes can be achieved with the proposed criterion including Lode dependences which are able to reproduce the behaviour of isotropic and cross‐anisotropic materials in the deviatoric plane. The criterion is validated through the comparison with experimental data based on multiaxial experimental tests on clays, sands, rocks and concrete. Finally, the convexity of the criterion is analysed and discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A discrete plastic–damage model is developed for cohesive‐frictional geomaterials subjected to compression‐dominated stresses. Macroscopic plastic strains of material are physically generated by frictional sliding along weakness planes. The evolution of damage is related to the evolution of weakness planes physically in connection with the propagation of microcracks. A discrete approach is used to account for anisotropic plastic flow and damage evolution, by introducing two stress invariants and one plastic hardening variable for each family of sliding weakness planes. Plastic flow in each family is coupled with damage evolution. The proposed model is applied to typical geomaterials and comparisons between numerical predictions and experimental data are presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Previous work on three‐dimensional shakedown analysis of cohesive‐frictional materials under moving surface loads has been entirely for isotropic materials. As a result, the effects of anisotropy, both elastic and plastic, of soil and pavement materials are ignored. This paper will, for the first time, develop three‐dimensional shakedown solutions to allow for the variation of elastic and plastic material properties with direction. Melan's lower‐bound shakedown theorem is used to derive shakedown solutions. In particular, a generalised, anisotropic Mohr–Coulomb yield criterion and cross‐anisotropic elastic stress fields are utilised to develop anisotropic shakedown solutions. It is found that shakedown solutions for anisotropic materials are dominated by Young's modulus ratio for the cases of subsurface failure and by shear modulus ratio for the cases of surface failure. Plastic anisotropy is mainly controlled by material cohesion ratio, the rise of which increases the shakedown limit until a maximum value is reached. The anisotropic shakedown limit varies with frictional coefficient, and the peak value may not occur for the case of normal loading only. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Anisotropic failure criteria are formulated using two different approaches. The first one employs a spatial distribution of strength parameters and defines the failure condition in terms of traction components acting on the critical plane. The second one incorporates a microstructure tensor and the relevant mixed invariants. Both formulations are illustrated by some numerical examples. In particular, the variation of strength with orientation of the sample is examined for a series of uniaxial compression tests. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the problem of propagation of localized deformation associated with formation of macrocracks/shear bands is studied in both tensile and compressive regimes. The main focus here is on enhancement of the constitutive law with embedded discontinuity to provide a discrete representation of the localization phenomenon. This has been accomplished by revising the formulation and coupling it with the level‐set method for tracing the propagation path. Extensive numerical studies are conducted involving various fracture modes, ranging from brittle to frictional, and the results are compared with the experimental data as well as those obtained using XFEM methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The governing equations for an elasto‐plastic constitutive model for frictional materials such as soil, rock, and concrete are presented, and the incremental form is indicated in preparation for implementation of the model in a user‐defined module for finite element calculations. This isotropic, work‐hardening and ‐softening model employs a single yield surface, it incorporates non‐associated plastic flow, and its capability of capturing the behaviour of different types of frictional materials under various three‐dimensional conditions has been demonstrated by comparison with measured behaviour, as presented in the literature. The incrementalization procedure is indicated and the resulting equations for the single hardening model are presented together with parameters for a dense sand. Following the implementation of the model, these parameters are used for evaluation of different integration schemes as presented in a companion paper by Jakobsen and Lade (Int. J. Numer. Anal. Meth. Geomech. 2002; 26 :661). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
An advanced elasto‐plastic constitutive model for frictional materials, whose incremental version is presented in a companion paper (Int. J. Numer. Anal. Meth. Geomech., 2002; 26 :647), is implemented in a user‐defined material module. The general calculation strategy inside this module is presented and discussed, including the initial intersection of the yield surface and the techniques for updating of stresses and hardening modulus. Several integration schemes are implemented in the module and their capabilities in relation to the advanced, three‐dimensional constitutive model are evaluated. The forward Euler, modified Euler, and Runge–Kutta–Dormand–Prince integration schemes are explained in detail, compared, and evaluated in view of error tolerances and computational efficiency. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper we develop analytical solutions for scratch hardness–strength relations for cohesive‐frictional materials of the Mohr–Coulomb and Drucker–Prager type. Based on the lower bound yield design approach, closed‐form solutions are derived for frictionless scratch devices, and validated against computational upper bound and elastoplastic finite element solutions. The influence of friction at the blade–material interface is also investigated, for which a simple computational optimization is proposed. Illustrated for scratch tests on cement paste, we show that the proposed solutions provide a convenient way to determine estimates of cohesion and friction parameters from scratch data, and may serve as a benchmark to identify the relevance of strength models for scratch test analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
An analytical solution of cavity expansion in two different concentric regions of soil is developed and investigated in this paper. The cavity is embedded within a soil with finite radial dimension and surrounded by a second soil, which extends to infinity. Large‐strain quasi‐static expansion of both spherical and cylindrical cavities in elastic‐plastic soils is considered. A non‐associated Mohr–Coulomb yield criterion is used for both soils. Closed‐form solutions are derived, which provide the stress and strain fields during the expansion of the cavity from an initial to a final radius. The analytical solution is validated against finite element simulations, and the effect of varying geometric and material parameters is studied. The influence of the two different soils during cavity expansion is discussed by using pressure–expansion curves and by studying the development of plastic regions within the soils. The analytical method may be applied to various geotechnical problems, which involve aspects of soil layering, such as cone penetration test interpretation, ground‐freezing around shafts, tunnelling, and mining. © 2014 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.  相似文献   

10.
This paper presents a numerical procedure for bond between indented wires and concrete, and the coupled splitting process of the surrounding concrete. The bond model is an interface, non‐associative, plasticity model. It is coupled with a cohesive fracture model for concrete to take into account the splitting of such concrete. Bond between steel and concrete is fundamental for the transmission of stresses between both materials in precast prestressed concrete. Indented wires are used to improve the bond in these structural elements. The radial component of the prestressing force, increased by Poisson's effect, may split the surrounding concrete, decreasing the wire confinement and diminishing the bonding. The combined action of the bond and the splitting is studied with the proposed model. The results of the numerical model are compared with the results of a series of tests, such as those which showed splitting induced by the bond between wire and concrete. Tests with different steel indentation depths were performed. The numerical procedure accurately reproduces the experimental records and improves knowledge of this complex process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This study presents two three‐parameter failure criteria for cohesive‐frictional materials based on the Mohr–Coulomb failure function. One proposed failure criterion can be linked to Mogi's empirical formula and incorporates the well‐known Von‐Mises, Drucker–Prager, and Linear Mogi criteria as special cases. Another one with smooth and convex cross sections contains a general Lode dependence in the deviatoric plane and includes the Matsuoka–Nakai and Lade–Duncan Lode dependences as special cases. The effect of the intermediate principal stress on the strength of the material can be taken into account in both criteria. The proposed criteria are numerically calibrated against polyaxial data sets of many different types of rocks and concrete. The comparison results show that the performance of the proposed criteria is excellent, and the failure criterion with a general Lode dependence performs better than the other one for concrete. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In geomechanics, limit analysis provides a useful method for assessing the capacity of structures such as footings and retaining walls, and the stability of slopes and excavations. This paper presents a finite element implementation of the kinematic (or upper bound) theorem that is novel in two main respects. First, it is shown that conventional linear strain elements (6‐node triangle, 10‐node tetrahedron) are suitable for obtaining strict upper bounds even in the case of cohesive‐frictional materials, provided that the element sides are straight (or the faces planar) such that the strain field varies as a simplex. This is important because until now, the only way to obtain rigorous upper bounds has been to use constant strain elements combined with a discontinuous displacement field. It is well known (and confirmed here) that the accuracy of the latter approach is highly dependent on the alignment of the discontinuities, such that it can perform poorly if an unstructured mesh is employed. Second, the optimization of the displacement field is formulated as a standard second‐order cone programming (SOCP) problem. Using a state‐of‐the‐art SOCP code developed by researchers in mathematical programming, very large example problems are solved with outstanding speed. The examples concern plane strain and the Mohr–Coulomb criterion, but the same approach can be used in 3D with the Drucker–Prager criterion, and can readily be extended to other yield criteria having a similar conic quadratic form. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Artificial ground freezing (AGF) is a commonly used technique in geotechnical engineering for ground improvement such as ground water control and temporary excavation support during tunnel construction in soft soils. The main potential problem connected with this technique is that it may produce heave and settlement at the ground surface, which may cause damage to the surface infrastructure. Additionally, the freezing process and the energy needed to obtain a stable frozen ground may be significantly influenced by seepage flow. Evidently, safe design and execution of AGF require a reliable prediction of the coupled thermo‐hydro‐mechanical behavior of freezing soils. With the theory of poromechanics, a three‐phase finite element soil model is proposed, considering solid particles, liquid water, and crystal ice as separate phases and mixture temperature, liquid pressure, and solid displacement as the primary field variables. In addition to the volume expansion of water transforming into ice, the contribution of the micro‐cryo‐suction mechanism to the frost heave phenomenon is described in the model using the theory of premelting dynamics. Through fundamental physical laws and corresponding state relations, the model captures various couplings among the phase transition, the liquid transport within the pore space, and the accompanying mechanical deformation. The verification and validation of the model are accomplished by means of selected analyses. An application example is related to AGF during tunnel excavation, investigating the influence of seepage flow on the freezing process and the time required to establish a closed supporting frozen arch. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
An elastoplastic model has been developed for the finite elements modelling of repeated load triaxial tests. This model is based on the shakedown theory established by Zarka for metallic structures. To the previous works, which were based on the Drucker–Prager yield surface and the plastic potential of Von Mises, a compression cap has been added to each one. The model straightforwardly determines the purely elastic state or the elastic shakedown state or the plastic shakedown state and calculates the deviatoric and the volumetric plastic strains. The calibration of the elastoplastic model has been carried out with DEM simulations and an unbound granular material for roads under repeated load triaxial tests using finite element method. The calculations underline the capabilities of the model to take into account, with a unique formalism, the accumulation of the deviatoric and volumetric plastic strains along the loading cycles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A challenging computational problem arises when a discrete structure (e.g. foundation) interacts with an unbounded medium (e.g. deep soil deposit), particularly if general loading conditions and non‐linear material behaviour is assumed. In this paper, a novel method for dealing with such a problem is formulated by combining conventional three‐dimensional finite‐elements with the recently developed scaled boundary finite‐element method. The scaled boundary finite‐element method is a semi‐analytical technique based on finite‐elements that obtains a symmetric stiffness matrix with respect to degrees of freedom on a discretized boundary. The method is particularly well suited to modelling unbounded domains as analytical solutions are found in a radial co‐ordinate direction, but, unlike the boundary‐element method, no complex fundamental solution is required. A technique for coupling the stiffness matrix of bounded three‐dimensional finite‐element domain with the stiffness matrix of the unbounded scaled boundary finite‐element domain, which uses a Fourier series to model the variation of displacement in the circumferential direction of the cylindrical co‐ordinate system, is described. The accuracy and computational efficiency of the new formulation is demonstrated through the linear elastic analysis of rigid circular and square footings. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
In quasi‐brittle material the complex process of decohesion between particles in microcracks and localization of the displacement field into macrocracks is limited to a narrow fracture zone, and it is often modelled with cohesive crack models. Since the anisotropic nature of the decohesion process in separation and sliding is essential, it is particularly focused in this paper. Moreover, for cyclic and dynamic loading the unloading, load reversal (including crack closure) and rate dependency are essential features that are included in a new model. The modelling of degradation is based on a ‘localized’ version of anisotropic continuum damage coupled to inelasticity. The concept of strain energy equivalence between the states in the effective and nominal settings is adopted in order to define the free energy of the interface. The proposed fracture criterion is of the Mohr type, with a smooth transition of the failure and kinematics (slip and dilatation) characteristics between tension and shear. The chosen potential, of the Lemaitre‐type, for evolution of the dissipative processes is additively decomposed into plastic and damage parts, and non‐associative constitutive equations are obtained. The constitutive equations are integrated by applying the backward Euler rule and by using Newton iteration. The proposed model is assessed analytically and numerically and a typical calibration procedure for concrete is proposed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
现浇混凝土薄壁管桩内摩阻力的数值分析   总被引:2,自引:0,他引:2  
刘汉龙  费康  周云东  高玉峰 《岩土力学》2004,25(Z2):211-216
现浇混凝土薄壁管桩(简称PCC桩)技术是河海大学自主开发研制的用于地基加固处理的新技术,它是一种适合于软土地区的新型高效优质桩型.在全面介绍了PCC桩非线性有限元分析模型的建立过程后,对PCC桩的内摩阻力进行了计算分析.分析结果表明,土塞底部的水平应力在荷载作用过程中有较大的提高,相应位置的内摩阻力达到极限值,内摩阻力沿土塞呈指数曲线分布.同时,对内摩阻力分布规律的主要因素影响也进行了分析,给出了相应的简化计算公式.  相似文献   

18.
A fully coupled formulation of a hydro‐thermo‐poro‐mechanical model for a three‐phase black oil reservoir model is presented. The model is based upon the approach proposed by one of the authors which fully couples geomechanical effects to multiphase flow. Their work is extended here to include non‐isothermal effects. The gas phase contribution to the energy equation has been neglected based on a set of assumptions. The coupled formulation given herein differs in several ways when compared to the earlier work and an attempt is made to link the flow based formulation and mixture theory. The Finite Element Method is employed for the numerical treatment and essential algorithmic implementation is discussed. Numerical examples are presented to provide further understanding of the current methodology. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Finite element modelling of frictional instability between deformable rocks   总被引:1,自引:0,他引:1  
Earthquakes are recognized as resulting from a stick–slip frictional instability along faults. Based on the node‐to‐point contact element strategy (an arbitrarily shaped contact element strategy applied with the static‐explicit algorithm for modelling non‐linear frictional contact problems proposed by authors), a finite element code for modelling the 3‐D non‐linear friction contact between deformable bodies has been developed and extended here to analyse the non‐linear stick–slip frictional instability between deformable rocks with a rate‐ and state‐dependent friction law. A typical fault bend model is taken as an application example to be analysed here. The variations of the normal contact force, the frictional force, the transition of stick–slip instable state and the related relative slip velocity along the fault between the deformable rocks and the stress evolution in the total bodies during the different stages are investigated, respectively. The calculated results demonstrate the usefulness of this code for simulating the non‐linear frictional instability between deformable rocks. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
A delayed plastic model, based on the theory of plasticity, is proposed to represent the time‐dependent behaviour of materials. It is assumed in this model that the stress can lie outside the yield surface and the conjugate stress called static stress is defined on the yield surface. The stress–strain relation is calculated based on the plastic theory embedding the static stress. Thus, the stress–strain relation of the model practically corresponds to that of the inviscid elastoplastic model under fairly low rate deformation. The delayed plastic model is coupled with the Cam‐clay model for normally consolidated clays. The performance of the model is then examined by comparing the model predictions with reported time‐dependent behaviour of clays under undrained triaxial conditions. It is shown that the model is capable of predicting the effect of strain rate during undrained shear and the undrained creep behaviour including creep rupture. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号