首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Methane,carbon monoxide and methylchloroform in the southern hemisphere   总被引:1,自引:0,他引:1  
New observational data on CH4, CO and CH3CCl3 in the southern hemisphere are reported. The data are analysed for long term trends and seasonal cycles. CH3CCl3 data are used to scale the OH fields incorporated in a two dimensional model, which in turn, is used to constrain the magnitude of a global CH4 source function. The possible causes of observed seasonality of CH3CCl3, CH4 and CO are identified, and several other aspects of observed CH4 variability are discussed.Possible future research directions are also given.  相似文献   

3.
Summary Meridional transports of sensible and latent heat associated with standing eddies were computed from climatic mean data, and are compared with information available in the literature. The standing eddy flux of latent heat has a main maximum in the latitude of the subtropical anticyclones, where longitudinal contrasts in the latent heat content of the atmosphere are also pronounced. The standing eddy flux of sensible heat has, in winter, a main maximum in the latitude of the subpolar lows, where marked land-sea contrasts in temperature occur. Longitudinal variations in the energy content of the atmosphere account for constrasts in the latitudinal and seasonal pattern of the standing eddy fluxes of sensible and latent heat.
Zusammenfassung Mit ortsfesten Störmechanismen verbundene Meridionaltransporte von fühlbarer und latenter Wärme werden auf Grund klimatologischer Daten berechnet und mit den in der Literatur verfügbaren Werten verglichen. Die Störungsbewegung von latenter Wärme hat ein Hauptmaximum in der Breitenlage der subtropischen Hochdruckzellen, wo auch die zonalen Unterschiede im latenten Wärmegehalt der Luft ausgeprägt sind. Die entsprechende Störungsbewegung der fühlbaren Wärme hat im Winter ein Hauptmaximum in der Breitenlage der subpolaren Tiefdruckgebiete, wo auch starke ozeanisch-kontinentale Temperaturgegensätze auftreten. Zonale Unterschiede im Energiegehalt der Atmosphäre bedingen breitenmäßige und jahreszeitliche Gegensätze in der Störungsbewegung von fühlbarer und latenter Wärme.

Résumé On calcule ici au moyen de données climatologiques les transports méridiens de chaleurs latente et sensible liés à des mécanismes perturbateurs immobiles. Les valeurs ainsi obtenues sont comparées à celles que l'on trouve dans la littérature. Le mouvement perturbateur de la chaleur latente a un maximum principal dans les latitudes des cellules anticycloniques subtropicales. C'est là aussi que l'on rencontre de grandes différences zonales du contenu de l'air en chaleur latente. Le mouvement perturbateur correspondant de la chaleur sensible a, en hiver, un maximum principal dans les latitudes des dépressions subpolaires où l'on rencontre aussi de fortes oppositions de températures entre les continents et les océans. Des différences zonales du contenu de l'atmosphère en énergie provoquent des contradictions saisonnières et en latitude du mouvement perturbateur des chaleurs latente et sensible.


With 4 Figures  相似文献   

4.
5.
The vertically integrated horizontal energy transports and the vertically integrated vertical energy flux divergence from ERA-40 and ISCCP are not in balance assuming a stationary climate as a time mean over several years. The reasons are the inherent uncertainties in each of the respective data sets. We therefore modify them using a variational approach with a discretization in spherical harmonics to obtain consistent values. The variational approach only modifies the smaller yet more uncertain divergent part of the flow, leaving the large rotational part untouched. From these consistent fields we can calculate posterior covariance matrices of the vertically integrated horizontal energy transport and the vertically integrated vertical energy flux divergence, providing a measure of the uncertainty of the previous calculation. We are able to use these posterior covariance matrices to give an estimate of the uncertainty of the zonally and vertically integrated meridional energy transport, which is about 0.25 PW in the tropics and 0.04 PW in high latitudes, as well as for the vertical energy flux divergence of the atmosphere, which ranges from 2.5 to 5 W/m2 in the tropics to 15–17 W/m2 in high latitudes.  相似文献   

6.
7.
Storm tracks play a major role in regulating the precipitation and hydrological cycle in midlatitudes. The changes in the location and amplitude of the storm tracks in response to global warming will have significant impacts on the poleward transport of heat, momentum and moisture and on the hydrological cycle. Recent studies have indicated a poleward shift of the storm tracks and the midlatitude precipitation zone in the warming world that will lead to subtropical drying and higher latitude moistening. This study agrees with this key feature for not only the annual mean but also different seasons and for the zonal mean as well as horizontal structures based on the analysis of Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model simulations. Further analyses show that the meridional sensible and latent heat fluxes associated with the storm tracks shift poleward and intensify in both boreal summer and winter in the late twenty-first century (years 2081?C2100) relative to the latter half of the twentieth century (years 1961?C2000). The maximum dry Eady growth rate is examined to determine the effect of global warming on the time mean state and associated available potential energy for transient growth. The trend in maximum Eady growth rate is generally consistent with the poleward shift and intensification of the storm tracks in the middle latitudes of both hemispheres in both seasons. However, in the lower troposphere in northern winter, increased meridional eddy transfer within the storm tracks is more associated with increased eddy velocity, stronger correlation between eddy velocity and eddy moist static energy, and longer eddy length scale. The changing characteristics of baroclinic instability are, therefore, needed to explain the storm track response as climate warms. Diagnosis of the latitude-by-latitude energy budget for the current and future climate demonstrates how the coupling between radiative and surface heat fluxes and eddy heat and moisture transport influences the midlatitude storm track response to global warming. Through radiative forcing by increased atmospheric carbon dioxide and water vapor, more energy is gained within the tropics and subtropics, while in the middle and high latitudes energy is reduced through increased outgoing terrestrial radiation in the Northern Hemisphere and increased ocean heat uptake in the Southern Hemisphere. This enhanced energy imbalance in the future climate requires larger atmospheric energy transports in the midlatitudes which are partially accomplished by intensified storm tracks. Finally a sequence of cause and effect for the storm track response in the warming world is proposed that combines energy budget constraints with baroclinic instability theory.  相似文献   

8.
9.
Summary Within the study region in southern Israel, the annual average rainfall during the period 1961–1990 increased by up to ~ 30%, with only minor changes in the control stations representing the central and northern parts of the country. The retreat of aridity is made even more pronounced by an appreciable decrease in the coefficient of variation (CV) in nearly all of the 30 rain stations within the study region. The geographical area where maximum CV reductions were found correlates well with the area where intensive land-use variations took place with the initial operation of the National Water Carrier in 1964. A global climate change in the sea surface temperatures starting in the early 1960's may have had an effect to increase seasonal rainfall. Current research is aimed at resolving this issue.With 6 Figures  相似文献   

10.
Variability in annual mean circulation in southern high latitudes   总被引:1,自引:0,他引:1  
 Using a hierarchy of climate models together with observations from gridded analyses, I examine the atmosphere-only and coupled ocean-atmosphere variability in the general circulation for the region south of 40 °S. The variability in mean sea level pressure (MSLP) is well simulated by the coupled models. A complication is that the difference between the two analyses used for verification is comparable to the analysis-model differences. An increase in variability is seen within the hierarchy of model runs although even a model without interannual variations in sea surface temperatures (SSTs) captures most of the observed variability. The temporal variation in MSLP in southern high latitudes has a white spectrum consistent with “random” forcing by weather events and a decoupling from oceanic “integration”. In contrast, the spatial pattern of MSLP variability shows large-scale structure that is consistent between observations and various models, even without interannual variation in SSTs. This shows that the models are sufficiently skillful to reproduce the pattern of observed variability and suggests that the pattern of variability is a characteristic of the land-sea distribution and topography. Received: 18 December 1996/Accepted: 23 May 1997  相似文献   

11.
Summary Daily 500-hPa geopotential height and 250-hPa meridional wind reanalyzed data obtained from the National Centers for Environmental Prediction are used to document austral winter (May to September) and summer (November to March) high-frequency variability in the Southern Hemisphere (SH) midlatitudes for the 1990–1994 period. Empirical orthogonal function (EOF) technique is used to determine the high-frequency patterns for these variables in selected areas. The high-frequency anomalous 500-hPa geopotential height patterns for two areas in the SH midlatitudes (the zonally global domain and the western hemisphere) and the high-frequency anomalous 250-hPa meridional wind patterns in the western hemisphere between 15° N and 70° S are discussed. The high-frequency winter and summer patterns for both variables feature a wavetrain structure in the SH midlatitudes which is related to synoptic-scale systems, such as cyclones and anticyclones associated with frontal zones. The dominant high-frequency patterns in the SH midlatitudes manifest in the eastern hemisphere while the secondary ones appear in the southeastern Pacific. Analysis of the western hemisphere data reveal that the wavetrain in the South American sector extends northeastward over the continent, thus affecting the regional weather conditions. An important result presented here concerns the preference of the intense synoptic systems in the eastern hemisphere and in the southeastern Pacific to occur in a sequential instead of an intermittent fashion. This result might have a potential for being used in weather monitoring.  相似文献   

12.
The weakening relationship of El Nino with Indian summer monsoon reported in recent years is a major issue to be addressed. The altered relationships of Indian monsoon with various parameters excite to search for other dominant modes of variability that can influence the precipitation pattern. Since the Indian summer monsoon circulation originates in the oceanic region of the southern hemisphere, the present study investigates the association of southern extratropical influence on Indian summer monsoon using rainfall and reanalysis parameters. The effect of Southern Annular Mode (SAM) index during the month of June associated with the onset phase of Indian summer monsoon and that during July–August linked with the active phase of the monsoon were analysed separately for a period from 1951 to 2008. The extra-tropical influence over the monsoon is illustrated by using rainfall, specific humidity, vertical velocity, circulation and moisture transport. The June high SAM index enhances the lower level wind flow during the onset phase of monsoon over Indian sub-continent. The area of significant positive correlation between precipitation and SAM in June also shows enhancement in both ascending motion and specific humidity during the strong phase of June SAM. On the other hand, the June high SAM index adversely affects July–August monsoon over Indian subcontinent. The lower level wind flow weakens due to the high SAM. Enhancement of divergence and reduction in moisture transport results in the Indian monsoon region due to the activity of this high southern annular mode. The effect is more pronounced over the southwest region where the precipitation spell has high activity during the period. Significant correlation exists between SAM and ISMR, even after removing the effect of El Nino. It indicates that the signals of Indian summer monsoon characteristics can be envisaged to a certain extend using the June SAM index.  相似文献   

13.
Summary Rescaled range analysis of the annual mean surface air temperatures at 7 meteorological stations in Hungary for the period of 1901–1991 indicates that the considered temperatures are fractals with a mean fractal dimension of 1.23 ± 0.01. This value compares favourably with the fractal dimensions of other climatic records, both on small time scale of 10–100 years and for time spans 103–106 years. Possibly such fractal dimensions are characteristic of climate change over the whole spectral range of 10 to 106 years. If this assumption becomes confirmed through analysis of a wider set of climatic records, long-range climatic prediction (in statistical sense) on different time scales will appear feasible.With 4 Figures  相似文献   

14.
Abstract

The medium‐scale wave regime, consisting largely of zonal wavenumbers 5–7, frequently dominates the summer Southern Hemisphere tropospheric circulation. We perform a diagnostic study of this circulation as simulated by the Canadian Climate Centre (CCC) general circulation model (GCM). The analysis of Hövmöller diagrams, space‐time and zonal wavenumber spectra shows that the CCC GCM is able to simulate the observed medium‐scale wave regime.

The zonally averaged meridional eddy heat and momentum transports and the associated baroclinic and barotropic energy conversions are also examined. The distributions of the transports on the vertical plane agree well with the observations. After comparison with the observed December‐January‐February 1979 distributions, some quantitative differences remain: the heat transport is too weak aloft and too large near the surface, whereas the momentum transport tends to be too weak. The baroclinic and barotropic conversions show a maximum in the medium‐scale waves. The time evolution of the Richardson number of the mean flow suggests that the medium‐scale wave is due to a baroclinic instability.  相似文献   

15.
16.
Summary The purpose of this study is to analyze the atmospheric circulation patterns associated to extreme frost episodes which affect the extensive region known as the Wet Pampas in the center-south of South America during the 1961–1990 period. The years with an extreme frequency of generalized frost are identified by selecting the cases beyond one standard deviation above and below the average of the corresponding period. Two groups were formed: one for the years with events above the average (+s) and the other with those below the average (−s). The years of generalized frosts were separated into the periods from May to September, June to August and individual months.From the comparison between the composite of the two groups (+s and −s), it was possible to determine that the anomaly fields are opposite in almost all the periods studied. In the seasonal composites of generalized frosts below average, the circulation field presented a barotropic structure with an anomalous cyclonic persistence over the south-west of South America and a weak subtropical jet over the continent. On the other hand, the structure and evolution of the systems that produce generalized frosts in extremely cold winters were analyzed by calculating the composites of the daily fields from these episodes. The results showed that the incursion of cold air in the lower levels begins with a migratory anticyclone moving from the south-east Pacific to the south of the continent and a deepening of an anomalous low pressure center over the south-east of the Argentine Atlantic coast. Both systems cause cold, dry air advection from the south, with a reduction in temperature over the center and eastern parts of the country. The development of a mid-latitude wave was observed at higher levels with a large-amplitude trough over South America extending to tropical latitudes and a progressive amplification from another trough located upstream in the Pacific Ocean.The analysis of the different periods confirmed the relationship between the intensification of the subtropical jet in South America and the higher frequency of generalized frosts. The intensification of the jet may be related to an amplification of the pressure gradient in the region due to the increase in Rossby wave activity.  相似文献   

17.
18.
The ability of five, global coupled climate models to simulate important atmospheric circulation characteristics in the Southern Hemisphere for the period 1960–1999 is assessed. The circulation features examined are the Southern Hemisphere annular mode (SAM), the semi-annual oscillation (SAO) and the quasi-stationary zonal wave 3 (ZW3). The models assessed are the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3), the Commonwealth Scientific and Industrial Research Organisation Mark 3, the Geophysical Fluid Dynamics Laboratory Model, the Goddard Institute for Space Studies Model ER (GISS-ER) and the UK Meteorological Office Hadley Center Coupled Model Version 3. The simulations were compared to the NCAR–NCEP reanalyses. The models simulate a SAO which differs spatially from the observed over the Pacific and Indian oceans. The amplitudes are too high over the southern ocean and too low over the midlatitudes. These differences are attributed to a circumpolar trough which is too deep and extends too far north, and to the inability of the models to simulate the middle to high latitude temperature gradient. The SAM is well-represented spatially by most models but there are important differences which may influence the flow over the Pacific and in the region extending from the Ross to Weddell Seas. The observed trend towards positive polarity in the SAM is apparent in the ensemble averages of the GISS-ER and CCSM3 simulations, suggesting that the trend is due to external forcing by changes in the concentration of ozone and greenhouse gases. ZW3 is well-represented by the models but the observed trend towards positive phases of ZW3 is not apparent in the simulations suggesting that the observed trend may be due to natural variability, not external forcing.  相似文献   

19.
本文分析了1978年夏季西北太平洋西南季风的强弱变化与南半球500mb环流形势的关系,发现当南半球出现经向环流型时,西南季风相应增强,反之,出现纬向环流型时,西南季风则减弱。 在南半球稳定的经向环流形势控制下,冷空气可以影响到低纬地带,高空长波槽后冷高压北侧的东南大风在其相对固定的通道上形成一股强而持久的越赤道气流,在北半球环流条件有利的情况下,这股越赤道气流可以在西北太平洋上转向成西南气流,导致该地区西南季风增强。由于南半球的长波槽容易在澳洲大陆东西两岸同时停滞加深,因此越赤道气流的路径则相对集中在这两  相似文献   

20.
We examine the representation of the mean state and interannual variability of Antarctic sea ice in six simulations of the twentieth century from coupled models participating in the Intergovernmental Panel on Climate Change fourth assessment report. The simulations exhibit a largely seasonal southern hemisphere ice cover, as observed. There is a considerable scatter in the monthly simulated climatological ice extent among different models, but no consistent bias when compared to observations. The scatter in maximum winter ice extent among different models is correlated to the strength of the climatological zonal winds suggesting that wind forced ice transport is responsible for much of this scatter. Observations show that the leading mode of southern hemisphere ice variability exhibits a dipole structure with anomalies of one sign in the Atlantic sector associated with anomalies of the opposite sign in the Pacific sector. The observed ice anomalies also exhibit eastward propagation with the Antarctic circumpolar current, as part of the documented Antarctic circumpolar wave phenomenon. Many of the models do simulate dipole-like behavior in sea ice anomalies as the leading mode of ice variability, but there is a large discrepancy in the eastward propagation of these anomalies among the different models. Consistent with observations, the simulated Antarctic dipole-like variations in the ice cover are led by sea-level pressure anomalies in the Amundsen/ Bellingshausen Sea. These are associated, to different degrees in different models, with both the southern annular mode and the El Nino-Southern Oscillation (ENSO). There are indications that the magnitude of the influence of ENSO on the southern hemisphere ice cover is related to the strength of ENSO events simulated by the different models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号