首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rigorous theoretical investigation has been made of arbitrary amplitude dust-acoustic solitary structures in an unmagnetized three-component dusty plasma whose constituents are an inertial charged dust fluid and Boltzmann distributed ions and electrons. The pseudo-potential approach and the reductive perturbation technique are employed for this study. It is found from both weakly and highly nonlinear analyses that the dusty plasma model can support solitary waves only with negative potential but not with positive potential. The effects of equilibrium free electron density and its temperature on these solitary structures are discussed. The implications of these results to some astrophysical and space plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
An investigation is presented on the very low-frequency electrostatic drift waves due to the motion of the plasma particles in the combined effect of the static magnetic field and the inhomogeneous particle distribution in a dusty plasma using the Vlasov-kinetic model of plasmas. These modes arise and are driven unstable due to the equilibrium diamagnetic currents of heavier species of the dusty plasma. The implications of these modes to the structure formations in astrophysical situations have also been pointed out. [PACS Numbers: 52.25.Vy, 52.35.Fp, 52.35.- g, 52.35.Lv]  相似文献   

3.
The status of waves and instabilities in magnetized dusty plasmas is summarized. The effects of an external magnetic field on low-frequency electrostatic and electromagnetic waves in dusty plasmas are discussed. The kinetic and hydrodynamic instabilities are shown to excite magnetized dusty plasma waves. The presence of the latter can give rise to an oscillatory wake-potential which can be responsible for the charged dust grain attraction. The relevance of our investigation to laboratory and space plasmas has been pointed out. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Propagation of waves in a magnetized dusty plasma are studied for all the range of values of ion-cyclotron frequency, and having streams of electrons and ions. The dispersion relation is obtained for the waves propagating through the dusty plasma and analysed for different modes of propagation for relative abundance of dust in the plasma. It is observed that abundance of dust, streaming motions of electrons and ions have an important influence on the propagation of waves in the dusty plasma particularly when the phase velocity of the wave is in the low frequency region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
从三维非广延分布函数及流体动力学方程组出发,研究了非广延分布等离子体中电子的非广延性对离子声孤波结构和性质的影响.通过理论解析获得Sagdeev赝势方程,从该方程出发研究了不同q所对应离子声孤波的振幅、宽度及电子数密度的空间分布.数值结果表明:离子声孤波存在的可允许范围由参量q决定,并且电子的非广延效应对离子声孤波的空间特性及电子密度分布均有较大影响.  相似文献   

6.
为了提供解开γ爆光谱之谜所需的信息,我们求解了γ光子在强磁化、纯散射等离子体中的输运问题。主要讨论了多次散射对湮灭线光子和γ射线连续谱的影响。计算中假定散射层由温度为10~7—10~8K的非简并等离子体组成,且带有B=4.414×10~(12)G的强磁场。使用了强磁场中的精确Compton散射截面。计算结果所显示的强磁场效应将有助于我们对γ爆光谱的更深入的认识。  相似文献   

7.
We study the parametric decays of an electromagnetic wave propagating along an external magnetic field in an electron-positron plasma. We include weakly relativistic effects on the particle motions in the wave field, and the nonlinear ponderomotive force. We find resonant and nonresonant wave couplings. These include, ordinary decay instabilities, in which the pump wave decays into an electro-acoustic mode and a sideband wave. There are also nonresonant couplings involving two sideband waves, and a nonresonant modulational instability in which the pump wave decays into two sideband modes. Depending on the parameters involved, there is a resonant modulational instability involving a forward propagating electro-acoustic mode and a sideband daughter wave.  相似文献   

8.
The formation and propagation of dust-acoustic (DA) solitary and rogue waves are studied in a non-relativistic degenerate Thomas-Fermi thermal dusty plasma incorporating transverse velocity perturbation effects. The electrons and ions are described by the Thomas-Fermi density distributions, whereas the dust grains are taken as dynamic and classical. By using the reductive perturbation technique, the cylindrical Kadomtsev-Petviashvili (CKP) equation is derived, which is then transformed into a Korteweg-deVries (KdV) equation by using appropriate variable transformations. The latter admits a solitary wave solution. However, when the carrier waves frequency is much smaller than the dust plasma frequency, the DA waves evolve into the nonlinear modulation instability, generating modulated wave packets in the form of Rogue waves. For the study of DA-rogue waves, the KdV equation is transformed into a self-focusing nonlinear Schrödinger equation. The variation of dust temperature and the electron density affects the nonlinearity and dispersion coefficients which suppress the amplitudes of the DA solitary and rogue waves. The present results aim to describe the nonlinear electrostatic excitations in astrophysical degenerate dense plasma.  相似文献   

9.
In this work, we consider the formation of electrostatic, dust-acoustic solitary structure in a unmagnetized plasma with Lorentzian electrons (kappa-distributed) and more than one species of thermal ions (Maxwellian). The work is inspired by results of different space-based observations of electrostatic solitary waves (ESW) in the near-earth and magnetospheric plasmas and recent experimental realization of existence of superthermal electron component in various space plasmas. We have, in this work, shown that existence of compressive potential structure is possible only with more than one species of thermal ions. Besides, formation of compressive double layers is also possible which depends on the amount of deviation of the electron thermal velocities from a Maxwellian distribution. We show that both dust-temperature and super-thermal electrons lead to a decrease in the soliton amplitude.  相似文献   

10.
1 IntroductionTheParkerinstabilityisoneofthemostimportantprocessesthroughwhichtheGalacticdiskmayhavegeneratedlargescalestructures.Whenonesuggeststheinstabilityasacandidatemech anismformakingalargescalestructureintheGalaxy ,oneshouldbecarefulaboutdestru…  相似文献   

11.
A rigorous theoretical investigation has been made on the obliquely propagating dust-acoustic (DA) waves in a magnetized dusty plasmas consisting of distinct temperature q-distributed electrons with distinct strength of nonextensivities, nonthermal ions and negatively charged mobile dust grains, and analyzed by deriving the Zakharov-Kuznetsov equation. It is found that the characteristics and the properties of the DA solitary waves (DASWs) are significantly modified by the external magnetic field, relative temperature ratio of ions, relative number densities of electrons as well as ions, the nonextensivity of electrons, nonthermality of ions and the obliqueness of the system. The possible implications of the results obtained from this analysis in space and laboratory dusty plasmas are briefly addressed.  相似文献   

12.
Small amplitude dust-acoustic solitary waves in an unmagnetized dusty plasma consisting of electrons and two temperature ions obeying the q-nonextensive distribution are investigated. Employing reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived. From the solitonic solutions of KdV equation, the influence of nonextensivity of electrons as well as ions and dust concentration on the amplitude and width of dust-acoustic solitary waves has been studied. It is observed that both positive and negative potential dust acoustic solitary waves occur in this case. The modified KdV (mKdV) equation is derived in order to examine the solitonic solutions for the critical plasma parameters for which KdV theory fails. The parametric regimes for the existence of mKdV solitons and double layers (DLs) have also been determined. Positive potential double layers are found to occur in the present study.  相似文献   

13.
In this contribution I review the main challenges for theory and numerical simulation of accretion turbulence in disks. I then present briefly a solution we have elaborated in recent years to a part of these questions: we have found an MHD instability which occurs in the inner region of a disk in the configuration (poloidal field of the order of equipartition with the gas pressure) used for MHD jet models. This instability has the unique characteristic that it re-emits toward the corona a fraction of the energy and angular momentum it extracts from the disk. It is a good candidate to explain the low-frequency Quasi-Periodic Oscillation observed in X-ray binaries, and we believe that it might occur also in YSO.  相似文献   

14.
15.
Karlický  Marian 《Solar physics》2003,212(2):389-400
Using a 2-D MHD model, the magnetic field reconnection in the current sheet and corresponding plasma resonance lines (surfaces in 3-D), where the upper-hybrid frequency equals one of harmonics of the electron gyrofrequency, UH=(pe 2+Be 2)1/2=sBe (UH, pe, and Be are the upper hybrid, electron plasma, and cyclotron frequencies, respectively, and s is the integer harmonic number) are computed. Then at selected times and positions in the magnetic reconnection the spatial and time spectra of upper hybrid frequencies along the resonance lines are calculated. These spectra are discussed from the point of view of radio fine structures as narrowband dm-spikes, zebras, and lace bursts. It is shown that not only turbulent plasma outflows, suggested in the paper by Bárta and Karlický (2001), but also perturbed zones near the reconnection slow-mode shocks can be locations of the narrowband dm-spikes (and/or continua). Sources of the lace bursts (i.e. bursts with irregular lines) can be located in the reconnection space, too. On the other hand, the zebras (bursts with regular separations of zebra lines) need to be generated out of strongly perturbed reconnection areas.  相似文献   

16.
The governing dynamical equations of the right-handed circularly polarized dispersive Alfvén wave (DAW), which becomes dispersive owing to the finite frequency of the wave, and the slow Alfvén wave have been obtained using a two-fluid model. The wave localization at different instants of time and its power spectrum have been investigated. The ponderomotive force associated with the pump wave results in intense localized structures. The steepening of spectra is observed from the inertial range to the dispersive range. The results imply that the DAW may play a significant role in solar-wind turbulence. In addition, the formation of DAW localized structures is further examined considering two primary approaches, parametric instability (filamentation) and the reconnection-based model, to study the impact on the turbulent spectrum in more detail.  相似文献   

17.
The purpose of this study is to analyze the dynamical role of a radiation field on the growth rate of the unstable Kelvin-Helmholtz (KH) perturbations. As a first step toward this purpose, the analyze is done in a general way, irrespective of applying the model to a specific astronomical system. The transition zone between the two layers of the fluid is ignored. Then, we perform a linear analysis and by imposing suitable boundary conditions and considering a radiation field, we obtain appropriate dispersion relation. Unstable modes are studied by solving the dispersion equation numerically, and then growth rates of them are obtained. By analyzing our dispersion relation, we show that for a wide range of the input parameters, the radiation field has a destabilizing effect on KH instability. In eruptions of the galaxies or supermassive stars, the radiation field is dynamically important and because of the enhanced KH growth rates in the presence of the radiation; these eruptions can inject more momentum and energy into their environment and excite more turbulent motions.  相似文献   

18.
19.
We examine the influence of nonadiabatic effects on the modes of an isothermal stratified magnetic atmosphere. The present investigation is a continuation of earlier work by Hasan and Christensen-Dalsgaard (1992) and Banerjee, Hasan, and Christensen-Dalsgaard (1995, 1996), where the interaction of various elementary modes in a stratified magnetized atmosphere was studied in the purely adiabatic limit. The inclusion of radiative dissipation based on Newton's law of cooling demonstrates the importance of this effect in the study of magnetoatmospheric waves. We analyze the physical nature of magnetoacoustic gravity (or MAG) oscillations in the presence of Newtonian cooling and find that the eigenfrequency curves in the diagnostic diagram, as in the previous analysis, undergo avoided crossings. However, the qualitative nature of the mode interaction is strongly influenced by radiative dissipation, which leads to strong mode damping in the avoided-crossing regions. We demonstrate this effect for the interaction between the Lamb mode and a magnetic mode. Our results could be important in the analysis of waves in flux tubes on the Sun.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号