首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variability in soil mineralogy, texture, and pavement cover are involved in events leading to undetected gas leaks and subsequent explosions in Bowie, Md. and Washington, D.C. These geologic parameters are involved in selectively removing the gas odorant additive t-butyl merceptan as the gas came into contact with the soil near the pipeline breaks. This removal resulted in an accumulation of combustable natural gas without detectable odor. Soil samples from drill holes and near surface sites were utilized to map soil type, texture, and mineralogy. Residual methane content of the samples was also measured. The data from two dissimilar sites indicates that finegrained soil enriched in montmorillonite preferentially removes the odorant.  相似文献   

2.
Odors occupy a leading position among air quality issues of growing concern. Odors can be emitted from different economic sectors, from industrial to agricultural, including waste treatment activities. Although there are different techniques to determine odor emissions, a standardized indicator has not still been defined to include odor impact into methodological tools such as Life Cycle Assessment. In this sense, some proposals can be found in current literature. Considering these approaches, the present work proposes the Odor Impact Potential, an indicator to be used in Life Cycle Assessment or in waste treatment technologies benchmarking. A simple method is reported to calculate the Odor Impact Potential value from different types of data: chemical analysis of odorants or olfactometric determinations. Data obtained in a previous work for an industrial scale anaerobic digestion plant have been used to present an example of application. Additional Odor Impact Potential calculations from other published data (thermal waste treatment plant and wastewater treatment plant) are also included. The aim of Odor Impact Potential is not to replace parameters such as odor emission rates, odor concentration, or odor emission factors but to use those values to calculate the odor-derived impact in Life Cycle Assessment studies.  相似文献   

3.
The removal of volatile organic compounds from biological treatment processes occurs through several mechanisms. These include biodegradation, adsorption onto solids, and air stripping or volatilization to the atmosphere. Volatilization results in fugitive emissions to the atmosphere, which is largely uncontrolled. Recent regulations have called for increased evaluation and control of inadvertent volatile organic compounds emissions from treatment processes. The use oxygen as a parallel volatile compound is extremely useful for prediction of volatile organic compounds removal by air stripping. In this study, the simultaneous biodegradation and air stripping of volatile organic compounds, based on steady state mass balance are examined and a general approach to estimating the dominant removal mechanism is developed. A Monte Carlo simulation technique was used to estimate air stripping over a wide range of operating conditions. Several volatile organic compounds were selected for this study. The results showed the values drived from the model correspond with the experimental data for benzene, toluene, methylene chloride, trichloroethylene, and methyl isobutyl ketone.  相似文献   

4.
Surfactant-enhanced remediation of contaminated soil: a review   总被引:48,自引:0,他引:48  
Extracting aqueous solutions with or without additives are employed to solubilize contaminants in soil. Since water solubility is the controlling removing mechanism, additives are used to enhance efficiencies. These additives can reduce the time to treat a site compared to the use of water alone. Additives must be of low toxicity and biodegradable. The research in this area has focussed mainly on halogenated volatile organic compounds (VOCs) and is still quite limited for metal removal. Additives include surfactants, organic and inorganic acids, sodium hydroxide, which can dissolve organic soil matter, water-soluble solvents such as methanol, displacement of cations with nontoxic ones, complexing agents such as EDTA, acids in combination with complexing agents or oxidizing/reducing agents. Cationic, anionic and nonionic surfactants are particularly used for soil washing or flushing. They contain both hydrophobic and hydrophilic portions, making them ideal for solubilization of hydrophobic compounds. Numerous studies have indicated that surfactants enhance recoveries of non-aqueous phase liquids (NAPLs). There have also been indications that pretreatment of soil with surfactant washing to solubilize hydrophobic compounds such as PAHs enhances biodegradation of these contaminants. A few in situ field studies have been performed with surfactants. Large-scale treatment has been done mostly for organic removal. Soil pH, soil type, cation exchange capacity (CEC), particle size, permeabilities and contaminants all affect removal efficiencies. High clay and organic matter contents are particularly detrimental. Understanding the chemistry of the binding of the contaminant and the hydrogeology of the site are very important. Once the water is pumped from the soil, it must be extracted and then treated to remove the hydrocarbons and metals. Several technologies exist such as sodium hydroxide or sodium sulfide precipitation, ion exchange, activated carbon adsorption, ultrafiltration, reverse osmosis, electrodialysis and biological processes. Recycling of the surfactants is desired to decrease treatment costs.

This paper will provide an overview of the laboratory research, field demonstration and full-scale application of surfactants for the remediation of contaminated soil. The majority of pilot scale in situ flushing tests, particularly in the United States, have involved the use of surfactants and co-solvents. There are only a few full-scale projects however. Recent laboratory scale efforts by the authors concerning the use of biosurfactants, biologically produced surfactants, to enhance the removal of copper, cadmium and zinc from contaminated soils and sediments are discussed. Three types of biosurfactants were evaluated for their effectiveness. They included a lipopeptide called surfactin from Bacillus subtilis, a rhamnolipid from Pseudomonas aeruginosa and a sophorolipid from Torulopsis bombicola. The results indicated the feasibility of removing the metals with the anionic biosurfactants even though the exchangeable fractions were not significant.  相似文献   


5.
This study aims to attempt a treatment strategy based on fungi immobilized on silica-alginate (biocomposites) for removal of phenolic compounds in olive oil mill wastewater (OMW), OMW supplemented (OMWS) with phenolic compounds and water supplemented (WS) with phenolic compounds, thus decreasing its potential impact in the receiving waters. Active (alive) or inactive (death by sterilization) Pleurotus sajor caju was encapsulated in alginate beads. Five beads containing active and inactive fungus were placed in a mold and filled with silica hydrogel (biocomposites). The biocomposites were added to batch reactors containing the OMW, OMWS and WS. The treatment of OMW, OMWS and WS by active and inactive biocomposites was performed throughout 28 days at 25 °C. The efficiency of treatment was evaluated by measuring the removal of targeted organic compounds, chemical oxygen demand (COD) and relative absorbance ratio along the time. Active P. sajor caju biocomposites were able to remove 64.6–88.4 % of phenolic compounds from OMW and OMWS and 91.8–97.5 % in water. Furthermore, in the case of OMW there was also a removal of 30.0–38.1 % of fatty acids, 68.7 % of the sterol and 35 % of COD. The silica–alginate–fungi biocomposites showed a high removal of phenolic compounds from OMW and water. Furthermore, in the application of biocomposites to the treatment of OMW it was observed also a decrease on the concentration of fatty acids and sterols as well as a reduction on the COD.  相似文献   

6.
The distribution of ions of organic carboxylic acids (formic, acetic, and oxalic) was investigated in the snowpack of permafrost landscapes of the boreal zone of Eastern Siberia. The contents of formate-, acetate-, and oxalate-ions were determined in permafrost landscapes of different zones of latitudinal and mountain- belt types. The maximum contents of organic carboxylic acid ions were observed in the snow cover of middle-taiga landscapes. The input rate of the ions into the snow cover of middle-taiga and mountain landscapes is controlled by altitudinal zonation and correlates with the total mass of plant organisms, which are the main source of organic carboxylic acids in the atmosphere. The obtained data suggest that organic carboxyl acid ions were supplied mainly by the atmosphere (74–90%), whereas the contribution of soil respiration was minor. The upward migration of organic carboxylic acid ions from the substrate to the snow cover depends on soil and snow temperature. Cooling of the soil surface below–5°C results in a considerable decrease in the migration of organic carboxylic acid ions from soil to snow.  相似文献   

7.
为了去除矿井水中多种污染物,建立了"采空区+常规处理+深度处理"的井上下联合处理工艺组合。结果表明:受煤矿顶板含水层水岩作用,矿井水中Cl-、SO42-和Fe离子出现了超标现象,有的甚至达到Ⅴ类地下水标准;溶解性有机质含量较低,以大分子和芳香族化合物为主。采空区主要利用其顶板岩石破碎充填物吸附过滤矿井水中悬浮物,对Fe离子和有机质也有一定的处理效果,Fe离子去除率约20%,TOC和UV254的平均去除率分别为67.45%和65.40%。常规处理工艺对F-的去除率为11.90%~35.21%,铁锰离子则完全被去除;由于前端好氧沉淀池,硝酸盐和有机质含量略有升高,其中增加的有机质主要为溶解性微生物代谢产物。深度处理工艺对常规离子、硝酸盐、氟离子、有机质等有较好的去除效果,去除率均在95%以上。总体上,在采空区和常规处理工艺去除悬浮物和部分污染物的基础上,再利用深度处理工艺完成绝大部分污染物的去除,是一套比较有效的矿井水处理工艺组合。   相似文献   

8.
The effect of zinc (Zn) deficiency and excessive bicarbonate on the allocation and exudation of organic acids in plant organs (root, stem, and leaf) and root exudates of two Moraceae plants (Broussonetia papyrifera and Morus alba) were investigated. Two Moraceae plants were hydroponically grown and cultured in nutrient solution in four different treatments with 0.02 mM Zn or no Zn, combined with no or 10 mM bicarbonate. The variations of organic acids in different plant organs were similar to those of root exudates in the four treatments except B. papyrifera, which was in a treatment that was a combination of 0.02 mM Zn and no bicarbonate. The response characteristics in the production, translocation, and allocation of organic acids in the plant organs and root exudates varied with species and treatments. Organic acids in plant organs and root exudates increased under Zn-deficient conditions, excessive bicarbonate, or both. An increase of organic acids in the leaves resulted in an increase of root-exuded organic acids. B. papyrifera translocated more oxalate and citrate from the roots to the rhizosphere than M. alba under the dual influence of 10 mM bicarbonate and Zn deficiency. Organic acids of leaves may be derived from dark respiration and photorespiration. By comparison, organic acids in stems, roots, and root exudates may be derived from dark respiration and organic acid translocation from the leaves. These results provide evidence for the selective adaptation of plants to environments with low Zn levels or high bicarbonate levels such as a karst ecosystem.  相似文献   

9.
Water concentrates from Turia river (1.5 mg L−1 total organic C) obtained by nanofiltration (membrane mass cut-off 90 Da) were fractioned by non-ionic Amberlite resins (DAX8 and XAD4) to afford three samples termed as hydrophobic acid (50%), transphilic acid (24%) and hydrophobic neutral (12%). If a nanofiltration membrane 270 Da mass cut-off is used then about 50% of dissolved organic matter is not retained. These three fractions were characterized by analytical and spectroscopic techniques (1H NMR, MALDI–TOF-MS, ESI–API-MS, ESI–MS/MS). Overall, these data are compatible with the presence of oligosaccharides, oligopeptides and fatty acids as the main components of dissolved organic matter. Particularly revealing was the information from MALDI–TOF-MS and ESI–MS/MS where series of compounds differing in the number of hexose units were identified. The three fractions have many spectroscopic similarities and, particularly the hydrophobic and transphilic ones, are really almost identical. This similarity in the fraction composition shows that the conventional fractionation procedure is inefficient as a standard general method for separation of different compound types. The composition of dissolved organic matter was confirmed, and some individual organic compounds identified, by GC–MS analysis of the silylated derivatives obtained by reacting the fractions with a mixture of N,O-bis(trimethylsilyl)trifluoroacetamide with trimethylchlorosilane (10%). Thus, rather surprisingly, the dissolved organic matter of this natural raw water is predominantly composed of a relatively simple mixture of a few types of compounds with molecular weights well below 1100 Da (about six hexose units). These results, particularly the absence of detectable amounts of high molecular weight humic acids and low molecular weight phenolic compounds indicates that trihalomethanes formed in the water disinfection process by Cl2 really derive from oligosaccharides and oligopeptides. Also, the data suggests alternative strategies to effect a more efficient fractionation of the dissolved organic matter.  相似文献   

10.
新疆阿克陶县恰尔隆一带1:5万区调工作中曾在库科西力克一带发现数个具有一定工业价值的矿点,这些矿点位于西昆仑铜钼多金属元素富集带,其矿种齐全,涉及Au、Ag、Cu、Pb—Zn、M0、W和Fe等,分布较为集中,资源前景较好,找矿潜力巨大。本文从矿床地质及元素地球化学的角度对一些典型矿点进行了系统调查、采样、分析及研究,发现库尔尕斯金铜矿点主成矿元素中Ag、Cu和Pb具有一致的成矿阶段,而Au受后期构造作用可能滞后富集成矿。同时各矿点间REE含量及分布模式存在较大的差异。除库尔尕斯金铜矿点外,各矿点中矿石和围岩REE总量和分布模式差别也较为明显。认为库科西力克一带各矿点在成矿地质条件上具有一定的联系,成矿物质可能主要来源于深部,主要受区域性断裂(库科西力克断裂)及岩浆活动的影响,但各矿点之间具有各自的成矿特点,这与各矿点不同的矿床类型相关。  相似文献   

11.
烃源岩中的有机酸来源于有机质,但有机质具有不同的赋存形式,有机酸具有不同性质,这将影响有机酸与不同赋存有机质的关系,进而影响分离和检测方法。文章在总结前人对有机质赋存形式和有机酸性质等特征的基础上,提出烃源岩中的有机酸并以非单一的形式存在,具有水溶性、脂溶性和难溶性有机酸三种类型,游离有机质中存在水溶性和脂溶性有机酸,而结合有机质中存在水溶性、脂溶性和难溶性有机酸。因此在检测方法上需采取分步分离的方法,且根据有机酸的性质选取合适的检测方法,即水溶性有机酸利用离子色谱检测,索氏抽提得到的脂溶性有机酸利用气相色谱—质谱检测,通过酸解抽提残渣得到的难溶性有机酸利用红外光谱检测,全面系统地认识烃源岩中有机酸含量和类型等特征。这对进一步探讨烃源岩各种类型有机酸特征和演化规律,深化烃源岩有机质生烃以及有机—无机相互作用等机理都具有重要意义。  相似文献   

12.
Endocrine disrupting chemicals are discharged into the environment mainly through wastewater treatment processes. There is a need for better understanding of the fate of these compounds in the unit processes of treatment plant to optimise their removal. The fate of oestrone, 17β-estradiol, 17α-ethinyestradiol and nonylphenol in the unit processes of full scale wastewater treatment plants in the UK, including activated sludge plant, oxidation ditch, biofilter and rotating biological contactor were investigated. The overall removal efficiencies of all the compounds ranged from 41 %to 100%. The removals were predominantly during the secondary biological treatment with the rates of removal related to the nitrification rates and the sludge age. The removal efficiency of the treatment processes were in the order activated sludge > oxidation ditch > biofilter > rotating biological contactors. Activated sludge plant configured for biological nutrient removal showed better removal of the endocrine disrupting chemicals compared to conventional activated sludge plant effluents. Tertiary treatment was also significant in the removal process through solids removal. Overall mechanisms of removal were biodegradation and sorption unto sludge biomass. Phytoremediation was also significant in the removal processes. The endocrine disrupting chemicals persisted in the anaerobic sludge digestion process with percentage removals ranging fro 10–48 %. Sorption of the endocrine disrupting chemicals onto the sludge increased with increasing values for the partitioning coefficients and the organic carbon contents of the sludge.  相似文献   

13.
This paper reports data on the concentrations of organic compounds (organic carbon, Corg; lipids; aliphatic hydrocarbons, AHCs; and polycyclic 0aromatic hydrocarbons, PAHs) in snow, ice, and subice waters from the mouth of the Severnaya Dvina River (2005–2007) and Kandalaksha Gulf (Chupa Bay, 2004) at the end of winter. It was established that organic compounds are accumulated in the snow and upper ice layer near the town of Archangelsk. The distribution of molecular markers indicates that pollution was mainly caused by local fallouts. In Chupa Bay, organic compounds are concentrated in the lower ice layers, which is typical of the Arctic snow-ice cover. The high contents of organic compounds in the snow-ice cover of the White Sea are caused by the pollution of its air and water during the winter season.  相似文献   

14.
Mathematic modeling and simulation of a biofilter system was developed for biofilters filled by three different packing materials such as granular activated carbon (GAC), compost mixed with diatomaceous earth (DE), and compost, respectively, and the effects of biofilter length, packing material, biological activity and the operation time of system on the removal of ethanol (influent contaminant) were studied. The mathematical model for analysis of mass transport phenomena in the biofilter was solved using a two-step, explicit finite difference approximation technique and computer simulation was carried out. The obtained results show that at the early stage of biofiltration the dominant mechanism is adsorption and after saturation of packing by contaminant, biological processes became the dominant mechanism. GAC packed biofilter needs more time to reach to steady state in comparison to the two other packing. GAC is the best adsorbent for contaminant removal; however, compost provides a better environment for microbial growth and activity. The proposed procedure is applicable to analyze the behavior of a biofiltration system used in removal of volatile organic compounds.  相似文献   

15.
Spent mushroom compost (SMC) is widely used as reactor matrix in passive bioreactor involving sulfate reducing bacteria (SRB) for acid mine drainage (AMD) treatment. Follow-up our previous report, recent work has been established the extent of activity, sustained organic carbon availability, and the biochemical events of successive alkalinity producing system-based chemo-bioreactor for continuous performance using SMC. Removal of iron and sulfate from influent was over 77 and 90%, respectively, for first 13 weeks, while sulfate removal efficiency suddenly dropped down to 31% thereafter. Ahead of 13th week, process failure was beginning to be noticed when available dissolved organic carbon (DOC) value dropped down to 50 mg/L. SRB population was mostly affected with DOC drought at this stage. Sulfur was one of the major elements found with other tested metals in blackish green effluent precipitate. Sulfide compounds of the tested metals were formed on both exhausted chemo-bioreactor bed and precipitate. FTIR analysis indicated that SMC was responsible for metal binding and available nutrients supply. The present study revealed the feasibility of SMC as a host for treating AMD by this chemo-bioreactor that will assist in designing the continuous treatment practice.  相似文献   

16.
Low molecular weight monocarboxylic acids are the most abundant water soluble organic compounds in the Murchison and many other CM type carbonaceous chondrites. In this study, we examined the monocarboxylic acids in Murchison and EET96029.20 carbonaceous meteorites using a new sample preparation and introduction technique for gas chromatograph recently developed for volatile, water-soluble organic compounds: solid phase micro-extraction (SPME). We identified more than 50 monocarboxylic acids from Murchison compared with the 18 compounds reported previously. Formic acid, a known interstellar molecule, has been fully analyzed in these carbonaceous meteorites, with its δD value suggesting an interstellar origin. We determined both carbon and hydrogen isotopic ratios of individual monocarboxylic acids in Murchison, to better define the origins and genetic relationships of these compounds. The compound-specific isotopic data reveal a large enrichment in 13C (δ13C up to + 32.5) and particularly D (δD up to + 2024). The branched acids are substantially enriched in both 13C and D relative to the straight chain acids, with those branched acids containing a quaternary carbon showing the greatest isotopic enrichment. The isotopic difference may be attributed to variations in the different synthetic regimes or terrestrial input of straight chain acids.  相似文献   

17.
Nitrogenous organic compounds in sorbed surface layers and in calcified organic matter associated with calcium carbonate sediment particles consist of 40–50% amino acids, 2% amino sugars and 25% ammonia. In grain size classes > 20 μm these compounds are mainly contained in the calcified protein of carbonate secreting organisms but with smaller grain sizes—and consequently increased specific surface area—they are contained in sorbed layers at the mineral surface. The composition of the sorbed layer is characterized by a predominance of neutral amino acids, a relative enrichment of basic and weakly polar amino acids, and a deficiency of acidic amino acids in comparison with the proteinaceous matter of calcifying organisms. The respective abundances for sorbed and calcified matter are: 505 and 380 Res./ of neutral amino acids, 262 and 450 Res./1000 of acidic amino acids, 92 and 51 Res./l000 of basic amino acids, and 141 and 129 Res./1000 of weakly polar amino acids.The composition of the sorbed layer appears to be the result of sorption of proteinaceous matter from solution since it reflects the free and peptide-bound amino acid composition of seawater. The characteristic amino acid assemblage could also be the result of preferential decomposition of protein and subsequent enrichment of neutral and basic amino acids; however, sorption from solution appears more likely since the total amount of amino acids sorbed to calcium carbonate (0.58 mg m ?2) corresponds closely to the amount of protein known to cover one m2 of aqueous substrate in monolayer arrangement. Sorption from solution is further supported by the low arginine/ornithine ratios in both the sorbed layer and the natural dissolved organic matter. This process might lead to a characteristic amino acid spectrum in fine grained calcareous sediments that reflects the composition of the dissolved organic matter in seawater rather than that of the carbonate secreting proteinaceous matter.  相似文献   

18.
We studied a number of chemical characteristics in the coals of the Spetsugli germanium-bearing area of the Pavlovskoe coalfield in southern Primorye. It was found that the coals show variable contents of ash, extractable organic matter (OM), and germanium. No less than 60% germanium in the coals are bound to mobile OM, including 25–60% in complex compounds of humic acids and 8–39% in the low-molecular-weight fraction of OM not precipitated by acids. It was shown that germanium can be partly accumulated in coals as organic compounds owing to the dissolution of the mineral forms of germanium by humic acids.  相似文献   

19.
以具有片状或层状结构以及较为规整的大孔结构的粘土材料为母体,在其层间引入不同阳离子化合物为柱化剂而合成出性能各异的新型柱撑粘土 (pillared clay)复合材料及其应用是目前环境地球化学研究中备受瞩目的研究前沿之一.对柱撑粘土复合材料的制备进展及其在环境污染治理中的应用进展进行了系统的综述,详细探讨了各种合成影响因素如有机阳离子、无机阳离子以及两者联用柱化剂的选择、复合材料热处理过程、表面酸化预处理等手段对合成柱撑粘土复合材料的制备及性能的影响,同时还对柱撑粘土复合材料在水体和大气环境中毒害有机污染物治理方面的应用进行了比较详细的综述.  相似文献   

20.
In recent years the widespread occurrence of microorganisms was demonstrated in deep marine and terrestrial sediments. With this discovery inevitably the question of the potential carbon and energy sources for this deep subsurface microbial life arises. In the current study a new method for the investigation of low molecular weight (LMW) organic acids linked to the kerogen matrix is presented. These LMW organic acids form a potential feedstock for deep microbial populations. Twelve coal samples of different maturity (vitrinite reflectance (R0) of 0.28–0.80%) from several coal mines on the North and South Island of New Zealand (NZ) were examined to assess the amount of bound LMW organic acids. Formate, acetate and oxalate were detected in significant amounts whereas the amounts of these compounds decrease with increasing maturity of the coal sample. This decrease of LMW organic acids mainly correlates to the phase of diagenetic alteration of the organic matter characterized by the release of oxygen containing compounds. Concomitantly, it coincides with temperature conditions assumed to be still compatible with microbial life in the deep subsurface. First assessments of the feedstock potential and generation rates of LMW organic acids indicate that the NZ coals investigated exhibit the potential to feed deep terrestrial microbial life with appropriate substrates over geological time spans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号