首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hongtoushan copper–zinc deposit is a volcanic-associated massive sulfide deposit in the Archean greenstone belt in Liaoning, China. Polymetamorphism has resulted in changes to the composition and textures of minerals in the deposit, along with remobilization. During metamorphism, the original alteration minerals that formed with the ore minerals, such as chlorite and sericite, were transformed into cordierite, anthophyllite, and phlogopite. After further remobilization, new minerals, such as gahnite and actinolite, were formed. In this process, the original textures were destroyed and new textures were formed, including recrystallization and growth textures, brittle and ductile deformation textures, durchbewegung textures, replacement textures, chalcopyrite disease, and retrograde textures. The ore-forming components underwent two periods of remobilization. In the first (early) stage, mechanical remobilization was important, and formed a high grade Cu–Zn–Au–Ag “ore pillar” along the vertical hinge of a synformal fold. In the second (late) stage, the mixed hydrothermal–mechanical remobilization affected the ores, and was typically characterized by matrix sulfides, together with silicate minerals, moving from the matrix into individual fractured pyrite metablasts and replacing them to varying degrees.  相似文献   

2.
The Arapuçandere Pb–Zn–Cu ore body is a typical vein-type lead–zinc deposit of the Biga Peninsula, and is currently being mined for lead and zinc. In the study area, Permian–Triassic metamorphic rocks, Triassic metaclastic and metabasic rocks, Oligocene–Miocene granitoids, Miocene volcanic rocks, and Quaternary terrigenous sediments crop out. The ore deposits developed as Pb–Zn–Cu-bearing veins along faults in Triassic metasandstone and metadiabase. Microscopic studies reveal that the veins contain galena, sphalerite, chalcopyrite, pyrite, marcasite, covellite, and specular hematite as ore minerals, and quartz, calcite, and barite as gangue minerals. Analysed sulphur-isotope compositions (δ34SVCDT) of galena, sphalerite, and chalcopyrite range from ? 5.9 to ? 1.9‰ (average ? 3.4‰), from ? 5.5 to ? 1.7‰ (average ? 4.2 ‰), and from ? 3.5 to ? 0.9‰ (average ? 2.6‰), respectively; that of H2S in the hydrothermal fluid was in the calculated range of ? 5.8 to +0.1‰ (average ? 2.5‰). These isotopic values suggest that magmatic sulphur dominates in sulphides, mixed with minor, isotopically light sulphur. Because no contemporaneous magmatic activity is associated with mineralization, it may be assumed that sulphur was leached from the surrounding Triassic units, mainly from metabasic, partly from metaclastic rocks. Lead-isotope studies indicate a model age of 114–63 Ma for the lead reservoir, in accord with possible sulphur-bearing local source rocks. Thus, the sulphur and lead deposited in the studied ore veins were probably leached from Triassic metabasic and metaclastic rocks some time during the Early Cretaceous to the Palaeocene.  相似文献   

3.
The Rodalquilar mineral deposits (SE Spain) were formed in Miocene time in relation to caldera volcanic episodes and dome emplacement phenomena. Two types of ore deposits are recognized: (1) the El Cinto epithermal, Au–As high sulphidation vein and breccia type; and (2) peripheral low sulphidation epithermal Pb–Zn–Cu–(Au) veins. The first metallurgical plants for gold extraction were set up in the 1920s and used amalgamation. Cyanide leaching began in the 1930s and the operations lasted until the mid 1960s. The latter left a huge pile of ~900,000–1,250,000 m3 of abandoned As-rich tailings adjacent to the town of Rodalquilar. A frustrated initiative to reactivate the El Cinto mines took place in the late 1980s and left a heap leaching pile of ~120,000 m3. Adverse mineralogical and structural conditions favoured metal and metalloid dispersion from the ore bodies into soils and sediments, whereas mining and metallurgical operations considerably aggravated contamination. We present geochemical data for soils, tailings and wild plant species. Compared to world and local baselines, both the tailings and soils of Rodalquilar are highly enriched in As (mean concentrations of 950 and 180 μg g−1, respectively). Regarding plants, only the concentrations of As, Bi and Sb in Asparagus horridus, Launaea arborescens, Salsola genistoides, and Stipa tenacissima are above the local baselines. Bioaccumulation factors in these species are generally lower in the tailings, which may be related to an exclusion strategy for metal tolerance. The statistical analysis of geochemical data from soils and plants allows recognition of two well-differentiated clusters of elements (As–Bi–Sb–Se–Sn–Te and Cd–Cu–Hg–Pb–Zn), which ultimately reflect the strong chemical influence of both El Cinto and peripheral deposits mineral assemblages.  相似文献   

4.
We use updated rotations within the Pacific-Antarctica-Africa-North America plate circuit to calculate Pacific-North America plate reconstructions for times since chron 13 (33 Ma). The direction of motion of the Pacific plate relative to stable North America was fairly steady between chrons 13 and 4, and then changed and moved in a more northerly direction from chron 4 to the present (8 Ma to the present). No Pliocene changes in Pacific-North America plate motion are resolvable in these data, suggesting that Pliocene changes in deformation style along the boundary were not driven by changes in plate motion. However, the chron 4 change in Pacific-North America plate motion appears to correlate very closely to a change in direction of extension documented between the Sierra Nevada and the Colorado Plateau. Our best solution for the displacement with respect to stable North America of a point on the Pacific plate that is now near the Mendocino triple junction is that from 30 to 12 Ma the point was displaced along an azimuth of ~N60°W at rate of ~33 mm/yr; from 12 Ma to about 8 Ma the azimuth of displacement was about the same as previously, but the rate was faster (~52 mm/yr); and since 8 Ma the point was displaced along an azimuth of N37°W at a rate of ~52 mm/yr.

We compare plate-circuit reconstructions of the edge of the Pacific plate to continental deformation reconstructions of North American tectonic elements across the Basin and Range province and elsewhere in order to evaluate the relationship of this deformation to the plate motions. The oceanic displacements correspond remarkably well to the continental reconstructions where deformations of the latter have been quantified along a path across the Colorado Plateau and central California. They also supply strong constraints for the deformation budgets of regions to the north and south, in Cascadia and northern Mexico, respectively.

We examine slab-window formation and evolution in a detailed re-analysis of the spreading geometry of the post-Farallon microplates, from 28 to 19 Ma. Development of the slab window seems linked to early Miocene volcanism and deformation in the Mojave Desert, although detailed correlations await clarification of early Miocene reconstructions of the Tehachapi Mountains. We then trace the post-20 Ma motion of the Mendocino slab window edge beneath the Sierran-Great Valley block and find that it drifted steadily north, then stalled just north of Sutter Buttes at ~4 Ma.  相似文献   

5.
For the first time, extremely high Se and In contents were determined for the pinches of massive sulfide orebodies that are composed of small-clastic layered sulfide sediments transformed during submarine supergenesis. Se (clausthalite and naumannite) and In (roquesite) minerals were found. Hydrothermal chalcopyrite, a significant amount of which is present in the clasts of paleohydrothermal black smoker chimneys, was the source of Se. Most of the amount of In was contributed during dissolution of clasts of hydrothermal sphalerite, which is unstable in the submarine oxidation zone in the presence of oxidized pyrite.  相似文献   

6.
The Daolundaba Cu–polymetallic deposit is a newly discovered Cu–W–Sn deposit on the western slopes of the southern Great Xing’an Range, and its mineralization was related to an early Permian coarse-grained biotite granite. However, there is little information on the age of formation of the deposit. In this article, we present the results of our investigation into the age of the Daolundaba Cu–polymetallic deposit, which involved the selection of chalcopyrite and pyrrhotite samples for Rb–Sr isochron dating. A Rb–Sr isochron defined by the chalcopyrite samples yielded a Rb–Sr isochron age of 290.0 ± 11 Ma (MSWD = 1.2) with an initial Sr isotopic composition (ISr) of 0.71446. The pyrrhotite samples yielded a Rb–Sr isochron age of 283.0 ± 2.6 Ma (MSWD = 1.16) with an initial Sr isotopic composition (ISr) of 0.71447. The Rb–Sr isochron age determined from the chalcopyrite and pyrrhotite is 282.7 ± 1.7 Ma (MSWD = 1.13). These results indicate that the Daolundaba Cu–polymetallic deposit formed during the early Permian (282.7–290.0 Ma). The Rb and Sr contents of the chalcopyrite and pyrrhotite range from ~0.1325 to ~3.6810 ppm and from ~0.1219 to ~9.5740 ppm, respectively, and the initial Sr isotope ratios (ISr) range from 0.71047 to 0.71869, with an average of 0.714723. These isotopic characteristics indicate the ore-forming minerals of the Daolundaba Cu–polymetallic deposit originated mainly from the crust, but with small amounts of mantle material involved. The copper was derived from the associated magma whereas the W and Sn was derived from the surrounding strata. The Permian mineralization of the Xing’an–Mongolia region occurred in an active continental margin setting during subduction of the Palaeo-Asian oceanic plate beneath the Siberian Plate.  相似文献   

7.
Porphyry copper deposits sometimes form during the solidification of stocks of relatively oxidized magma of intermediate composition. Most workers have assumed ore-forming systems have special chemical attributes, but none has been found that is useful to guide exploration efforts. Stocks can form where strike–slip movements generate pull-apart pathways into which intrusions can rise from batholithic magma chambers. Upwelling of buoyant, bubble-bearing magma along the sides of a stock brings magmatic fluid to shallow depths where large bubbles can separate and pool under the cupola separating solidified igneous rock from mobile magma. Where rapid seismogenic movement on the bounding strike–slip fault ruptures the solidified, but hot and ductile carapace, downward propagating extension fractures can drain an accumulation of magmatic fluid. Decompression and cooling of fluid that jets upward into extension fractures causes mineral precipitation. Where strike–slip movements cause pull-aparts to dilate with sufficient recurrences – from decades to perhaps a century or so, throttling of the fluid accumulation acts as a safety valve that prevents explosive detonation of the system. Concurrently, the upward infiltration of magmatic fluid from the cupola is strongly focused into the pull-apart and generates the characteristic concentric alteration zones that guide exploration drilling. We conclude that porphyry copper ore deposits form where strike–slip movements are concurrent with the early stages of deep-seated bubbling (?6 km) along the walls of a rapidly cooling stock of magma. Supergiant deposits form where the bubbling front extends into the top of a parent batholith.  相似文献   

8.
The Silesia–Cracow district in Poland has been one of the world’s principal sources of zinc from nonsulfide zinc ore (Polish: galman). The still remaining nonsulfide ore resources can be estimated at 57 Mt at 5.6% Zn and 1.4% Pb. Nonsulfide mineralization is mainly hosted by Lower Muschelkalk (Triassic) limestone and is associated with different generations of the hydrothermal ore-bearing dolomite (OBD I, II, III). A fundamental ore control is believed to have been exerted by the basement faults, which were repeatedly reactivated during the Alpine tectonic cycle, leading to the formation of horst-and-graben structures: these dislocations may have caused short periods of emersion and the circulation of meteoric waters during the Cenozoic. Nonsulfide ores show a wide range of morphological characteristics and textures. They occur as earthy masses, crystalline aggregates, and concretions in cavities. Breccia and replacement textures are also very common. The most important mineral phases are: smithsonite, Fe–smithsonite, Zn–dolomite, goethite, and Fe–Mn(hydr)oxides. Minor hemimorphite and hydrozincite have also been detected. Two distinct nonsulfide ore types occur: the predominant red galman and the rare white galman. In the white galman, Fe–smithsonite and Zn–dolomite are particularly abundant. This ore type is commonly considered as a peripheral hydrothermal alteration product related to the same fluids that precipitated both the OBD II–III and the sulfides. In contrast, a supergene origin is commonly assumed for the red galman. Evidence of the petrographic and mineralogical difference between white and red galman is also found in stable isotope data. Smithsonite from red galman shows a limited range of δ 13CVPDB values (−10.1 to −11.4‰), and δ 18OVSMOW values (25.3‰ to 28.5‰, mean 26.8 ± 0.3‰). The uniform and low carbon isotope values of red galman smithsonite are unusual for supergene carbonate-hosted deposits and indicate the predominance of a single organic carbon source. Smithsonite from white galman has a more variable, slightly more positive carbon isotope (−2.9‰ to −7.4‰), but broadly similar oxygen isotope composition (26.8‰ to 28.9‰). The relationship of the white galman ore with the hydrothermal system responsible for OBD II and sulfide generation is still uncertain. The most important paleoweathering events took place in both Lower and Upper Silesia during Late Cretaceous up to Paleogene and early Neogene time. During this period, several short-lasting emersions and intense weathering episodes facilitated the formation of sinkholes in the Triassic carbonate rocks and the oxidation of sulfide orebodies through percolating meteoric waters. These phenomena may have lasted until the Middle Miocene.  相似文献   

9.
《International Geology Review》2012,54(12):1481-1491
ABSTRACT

Liaoning Province in China is an area known for the occurrence of numerous copper and/or molybdenum deposits of variable size. However, the age of mineralization and tectonic setting in this region are still a subject of debate. In this study we describe the geology of these deposits and apply zircon U–Pb and molybdenite Re–Os isotopic dating to constrain their ages and define the metallogenic epochs of this province. The Huatong Cu–Mo deposit yields molybdenite Re–Os model ages of 127.6–126.3 Ma and an isochron age of 127.4 ± 0.7 Ma. The Dongbeigou Mo deposit yields molybdenite Re–Os model ages of 132.6–127.1 Ma, an isochron age of 128.1 ± 5.1 Ma, and a zircon U–Pb age of 129.4 ± 0.3 Ma for the associated monzogranite. The granodiorite associated with the Wanbaoyuan Cu–Mo deposit yields a zircon U–Pb age of 128.4 ± 1.1 Ma; the plagiogranite associated with the Yaojiagou Mo deposit yields an age of 167.5 ± 0.9 Ma; and the biotite–plagioclase gneiss from the Shujigou Cu deposit yields an age of 2549.4 ± 5.6 Ma. These results, together with previous geochronology data, show that intense Cu–Mo porphyry and skarn mineralization were coeval with Early–Middle Jurassic and Early Cretaceous granitic magmatism. The former was associated with the orogeny that followed the collision of the Siberian and North China plates and the resulting closure of the palaeo-Asian Ocean, and the latter with rifting that followed the subduction of the palaeo-Pacific Plate and associated lithospheric thinning. Volcanogenic massive sulfide Cu deposit. mineralization took place much earlier, in the late Archaean, and was related to continent–continent collision, palaeo-ocean closure, the formation of a united continental landmass, bimodal volcanism, magma emplacement, and subsequent metamorphism and deformation of syn-collisional granites.  相似文献   

10.
Proterozoic rocks of the Cloncurry district in NW Queensland, Australia, are host to giant (tens to hundreds of square kilometers) hydrothermal systems that include (1) barren regional sodic–calcic alteration, (2) granite-hosted hydrothermal complexes with magmatic–hydrothermal transition features, and (3) iron oxide–copper–gold (IOCG) deposits. Fluid inclusion microthermometry and proton-induced X-ray emission (PIXE) show that IOCG deposits and the granite-hosted hydrothermal complexes contain abundant high temperature, ultrasaline, complex multisolid (type 1) inclusions that are less common in the regional sodic–calcic alteration. The latter is characterized by lower salinity three-phase halite-bearing (type 2) and two-phase (type 3) aqueous inclusions. Copper contents of the type 1 inclusions (>300 ppm) is higher than in type 2 and 3 inclusions (<300 ppm), and the highest copper concentrations (>1,000 ppm) are found both in the granite-hosted systems and in inclusions with Br/Cl ratios that are consistent with a magmatic source. The Br/Cl ratios of the inclusions with lower Cu contents are consistent with an evaporite-related origin. Wide ranges in salinity and homogenization temperatures for fluid inclusions in IOCG deposits and evidence for multiple fluid sources, as suggested by halogen ratios, indicate fluid mixing as an important process in IOCG genesis. The data support both leaching of Cu by voluminous nonmagmatic fluids from crustal rocks, as well as the direct exsolution of Cu-rich fluids from magmas. However, larger IOCG deposits may form from magmatic-derived fluids based on their higher Cu content.  相似文献   

11.
《Applied Geochemistry》2004,19(11):1855-1864
The Coquimbo region has been one of the richest producers of Cu, Au and Hg in Chile, and some of the deposits have been mined almost continuously since the 16th century. To assess the potential environmental contamination in this region, the authors measured the concentration of Cu, As, Cd, Zn and Hg in samples of stream and mine waters, stream sediments, soils, flotation tailings, and mine wastes in the Andacollo (Cu, Au, Hg) and Punitaqui (Cu–Au, Hg) districts. The concentration of Hg in the atmosphere in these districts were also measured. Although contamination is strongly controlled by the ore in each district, metal dispersion is modified by the degree of metallurgical processing efficiency as shown by the outdated Cu flotation system at Andacollo (stream sediments Cu 75–2200 μg/g). Conversely, more efficient procedures at Punitaqui resulted in less stream contamination, where stream sediments contained Cu ranging from 110–260 μg/g. However, efficient concentration by flotation of a given metal (e.g. Cu) may lead to the loss of another (e.g. Hg up to 190 μg/g in the tailings at Punitaqui), and therefore, to contamination via erosion of the tailings (downstream sediments Hg concentrations up to 5.3 μg/g). Continued use of Hg for Au amalgamation at Andacollo has led to significant contamination in stream sediments (0.2–3.8 μg/g Hg) and soils (2.4–47 μg/g Hg). Communities in this region are underdeveloped, and decades of inefficient treatment of flotation tailings and waste-rock stock piles has resulted in significant contamination of the surrounding landscape.  相似文献   

12.
The unusually high grade hypogene zinc ore at Angouran in northwestern Iran (40.4% Zn, 1.9% Pb in the sulfide ore, 28.1% Zn, 4.4% Pb in the carbonate ore, and 110 g/t Ag) formed from an initially highly saline, reduced, relatively acid hydrothermal brine at two successive sulfide and carbonate ore stages. The early ore stage consists of multiple phases of sphalerite dominated sulfide ore breccia with subordinate amounts of galena (± Pb sulfosalts), minor pyrite, and abundant barite. Sphalerite precipitated at moderate temperatures (≥ 155 °C) because of pH increase in the presence of hangingwall marble. Smithsonite precipitated at a higher pH value (≥ 7) and at lower temperatures (≤ 120 °C) from dilute solutions (salinities close to zero) by mixing of the Zn bearing brines with cool, HCO3 bearing waters. The first melting points of the primary (LV) fluid inclusions in sphalerite and in hydrothermal quartz are unusually low (≤  60 °C), close to the eutectic point of the ZnCl2–H2O system (− 62 °C). Total salinities taken from the ZnCl2–H2O system as a best approximation correspond to 26–41 eq mass % ZnCl2. The initial brine evolved to a CaCl2–NaCl rich solution with 27 eq mass % salinity. Gas densities (≤ 0.1 g cm 3 for water vapor and ≤ 0.18 g cm 3 for CO2) in the fluid inclusions indicate low pressure (≤ 5 bar for water vapor, and ≤ 100 bar for CO2) at the entrapment temperatures.At the first carbonate ore stage sulfides continued to precipitate characteristically as arsenopyrite with minor amounts of galena and pyrite. The abrupt change of the fluid composition at the sulfide–carbonate boundary was accompanied by a change of the fluid temperature and pressure that produced brecciation of the sulfide ore matrix and an almost total dissolution of barite and replacement by the hypogene smithsonite. Alteration is restricted to ore deposition and consists of weak sericitization and silicification with local dolomitization at the sulfide ore stage, and pervasive dissolution of the hangingwall marble, in particular at the carbonate ore stage.The breccia orebody at Angouran is sited at the crestal portion of a domed antiform at the lithological and thrust boundary of Neoproterozoic–Lower Cambrian footwall schists and the hangingwall marble in rapidly uplifted and exhumated Angouran Block east of the Geynardjeh Thrust Fault. The footwall schists occupy a detachment fault zone above imbricated nappe sheets of the basement metamorphic complex of the Sanandaj–Sirjan zone. During the Pliocene, the nappe sheets were thrust toward the southwest onto the Miocene felsic volcanic rocks of the Urumieh Dokhtar Volcanic Belt that are intruded by 10 Ma late Miocene basalts. The 11.9 Ma and 18.4 Ma zircon ages of the felsic volcanic rocks indicate the lower age limit of the ore body emplacement.The associations with large scale, mid-late Miocene, felsic volcanism along the active Tethyan belt, as well as the ubiquitous presence of the volcanic rock clasts in the sphalerite ore matrix, provide strong evidence of the involvement of hydrothermal processes at Angouran. Ore fluids were successively and pulsatorily generated within the seismically active region. A following geothermal activity appears to have had a significant input in the formation of the carbonate ore of the hypogene, as well as the supergene stage. Stable isotope data suggest complex interaction of element sources and processes. Allowing a broad interpretation, the sulfur isotopic composition of the sulfides δ34S (3.9 to 7.4‰) suggests that the sulfur could be sourced from evolving, mixed magmatic–basinal brine. The isotopic composition of the hypogene smithsonites (δ13C: 2.72 to 5.51‰, δ18O: 18.4 to 22.8‰) broadly supports the local geology and field relationships, which comply with a marble wallrock source for the carbonate ores. They lend support to the assumption that smithsonite was deposited from solutions with isotopic composition similar to those involved in the hydrothermal dolomitization of the marbles. The excess of dissolved marble precipitated as large volumes of travertine and as late calcite veins (δ13C: 18.8 to 20.3‰, δ18O: 3.1 to 6.4‰) at the mineralization site. Isotope values of the travertine (δ13C: 4.5 to 6.6‰, δ18O: 20.1 to 21.1‰ V-SMOW) are consistent with the involvement of CO2 derived from thermogenic decarbonization of the host marble by waters of dominantly meteoric origin, most likely concomitantly with ore forming processes.The Angouran deposit is the only reported case of a two stage, hypogene zinc sulfide–zinc carbonate mineralization, and represents a new style of nonsulfide zinc mineralization.  相似文献   

13.
《Applied Geochemistry》2001,16(2):207-229
The environment surrounding Palmerton, Pennsylvania is contaminated with Pb arising from primary Zn smelting and a process involving Zn recovery from electric arc steel furnace dusts. Lead isotope systematics have been used to distinguish primary Zn smelting Pb (206Pb/204Pb∼18.4–18.5) from electric arc furnace dust lead (206Pb/204Pb∼19.0–19.1). Primary Zn smelting is the dominant source of Pb in O2 horizon soils from undisturbed near-Palmerton locations, which contain up to 3570 ppm Pb and 782 ppm Cd. Soils from undeveloped near-Palmerton locations also exhibit unusually elevated concentrations of other sphalerite-derived chalcophilic elements (Se, Ag, In, Sb, Te, Au, Hg, Tl and Bi); indium concentrations of up to 17.0 ppm are observed therein. Residential soils and dusts from Palmerton contain Pb which is largely explainable via mixing of Pb from primary Zn smelting and electric arc furnace dusts. Approximately 80% of the Pb in airborne particulate matter sampled at Palmerton in 1991 is derived from electric arc furnace dusts, and atmospheric enrichment factors for Cu, Sb, Pb, and Bi are observed which confirm this major source contribution. Residential samples from a control location contain Pb which is less radiogenic than is found in Palmerton, and exhibit no unusual elevation in sphalerite elements. Lead source discrimination in the Palmerton environment via Pb isotopic and elemental constituents approaches result in parallel conclusions.  相似文献   

14.
The Jiama deposit, located in the eastern part of the well-known Gangdese Metallogenic Belt on the Tibetan Plateau, is the largest porphyry Cu–polymetallic system in the region, with the largest exploration budget, and is economically viable in the Gangdese Belt to undergo large-scale development. The deposit is well preserved and has experienced little erosion. The proven resources of the deposit are 7.4 Mt Cu, 0.6 Mt Mo, 1.8 Mt Pb + Zn, 6.65 Moz Au, and 360.32 Moz Ag. The results presented in this paper are based on geological and tectonic mapping, geological logging, and other exploration work performed by members of the Jiama Exploration Project Team over a period of 6 years. We propose that the Jiama porphyry Cu–polymetallic system is composed of skarn Cu–polymetallic, hornfels Cu–Mo, porphyry Mo ± Cu, and distal Au mineralization. The development of skarn Cu–polymetallic orebodies at the Jiama deposit was controlled mainly by the contact zone between porphyries and marbles, an interlayer detachment zone, and the front zone of a gliding nappe structure. The hornfels Cu–Mo and porphyry Mo ± Cu orebodies were controlled mainly by a fracture system related to intrusions, and the distal Au mineralization resulted from late-stage hydrothermal alteration.On the basis of field geological logging, optical microscopy, and chemical analysis, we verify that the alteration zones in the Jiama deposit include potassic, phyllic, propylitic, and argillic alteration, with a local lithocap, as well as endoskarn and exoskarn zones. The endoskarn occurs mainly as epidote alteration in quartz diorite porphyry and granite porphyry, and is cut by massive andradite veins. The exoskarn includes garnet–pyroxene and wollastonite skarn, in which the mineralogy and mineral chemical compositions display an outward zonation with respect to the source porphyry. From the proximal skarn to the intermediate skarn to the distal skarn, the garnet/pyroxene ratio varies from > 20:1 to ~ 10:1 to ~ 5:1, the garnet color varies from red-brown to brown-green to green-yellow, and the average composition of garnet varies from Ad80.1Gr18.9(Sp + Py)1.0 to Ad76.3Gr23(Sp + Py)0.7 to Ad59.5Gr39.5(Sp + Py)1.0, respectively. The pyroxene is not as variable in composition as the garnet, and is primarily light green to white diopside with a maximum hedenbergite content of ~ 20% and an average composition of Di88.6Hd8.9Jo2.5. From the proximal skarn to the intermediate skarn to the distal skarn, the mineralization changes from Cu–Mo to Cu ± Mo to Pb–Zn ± Cu ± Au ores, respectively. The wollastonite skarn displays no zonation and hosts mainly bornite mineralization. The Cu and Mo mineralization is closely related to the potassic and phyllic zones in the porphyry–hornfels.Zircons from four mineralized porphyries yield U–Pb ages of 15.96 ± 0.5 Ma, 15.72 ± 0.14 Ma, 15.59 ± 0.09 Ma, and 15.48 ± 0.08 Ma. The Re–Os ages of molybdenite from the skarn, hornfels, and porphyry are 15.37 ± 0.15 Ma, 14.67 ± 0.37 Ma, and 14.66 ± 0.27 Ma, respectively. The present results are consistent with the findings of previous research on fluid inclusions, isotopes, and other such aspects. On the basis of the combined evidence, we propose a porphyry Cu–polymetallic system model for the Jiama deposit and suggest a regional exploration strategy that can be applied to prospecting for porphyry-skarn mineralization in the Lhasa area.  相似文献   

15.
High-Fe and low-Fe sphalerite samples were reacted under controlled pH conditions to determine nonoxidative rates of release of Zn and trace metals from the solid-phase. The release (solubilization) of trace metals from dissolving sphalerite to the aqueous phase can be characterized by a kinetic distribution coefficient, (Dtr), which is defined as [(Rtr/X(tr)Sph)/(RZn/X(Zn)Sph)], where R is the trace metal or Zn release rate, and X is the mole fraction of the trace metal or Zn in sphalerite. This coefficient describes the relationship of the sphalerite dissolution rate to the trace metal mole fraction in the solid and its aqueous concentration. The distribution was used to determine some controls on metal release during the dissolution of sphalerite. Departures from the ideal Dtr of 1.0 suggest that some trace metals may be released via different pathways or that other processes (e.g., adsorption, solubility of trace minerals such as galena) affect the observed concentration of metals.  相似文献   

16.
The Mount Lyell copper deposits are located in the middle Cambrian Mount Read volcanic belt of western Tasmania and consist of more than 24 separate copper–gold–silver orebodies. The dominant copper mineralisation style is disseminated pyrite–chalcopyrite subvertical pipes with subordinate chalcopyrite–bornite ± other copper phases, massive pyrite and base metal sulfides. A zonation in mineralisation style within the pipes is defined from chalcopyrite–magnetite at depth to chalcopyrite–pyrite at intermediate levels, to chalcopyrite–bornite at the shallowest level. Alteration is developed broadly symmetrically around the ore zones and zoned from quartz–chlorite–phengite ± biotite at depth to quartz–muscovite at intermediate levels, and a quartz–muscovite–pyrophyllite–zunyite assemblage at the shallowest levels. This is interpreted to be a result of a fluid that evolved from hot, reduced and neutral conditions at depth to cool, oxidised and acidic conditions at the shallowest level. The chalcopyrite–bornite deposits occur at the top of the hydrothermal system and are associated with intensely silicified rock and muscovite/pyrophyllite alteration. The close relationship of these deposits with the top of the pipes suggests they are part of a single mineralising event. Where the chalcopyrite–bornite deposits are juxtaposed with the Owen Group, rather than a simple chalcopyrite–bornite mineralogy, there are numerous other copper phases, which represent higher oxidation states and collectively suggest variable and fluctuating fluid conditions during deposition. It is proposed that these deposits are formed by an interaction of the reduced hydrothermal fluid with an oxidised fluid generated at very shallow levels within and during deposition of the Owen Group. Mineralisation within the middle Owen Group sandstones and clasts of altered rock within the middle and upper Owen Group sediments marks the end of the hydrothermal system. Around the entire edge of the Mt Lyell field, there is a variation in the white mica composition from proximal muscovite to distal phengite that represents the neutralisation of the hydrothermal fluid by fluid–wall rock interaction.  相似文献   

17.
《International Geology Review》2012,54(18):2276-2290
ABSTRACT

North Korea is host to world-class metallic mineral deposits, such as the Komdok Cu–Pb–Zn polymetallic mineral belt, but little is known about the resource. To better understand the genesis of the Cu mineralization around the China–North Korea border, we determined the U–Pb, Re-Os, and Rb–Sr ages of three deposits in the area. Sulfide samples from the Hyesan Cu deposit produced Rb–Sr isochron ages of 127.4 ± 4.5 Ma. The Wanbaoyuan Cu deposit yielded a molybdenite Re–Os isochron age of 127.5 ± 3.2 Ma, and a granodiorite sample from the Linjiang Cu deposit gave a zircon U–Pb age of 129.5 ± 0.8 Ma. Combined with geochronological data from previous studies, these new ages suggest that the Cu mineralization occurred mainly during the Cretaceous, and the rollback of the Paleo-Pacific Plate was responsible for the Cu mineralization in NE China–North Korea border.  相似文献   

18.
As one of the largest copper–molybdenum (Cu–Mo) mines in the world, the Erdenet Mine in Mongolia has been active since 1978 and is expected to continue operations for at least another 30 years. In this study, the potential impacts of mining activities on the soil and water environments have been evaluated. Water samples showed high concentrations of sulfate, calcium, magnesium, Mo, and arsenic, and high pH values in the order of high to low as follows: tailing water > Khangal River > groundwater. Statistical analysis and the δ2H and δ18O values of water samples indicate that the tailing water directly affects the stream water and indirectly affects groundwater through recharge processes. Soil and stream sediments are highly contaminated with Cu and Mo, which are major elements of ore minerals. Based on the contamination factor (CF), the pollution load index (PLI), and the degree of contamination (Cd), soil appears to be less contaminated than stream sediments. The soil particle size is similar to that of tailing materials, but stream sediments have much coarser particles, implying that the materials have different origins. Contamination levels in stream sediments display a tendency to decrease with distance from the mine, but no such changes are found in soil. Consequently, soil contamination by metals is attributable to wind-blown dusts from the tailing materials, and stream sediment contamination is caused by discharges from uncontained subgrade ore stock materials. Considering the evident impact on the soil and water environment, and the human health risk from the Erdenet Mine, measures to mitigate its environmental impact should be taken immediately including source control, the establishment of a systematic and continuous monitoring system, and a comprehensive risk assessment.  相似文献   

19.
Numerous Fe–Cu deposits are hosted in the late Paleoproterozoic Dongchuan and Dahongshan Groups in the Kangdian region, SW China. The Dongchuan Group is composed of siltstone, slate, and dolostone with minor volcanic rocks, whereas the Dahongshan Group has undergone lower amphibolite facies metamorphism and consists of quartz mica-schist, albitite, quartzite, marble and amphibolite with local migmatite. Deposits in the Dongchuan Group are commonly localized in the cores of anticlines, in fault bends and intersections, and at lithological contacts. Orebodies are closely associated with breccias, which are locally derived from the host rocks. Fe-oxides (magnetite and/or hematite) and Cu-sulfides (chalcopyrite, bornite) form disseminated, vein-like and massive ores, and typically fill open spaces in the host rocks. The deposits have extensive albite alteration and local K-feldspar alteration overprinted by quartz, carbonate, sericite and chlorite. Deposits in the Dahongshan Group have orebodies sub-parellel to stratification and show crude stratal partitioning of metals. Fe-oxide ores occur as massive and/or banded replacements within the breccia pipes, whereas Cu-sulfide ores occur predominantly as disseminations and veinlets within mica schists and massive magnetite ores. Ore textures suggest that Cu-sulfides formed somewhat later than Fe-oxides, but are possibly within the same mineralization event. Both ore minerals predated regional Neoproterozoic metamorphism. Both orebodies and host rocks have undergone extensive alteration of albite, scapolite, amphibole, biotite, sericite and chlorite. Silica and carbonate alterations are also widespread. Ore-hosting strata have a LA-ICP-MS zircon U–Pb age of 1681 ± 13 Ma, and a dolerite dyke cutting the Fe-oxide orebodies has an age of 1659 ± 16 Ma. Thus, the mineralization age of the Dahongshan deposit is constrained at between the two. All ores from the two groups have high Fe and low Ti, with variable Cu contents. Locally they are rich in Mo, Co, V, and REE, but all are poor in Pb and Zn. Sulfides from the Fe–Cu deposits have δ34S values mostly in the range of +2 to +6 per mil, suggesting a mix of several sources due to large-scale leaching of the strata with the involvement of evaporites. Isotopic dating and field relationships suggest that these deposits formed in the late Paleoproterozoic. Ore textures, mineralogy and alteration characteristics are typical of IOCG-type deposits and thus define a major IOCG metallogenic province with significant implications for future exploration.  相似文献   

20.
Zinc–lead–barite deposits located in Lefan and Lower Banik localities of about 25 km northeast of Zakho City, Northern Iraq consist of a group of strata-bound sulfides hosted in Upper Cretaceous (Upper Campanian–Maastrichtian) dolomitic limestone. Carbonate-hosted ores contain 3.77% Zn, 2% Pb, and 5% Fe, while in lower Banik, they contain 1.5% Zn, 0.37% Pb, and 1.4% Fe. Diagenetic processes, such as dolomitization and recrystalization in addition to the type of microfacies, provided appropriate physical and chemical conditions that permitted the passage of ore-bearing fluids and participated in precipitation and ore localization. These deposits are precipitated in a platform and developed within the Foreland Thrust Belt. Ore precipitated as infill of intergranular dolomite porosity with replaced dolomite and rudist shells forming disseminated crystals that occupy intergranular pore spaces around dolomite and calcite and as infill of dissolution spaces and fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号