首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Ancient carbonate buildups may contain extraordinarily large amounts of early diagenetic precipitates. In some, host rock lamination may be traced into inclusion bands within the 'cement' crystals, suggesting that the crystals are replacive. By analogy with a Pleistocene speleothem from the Sorrento Peninsula, however, these relationships can be explained differently. In the speleothem, large, repeatedly split and dendritic calcite crystals occur within a laminated carbonate. Lamination consists of sub-mm alternations of micrite and microspar. Micritic laminae pass laterally into inclusion-rich growth bands in the dendritic calcite crystals, and have replaced an aragonitic cement, whereas the microspar laminae were primary calcite cements. Three types of inclusion-rich bands occur in the dendrite crystals: (1) with aragonite relicts, (2) 'ribbon calcite' and (3) with oriented micropores. When aragonite precipitated, the calcite dendrite branches were unable to keep growing as single crystals and split into crystallites (separated by micropores, some forming ribbon calcite), whereas during episodes of calcite lamina precipitation, the larger crystals were regenerated by crystallite coalescence. Calcite crystals are primary: they did not replace a micritic precursor. By analogy with the Italian speleothem, some ancient reefal sparry carbonates may not be replacements of earlier laminated sediments, but may have grown concurrently with them. It is also probable that some ancient laminated sediments were instead sea-floor precipitates, and that stromatolites containing cross-cutting crystal fabrics, and the alternating micrite-microspar laminae typical of Archaeolithoporella , could be largely abiotic crystal growths.  相似文献   

2.
Aragonite laminae in hot water travertine crusts, Rapolano Terme, Italy   总被引:1,自引:0,他引:1  
LI GUO  ROBERT RIDING 《Sedimentology》1992,39(6):1067-1079
Small (5–30 μm) aggregates of aragonite needles occur in calcite crystal crusts of present day hot water slope travertines at Rapolano Terme in Tuscany, Italy. The aggregates are mainly concentrated in irregular, wispy and dark laminae which cross-cut calcite crystal feathers to create a pervasive millimetre scale banded appearance in the deposit; they also occur less commonly scattered irregularly through the calcite layers. The aragonite needle aggregates are in the form of crosses, fascicles (sheaf shaped bundles, or dumbbell shaped), rosettes and spherulites. Locally, irregular masses of needles also occur. The fascicles, rosettes and spherulites have hollow centres which resemble microbial components (?fungal spores, bacterial colonies and pollen), suggesting that the aragonite crystals are biotically nucleated. The lamination is interpreted to reflect diurnal control. Stimulation of microbial activity during daylight concentrates cells in laminae and promotes aragonite calcification. Calcite feather crystals, although traversed by the aragonite aggregate laminae, have a clear appearance under the light microscope. They form more or less continuously through the diurnal cycle by abiotic precipitation. The constant association of aragonite with organic nuclei, irrespective of whether the latter are in laminae or scattered through the calcite layers, supports a biotic control on aragonite formation. Lamination in Pleistocene travertines is superficially similar to that in the present day deposits, but is diagenetically altered. In the Pleistocene deposits, the calcite feathers appear dark under the light microscope and the aragonite aggregates, where they are not altered to dark calcite, are dissolved, together with parts of the adjacent spar calcite, and therefore appear light coloured.  相似文献   

3.
《Quaternary Science Reviews》2007,26(11-12):1670-1689
Given the growing interest in carbonate deposits from polar regions as paleoclimatic proxies, this review paper first provides a classification of the various types of cold-climate carbonate precipitates followed by a summary of the 13C and 18O composition of the carbonate deposits and parent water from which the carbonates precipitated. The cold-climate carbonate precipitates were classified into three broad categories: powders, crusts and speleothem. The carbonate powders include those that precipitated in relation to aufeis aggradation (cryogenic aufeis calcite) and in relation to the growth of various annual/perennial ice formations in freezing caves (cryptocrystalline calcite and calcite pearls). The carbonate crusts can be further subdivided based on their lithic environment; those that precipitated on the upper surface of bedrock/clasts (i.e. subglacially precipitated calcite and evaporative calcite crusts); those that are located on the underside of clasts (i.e. pedogenic carbonates); and those that precipitated in rock outcrop fissures (i.e. endostromatolites). The cold-climate carbonate precipitates have a highly variable isotopic composition with δ18O values ranging between −6.5‰ and 28‰ VSMOW and δ13C values in the −10–20‰ VPDB range. However, each type of carbonate precipitates has a specific δ13C and δ18O range, suggesting that their environmental setting and the mechanism by which they formed controls their 13C and 18O signature. It was found that carbonate deposits that precipitated under equilibrium physico-chemical conditions had a δ13C value that is in equilibrium with that of the parent water, while its δ18O composition was more variable, as it is in part controlled by the temperature of reaction and by the δ18O and calcite saturation state of the parent water. By contrast, the δ18O composition of biologically precipitated carbonate deposits (endostromatolites) reflect that of the parent water, while its δ13C composition was enriched over that of the parent water due to bacterial methanogenesis. In the case of kinetically precipitated carbonate deposits, the δ18O and δ13C values are out-of-equilibrium relative to that of the parent water due to the faster rate of reaction.  相似文献   

4.
Botryoidal aragonite and its diagenesis   总被引:1,自引:0,他引:1  
Botryoidal aragonite is a spectacular growth-form occurring as mamelons, up to 100 mm in diameter. Three examples of this particular carbonate cement have been discovered in two distinct areas: in New Caledonia, small-scale mamelons have been recognized within Pleistocene reefal terraces at Ouvea, an Island of the Loyalty archipelago, and in the Red Sea, large-scale mamelons of botryoidal aragonite exist within Pleistocene reefal terraces along the Um Gheig region of the Egyptian Coast. In addition, a similar botryoidal cement, partly dolomitized but exhibiting aragonite relics, occurs within a Miocene reef in the same region. Mamelons of botryoidal aragonite are isolated and/or coalescent but grow only on fixed substrates. They occur within cavities of varied origin. Their fabrics are characterized by fans of elongate euhedral crystals of aragonite fibres. Botryoidal aragonite can be preceded or followed by other types of cements or internal sediment. Despite similar mineralogy, petrography and ultrastructure, there are differences between the fabrics of the Pleistocene botryoids from the Red Sea and Ouvea and the Miocene botryoids from the Red Sea. The former are of submarine origin as confirmed by the strontium content (8500–10,500 ppm) and isotopic composition (δ18O between -0.10 and +0.19% PDB). The latter, related to a Miocene karst, are rich in strontium (average 13,600 ppm), and have an isotopic composition (average δ18O -10.50% PDB) indicative of non-marine precipitation. Diagenesis of these botryoidal aragonites consists of slight dissolution for Pleistocene botryoids and mineralogical transformation for the Miocene botryoids. The latter exhibit the diagenetic sequence aragonite → calcite → dolomite. The aragonite to calcite transformation is a dissolution-reprecipitation process, the void distribution and size influencing the distribution and the size of the replacement calcite crystals.  相似文献   

5.
Two groups of perennial springs are observed in the Canadian High Arctic at Expedition Fjord on Axel Heiberg Island at Colour Peak and Gypsum Hill. Saline discharge (∼1.3–2.5 molal NaCl) produces a variety of calcite (travertine) and gypsum-rich precipitates. Saturation index calculations of the spring waters at Colour Peak suggest CO2 degassing from the waters causes calcite precipitation. Gypsum precipitation dominates at Gypsum Hill, where spring waters have lower alkalinity and higher SO4 concentrations. Mineral accumulations form both channel and rimstone pool morphologies as a result of varying slope conditions. At Colour Peak, confined flow in steep slope areas develop massive structures in contrast to more friable, porous accumulations in areas where waters fan out on shallower slopes; these morphological variations lead to corresponding varying apparent rates of mineral precipitation. Mineral precipitation at Gypsum Hill is far less notable as a result of lower discharge rates and annual degradation by icing formation. Microscopic observations and geochemical analyses of the channel precipitates at Colour Peak reveal alternating light (calcite spar) and dark (anhedral microcrystalline calcite combined with organic matter and non-carbonate minerals) laminae. Rimstone pools forming in lower sections of spring discharge are composed of accumulations of large euhedral calcite crystals interbedded with allochthonous inputs. High concentration of dissolved solids is responsible for slow travertine precipitation rates, which occurs during winter. This precipitation is further retarded during summer months by the introduction of crystal growth inhibitors such as Fe3+ and deposition of organic matter and soil sediments.  相似文献   

6.
At Tylicz, near Krynica Spa (Polish Carpathians), spelean deposits fill fissures and caverns in Eocene flysch rocks. They occur as: (1) clastic cave sediments transformed into hard crusts due to cementation by finely crystalline low-Mg calcite, (2) drusy calcite that covers crust surfaces and fills voids in the crust and (3) colloform calcite. Two varieties of drusy calcite are distinguished: acicular and columnar. The acicular calcite is built up of crystallites forming spherulitic fans or cones. In places it is syntaxially covered with colloform calcite. The drusy calcite is low-Mg ferroan calcite with non-ferroan subzones, whereas the colloform calcite is a low-Mg non-ferroan variety. The columnar calcite crystals form fan-like bundles. Cross-sections cut perpendicular to the c-axes of columnar crystals are equilateral triangular in shape, although some have slightly curved edges. The columnar crystals have steep rhombic terminations and most have curved triangular faces, i.e. gothic-arch calcite. Saddle crystals have also been observed. The columnar crystals are composed of radially orientated crystallites whose long dimension is parallel to the c-axis. The curved crystal faces of such polycrystals are interpreted as a result of differential growth rates of the crystallites. The spelean calcites precipitated from CO2-saturated water. The high rate of CaCO3 precipitation is thought to be responsible for the formation of radial structures. Finely crystalline calcite formed within pore spaces of clastic sediments close to the water-air interface, drusy calcite crystallized beneath the water-air interface, and colloform calcite precipitated from thin films of water.  相似文献   

7.
《Sedimentology》2018,65(4):1213-1245
In a modern peritidal microbial mat from Qatar, both biomediated carbonates and Mg‐rich clay minerals (palygorskite) were identified. The mat, ca 5 cm thick, shows a clear lamination reflecting different microbial communities. The initial precipitates within the top millimetres of the mat are composed of Ca–Mg–Si–Al–S amorphous nanoparticles (few tens of nanometres) that replace the ultrastructure of extracellular polymeric substances. The extracellular polymeric substances are enriched in the same cations and act as a substrate for mineral nucleation. Successively, crystallites of palygorskite fibres associated with carbonate nanocrystals develop, commonly surrounding bacterial bodies. Micron‐sized crystals of low‐Mg calcite are the most common precipitates, together with subordinate aragonite, very high‐Mg calcite/dolomite and ankerite. Pyrite nanocrystals and framboids are present in the deeper layers of the mat. Calcite crystallites form conical structures, circular to triangular/hexagonal in cross‐section, evolving to crystals with rhombohedral terminations; some crystallite bundles develop into dumb‐bell and stellate forms. Spheroidal organo‐mineral structures are also common within the mat. Nanospheres, a few tens of nanometres in diameter, occur attached to coccoid bacteria and within their cells; these are interpreted as permineralized viruses and could be significant as nuclei for crystallite‐crystal precipitation. Microspheres, 1 to 10 μm in diameter, result from intracellular permineralization within bacteria or the mineralization of the bacteria themselves. Carbonates and clay minerals are commonly aggregated to form peloids, tens of microns in size, surrounded by residual organic matter. Magnesium silicate and carbonate precipitation are likely to have been driven by pH – saturation index – redox changes within the mat, related to microenvironmental chemical changes induced by the microbes – extracellular polymeric substances – viruses and their degradation.  相似文献   

8.
Brian Jones   《Sedimentary Geology》2009,219(1-4):302-317
Calcitic speleothems from a cave located on the north central coast of Grand Cayman commonly include corrosion surfaces that developed when calcite precipitation ceased and corrosion mediated by condensates became the operative process. Dissolution features associated with these surfaces, including etched crystal surfaces, microcavities, and solution-widened boundaries between crystals, are commonly occupied by microbes and microbial mats that have been replaced by calcium phosphate and/or coated with calcium phosphate. No mineralized microbes were found in the calcite crystals that form the speleothems. The morphology of the mineralized hyphae (eight morphotypes) and spores (nine morphotypes) are indicative of actinomycetes, a group of microbes that are ideally adapted to life in oligotrophic cave environs. Superb preservation of the delicate hyphae, aerial hyphae, and delicate ornamentation on the hyphae and spores indicate that the microbes underwent rapid mineralized while close to their original life positions. Although these actinomycetes were extremely susceptible to replacement by calcium phosphate, there is no evidence that they directly or indirectly controlled precipitation. Nevertheless, the association between the P-rich precipitates and microbes shows that the use of phosphorus as a proxy for seasonal climate changes in paleoclimate analyses must be treated with caution.  相似文献   

9.
In the southern Grenville Province of the Canadian Shield (Otter Lake area), high-grade marble, gneiss and amphibolite have been folded about north- to north-east-trending axes; mylonite zones, parallel to layering and 0.1–10  cm wide, are locally present in marble.
In nonmylonitic marble, graphite occurs as c . 1–mm hexagonal prisms, which are commonly accompanied by a relatively few crystals that have been deformed, resulting in cleavage separation and the formation of folds and kink bands. Fracture-filled calcite contains less Mg and Fe than surrounding calcite (e.g. <0.30 compared with 1.8–2.7  wt% MgO, and 0.02–0.12 compared with 0.13–0.18  wt% FeO); the composition of fracture-filled dolomite is similar to that of the surrounding dolomite. In semimylonite, graphite forms elongate streaks of fragmented crystals and, in mylonite, further fragmentation has occurred to produce extremely small particles. The fragmentation has not destroyed the atomic structure (hexagonal modification) of graphite.
The behaviour of biotite was similar to that of graphite, but extreme fragmentation did not occur. Dolomite was more rigid than calcite, and in mylonite it occurs more commonly as relics. Amphibole and pyroxene crystals remained undeformed but are locally replaced by calcite.
The numerous microprocesses that have evidently occurred in marble and mylonitic marble of the study area are: coarsening (calcite, graphite), twinning (calcite, dolomite), slip (calcite, dolomite, graphite, biotite), strain-induced recrystallization (calcite), microfolding and kink-band formation (graphite, biotite), fragmentation (graphite) and the pressure-induced transport of calcite and dolomite to voids in graphite and biotite.  相似文献   

10.
Analysis of water and associated carbonate precipitates from a small, warm-spring travertine system in SW Colorado, USA, provide an example of the: (i) great variability of the geochemical parameters within these dynamic systems, and (ii) significance of the microenvironment in controlling mineralogy and morphology of carbonate precipitates. Waters emerged from the springs highly charged in CO2, with an initial pCO2 of 1.2 × 105 Pa. Degassing of the CO2 from the waters decreased the pH from 6.1 to 8.0, resulting in an increase of 8%‰ in δ13C values downflow in the total CO2 in solution and an increase in the ISAT from 2.1 to as high as 63 times supersaturation with respect to calcite. Due to changes in the stable isotopic composition of the waters downflow as well as changes in the degree of supersaturation, stable isotopic analyses range greatly from locale to locale within this small system. Near the spring vents, at relatively low ISAT levels, well-developed rhombohedra of calcite formed as biotically induced precipitates around diatom stalks and other algae as well as abiotic crusts. In contrast, near the distal end of the system, very high ISAT levels were reached and resulted in the precipitation of skeletal-dendritic crystals of calcite on copper substrates, floating rafts of laterally linked hemispheres of aragonite crystals, and bimineralic carbonate-encrusted bubbles. Microenvironmental parameters control the mineralogy and habit of these precipitates.  相似文献   

11.
The Pleistocene speleothems of Sa Bassa Blanca cave, Mallorca, are excellent indicators of palaeoclimate variations, and are samples that allow evaluation of the products and processes of mixing‐zone diagenesis in an open‐water cave system. Integrated stratigraphic, petrographic and geochemical data from a horizontal core of speleothem identified two main origins for speleothem precipitates: meteoric‐marine mixing zone and meteoric‐vadose zone. Mixing‐zone precipitates formed at and just below the water–air interface of cave pools during interglacial times, when the cave was flooded as a result of highstand sea‐level. Mixing‐zone precipitates include bladed and dendritic high‐Mg calcite, microporous‐bladed calcite with variable Mg content, and acicular aragonite; their presence suggests that calcium‐carbonate cementation is significant in the studied mixing‐zone system. Fluid inclusion salinities, δ13C and δ18O compositions of the mixing‐zone precipitates suggest that mixing ratio was not the primary control on whether precipitation or dissolution occurred, rather, the proximity to the water table and degassing of CO2 at the interface, were the major controls on precipitation. Thus, simple two‐end‐member mixing models may apply only in mixing zones well below the water table. Meteoric‐vadose speleothems include calcite and high‐Mg calcite with columnar and bladed morphologies. Vadose speleothems precipitated during glacial stages when sea level was lower than present. Progressive increase in δ13C and δ18O of the vadose speleothems resulted from cooling temperatures and more positive seawater δ18O associated with glacial buildup. Such covariation could be considered as a valid alternative to models predicting invariant δ18O and highly variable δ13C in meteoric calcite. Glacio‐eustatic oscillations of sea‐level are recorded as alternating vadose and mixing‐zone speleothems. Short‐term climatic variations are recorded as alternating aragonite and calcite speleothems precipitated in the mixing zone. Fluid‐inclusion and stable‐isotope data suggest that aragonite, as opposed to calcite, precipitated during times of reduced meteoric recharge.  相似文献   

12.
The conditions of formation of massive ice near the South Tambey gas-condensate field in northern Yamal Peninsula are studied. It is shown that massive ice bodies up to 4.5 m thick occur in the Holocene deposits of the high laida and the first terrace. Therefore, they cannot be the remains of glaciers; they are ground ice formations. All three types of massive ice have quite various isotopic compositions: the values of δD range from–107 to–199.7, and δ18O from–15.7 to–26.48‰. Such a significant differentiation in isotopic composition is a result of cryogenic fractionation in a freezing water-saturated sediment. The most negative isotope values are even lower in this Holocene massive ice than in the Late Pleistocene ice-wedge ice of Yamal Peninsula.  相似文献   

13.
In the central West-Siberian basin, fractured and cavernous carbonate rocks that are often oilbearing, which are referred to as correlation layer 1 (CL1), are frequently present at the top of the Abalak formation and/or at the bottom of the Bazhenov formation. They are sporadically distributed over the profile and the area; their genesis is still not completely clear. The structural features and oil-bearing capacity of carbonate rocks have been studied, as well at the distributions of carbon and oxygen stable isotopes from bulk rocks and calcite filling fractures in the CL1 layer that was penetrated by six wells. The spherolitic microstructure of limestones together with the carbon and oxygen isotope distributions (δ13C =–14 to–26‰ VPDB; δ18O = 0 to–5‰ VPDB) indicate the precipitation of carbonate material due to microbial activity on the surface and/or in the upper part of sediments at high methane concentrations. The fractures and caverns in limestones are frequently oil-bearing; they contain coarse crystals of calcite, pyrite, quartz, and, more rarely, barite. This degree of mineralization and the isotope composition of calcite oxygen (up to–18‰ VPDB) indicate that calcite precipitates at elevated temperature (up to 120°C) from the hydrothermal fluids that could migrate from underlying strata.  相似文献   

14.
The calcite-quartz bodies which occur in the Upper Wenlock slaty succession of Llangollen have a distinctive fabric of platy calcite crystals and coarse, sometimes euhedral, quartz. The calcite internal deformation lamellae and folds and boudins formed in the bodies during the production of the folds and cleavage of the country rock are described together with the recrystallization fabrics of some of the calcite. Note is made of similar rocks from Ribblesdale and Coniston and their origin discussed.  相似文献   

15.
In topographic flat areas, sedimentary settings may vary from one outcrop to another. In these settings, calcite precipitates may yield macroscopically similar columnar features, although they are products of different sedimentary or diagenetic processes. Three columnar calcite crystal fabrics, i.e. rosettes, palisade crusts and macro-columnar crystal fans, have been differentiated near and at the contact between Upper Tournaisian dolomites and limestones along the southern margin of the Brabant-Wales Palaeohigh. Their petrographic characteristics, and geochemical and fluid inclusion data provide information on the (dia)genetic processes involved. Rosettes composed of non-luminescent columnar calcite crystal fans (1–5 cm in diameter) developed on top of one another, forming discrete horizons in repetitive sedimentary cycles. The cycles consist of three horizons: (I) a basal horizon with fragments from the underlying horizon, (II) a micrite/microspar horizon with incipient glaebules, (III) an upper horizon consisting of calcite rosettes, with desiccation features. The petrographical features and δ18O signatures of −10·0 to −5·5‰ and δ13C values of −5·5 to −3·2‰ support either evaporative growth, an evaporative pedogenic origin, or overprinting of marine precipitates. Palisade crusts, composed of a few to 10 mm long non-luminescent calcite crystals, coat palaeokarst cavities. Successive palisade growth-stages occur which are separated by thin laminae of micrite or detrital quartz, displaying a geopetal arrangement. Palisade crusts are interpreted as intra-Mississippian speleothems. This interpretation is supported by their petrographic characteristics and isotopic signature (δ18O = −8·7 to −6·5‰ and δ13C = −4·8 to −2·5‰). Macro-columnar crystals, 1–50 cm long, developed mainly perpendicular to cavity walls and dolomite clasts. Crystal growth stages in the macro-columnar crystals are missing. δ18O values vary between −16·4 and −6·8‰ and δ13C values between −5·2 and −0·9‰. These features possibly support a late diagenetic high temperature precipitation in relation to hydrothermal karstification.  相似文献   

16.
液氮温度极低(?195.8℃),当与储层岩石接触时,能够改变岩石物性并对岩石结构产生损伤致裂,因此,可用于储层压裂改造。为了研究液氮压裂时低温对岩石力学性能的影响,分别对不同含水状态(干燥与饱和)的不同类型(大理岩、砂岩和花岗岩)岩石进行液氮冻结处理,并对冻结前、后岩样进行抗拉及单轴抗压强度对比测试。结果表明,经液氮冻结后,岩石的单轴抗压强度、抗拉强度和弹性模量都降低;岩石在干燥状态下,液氮冻结对大理石强度的影响大于对红砂岩的影响;岩石饱和水状态下,液氮冻结对红砂岩强度的影响大于对大理岩的影响;饱和水状态岩石经液氮冻结后,其应力-轴应变曲线在弹性变形阶段出现一个拐点;对于同种类型岩石,饱和水状态能加剧液氮冻结并对岩石损伤,岩石强度影响显著;对3种岩样微观结构进行了电镜扫描(以大理岩为例进行分析),发现经液氮冻结后在矿物颗粒之间生成了微裂隙。研究结果可为进一步研究液氮压裂机制提供试验依据。  相似文献   

17.
The Pleistocene Miami Limestone that crops out on the lower Florida Keys is overlain by thin (16 cm or less), discontinuous, Holocene calcareous crusts (caliche) that are usually laminated, composed dominantly of calcite micrite and may or may not incorporate part of the underlying limestone. Both allochems and sparry calcite cement in the former unit contain endolithic algae and fungi, borings and unicellular algae. Biogenic structures identical to those in the Miami Limestone also occur in the calcareous crusts but are somewhat less abundant in the latter unit versus the former unit. The calcareous crusts were formed in the vadose diagenetic environment. Some of the CaCO3 necessary for the micrite that comprises the bulk of the crusts was probably derived from solution of carbonate from a soil cover and some from wind blown salt spray. Most of the micrite, however, was formed by replacement of the uppermost portions of the Miami Limestone. Replacement involved micritisation of allochems and a previously unreported process, sparmicritisation, the degrading recrystallization of sparry calcite to micrite. Minor sparmicritisation was caused by micrite calcification of endolithic fungi or algae within sparry calcite cement or by micrite precipitation in empty borings within such cement. Most sparmicritisation took place by dissolution of sparry calcite and concomitant precipitation of micrite in the space occupied previously by the dissolved spar. Such sparmicritisation is interpreted to be caused by chemical reactions involving the crystals, pore water which is moving slowly but steadily and organic compounds released during bacterial decomposition of fungi, algae or both. It is recognized that sparmicritisation occurs in the marine diagenetic environment and is not, therefore, necessarily indicative of vadose diagenesis. Incomplete sparmicritisation is responsible for some of the clotted textures typically found within calcareous crusts and may explain such textures in many other carbonate rock types. A combination of sparmicritisation and micritisation has probably greatly influenced the porosity of many reefs and, in some cases, led to the formation of ‘micritic reefs’.  相似文献   

18.
Carbonate concretions, lenses and bands in the Pleistocene, Palaeogene and Upper Triassic coalfields of Japan consist of various carbonate minerals with varied chemical compositions. Authigenic carbonates in freshwater sediments are siderite > calcite > ankerite > dolomite >> ferroan magnesite; in brackish water to marine sediments in the coal measures, calcite > dolomite > ankerite > siderite >> ferroan magnesite; and in the overlying marine deposits, calcite > dolomite >> siderite. Most carbonates were formed progressively during burial within a range of depths between the sediment-water interface and approximately 3 km. The mineral species and the chemical composition of the carbonates are controlled primarily by the initial sedimentary facies of the host sediments and secondarily by the diagenetic evolution of pore water during burial. Based on the regular sequence and burial depth of precipitation of authigenic carbonates in a specific sedimentary facies, three diagenetic stages of carbonates are proposed. Carbonates formed during Stage I (< 500 m) strongly reflect the initial sedimentary facies, e.g. low Ca-Mg siderite in freshwater sediments which are initially rich in iron derived from lateritic soil on the nearby landmass, and Mg calcite and dolomite in brackish-marine sediments whose pore waters abound in Ca2+ and Mg2+ originating in seawater and calcareous shells. Carbonates formed during Stage II (500–2000 m) include high Ca-Mg siderite, ankerite, Fe dolomite and Fe–Mg calcite in freshwater sediments. The assemblage of Stage II carbonates in brackish-marine sediments in the coal measures is similar to that in freshwater sediments. This suggests similar diagenetic environments owing to an effective migration and mixing of pore water due to the compaction of host sediments. Carbonates formed during Stage III (> 2000 m) are Fe calcite and extremely high Ca-Mg siderite; the latter is exclusively in marine mudstones. The supply of Ca is partly from the alteration of silicates in the sediments at elevated burial temperatures. After uplift, calcite with low Mg content precipitates from percolating groundwater and fills extensional cracks.  相似文献   

19.
Recent caliche, including nodules, pisolites, crusts, internal sediment, speleothem deposits, and spherulites, has formed within the dolomitic Cretaceous Edwards Formation of central Texas. As weathering altered the host strata, rhombic crystals of calcite were precipitated concomitantly with dissolution of the dolomite, thereby forming nodules. The highly altered dolomite (i.e. pulverulite) was then removed and spar, internal sediment, and travertine accumulated in the internodular voids. Nodular masses of calcite and dolomite are the most prominent constituent of the caliche. Some of the nodules have a well developed concentric structure as well as other characteristics similar to hypersaline pisolites. Features which appear to be useful in distinguishing caliche from hypersaline pisolites are: regional geological setting, association with other caliche and palaeosoil deposits, types of fossils present, and the presence of rhombic calcite and/or bladed sparry calcite with triangular shaped cross-section. A brick-like calcite texture and relict aragonite rays characterize hypersaline pisolites. Incipient neomorphism of the nodules and pisolites has resulted in the development of a radial pattern of spar within these structures. Geopetal deposits of internal sediment, including terra rossa soil, inhibited spar growth in the upward direction; consequently, spar is much better developed on the undersides of pisolites. Crusts and travertine flowstone (speleothem) deposits are intimately associated with the nodular masses and internal sediment. The brecciated thin crusts and travertine flowstone are end products of the same processes. The crusts formed during times of periodic desiccation of the growing surface while the flowstone formed when water was relatively abundant. Spherulitic bodies within the caliche, commonly 1–2 mm in diameter, display a radial texture and yet are composed of single crystals of calcite. The structures are the product of neomorphosed Microcodium or Microcodium-like globular bodies.  相似文献   

20.
Cryogenic texture and strength aspects of artificially frozen soils   总被引:1,自引:0,他引:1  
This paper elucidates some factors affecting the formation of soil cryogenic textures upon artificial active and passive soil freezing to form a soil-ice wall cofferdam.

Depending upon the soil type, the thermal regimen of the stages of active and passive freezing of the soil-ice wall brings about various kinds of cryogenic textures. The cryogenic textures, in thier turn, affect the strength of the artificially frozen soil-ice wall.

It is shown that upon loading, the variously oriented hexagonally crystallized ice crystals, upon application of externally applied loads, may become subjected to compression or bending or shear stresses, and/or to a combination of such stresses. Also, sustained loads on a frozen soil may bring about time-dependent, long-term deformation of the ice, viz., frozen soil, known as the rheological phenomenon creep.

It is postulated that the strength and performance of the composite frozen soil—the ice wall—is a function of its components, such as the soil cryogenic texture, its thermal regimen and the strength of the ice. It is also pointed out that the performance of the ice wall should be evaluated in terms of its strength and strains.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号