首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于热带太平洋SST和850 hPa风资料,分析了西太平洋暖池东界和东太平洋暖池南界的年际和年代际变异,并探讨了赤道太平洋纬向风异常对西太平洋暖池纬向运移的驱动作用以及热带东北太平洋经向风异常对东太平洋暖池经向变动的影响。在此基础上,研究了西太平洋暖池和东太平洋暖池变异对ENSO循环的联合影响,并提出了一个联合影响指数。结果表明,当联合指数为1.6时,有可能出现一次新的El Nino事件。这为ENSO的形成和演变机制研究提供了一个新的线索。  相似文献   

2.
热带西太平洋暖池异常东伸与热带东太平洋增温   总被引:7,自引:1,他引:6  
本文利用“Climate Diagnostics Bulletin”、“Oceanographic Monthly Summary”、美国夏威夷水位中心提供的资料以及TOGA-COAREIOP资料,分析了1992~1993厄尔尼诺事件中西太平洋暖池、东太平洋SST对异常风场的响应,结果指出:由于西风暴发而引起的西太平洋暖水向东输送,不仅导致西太平详水位降低,而且导致温跃层显着升高,进而引起上层海水热含量显着减少,这种减少在温跃层更为明显.东太平洋与此相反,热含量与温跃层深度出现正距平,正距平中心出现时间比西太平洋的负距平均晚两个月;暖池28℃等温线的异常东伸是海流对低空西风异常直接响应的结果,定量估算表明,纬向流异常所引起的温度平流是暖池28℃等温线异常东伸的主要动力,是热带东太平洋异常增温的主要原因之一.  相似文献   

3.
西太平洋暖池研究的新进展   总被引:4,自引:0,他引:4  
对近几年国内外有关热带西太平洋暖池的现场观测、暖池物理机制、暖池与ENSO的关系、暖池异常变化对气候的影响等方面的最新研究进展作了回顾;同时,对目前暖池研究中存在的几个问题进行了简要的讨论。  相似文献   

4.
利用英国气象局Hadley气候预测和研究中心1870年1月—2010年12月全球海表温度逐月再分析资料,引入物体重心的概念,研究了西太平洋暖池的季节、年际和年代际变化,以及在El Nino年和La Nina年的演变特征。结果表明,就季节变化而言,西太平洋暖池重心呈一个西北-东南倾斜的"8"字型结构。2月和8月暖池重心分别达到其一年中位置的最南端和最北端。西太平洋暖池重心的年际变化以纬向变动为主,显著周期为3—5年,变动幅度可达12个经度。在年代际变化上,重心呈现"纬向-经向-纬向"的移动特征,其转折点分别与上世纪气候突变的时间相一致。El Nino时期,西太平洋暖池重心偏东,而LaNina时期,重心则偏西,其南北差异则并不明显。  相似文献   

5.
基于SODA再分析资料以及SST、JEDAC和TAO观测资料,利用加权平均法建立了具有良好代表性的暖池整体暖水的纬向运移指标序列,并利用Morlet小波变换等分析方法,研究了暖池的纬向变异特征及其对ENSO的影响。结果表明,暖池具有明显的年际(2—7年)和年代际(10—16年)纬向变异,并在1976年前后经历了一次由弱到强的气候跃变。暖池内部的暖水大致可以50m为界分为上、下两部分,其上半部分的纬向变异幅度非常大,而其下半部分的纬向变异幅度则相对较小。但两者具有很一致的年际、年代际变化趋势。暖池的年代际纬向变异对赤道中太平洋纬向风应力和纬向流有较好的响应,而且对赤道西太平洋上层热含量变化有较大影响。相关和合成分析表明,暖池的东扩、西缩对ENSO暖(El Nio)、冷(La Nia)事件的形成和发展具有直接的影响,而且暖池的异常东扩对El Nio有增强作用。  相似文献   

6.
西太平洋暖池两柱样沉积物的磁性地层学研究   总被引:3,自引:0,他引:3  
根据西太平洋暖池WP92-5,WP92-3柱样沉积的磁性地层学研究结果,发现WP92-5柱样沉积物的磁性记录了3个地球磁场漂移(地球磁场极性反转)即GothenburgMonoLake(或Rubjerg)和Mungo(或Maelifell)其界限年龄分别为12.5kaB.P.24.0(23)kaB.P.和31.0(28-31)kaB.P.WP92-3柱样沉积物的磁性也记录了前两个地球磁场漂移。这一  相似文献   

7.
西太平洋暖池区海温异常对冬季环流影响的数值研究   总被引:5,自引:0,他引:5  
董敏  陈隆勋  廖宏 《海洋学报》1994,16(3):39-49
应用全球气候模式就西太平洋暖池区冬季海温异常对冬季大气环流及东亚冬季风的影响问题进行了数值试验.结果表明;西太平洋暖池区海温异常可以引起太平洋中东部Walker环流加强并使其位置东移.同时,增温区附近两半球的Hadley环流也明显增强,增温区附近的上升运动及副热带地区的下沉运动均更加明显.在反常加热区附近有自热带向中高纬度传播的波列出现,从而把海温变化的影响传播到全球.西太平洋暖池区海温异常对副热带高压、西风急流、西风带槽脊强度及位置分布均有重大影响,并造成全球高度场、温度及风场的变化,它使增温区两侧的副热带高压加强并向极地一侧移动,促使西风急流加强并北移,使东亚大槽北缩,并增大高纬与热带之间的热力差异.暧池区海温的异常升高使东亚冬季风减弱,我国大部分地区增暖.  相似文献   

8.
根据西太平洋暖池WP92-5,WP92-3柱样沉积物的磁性地层学研究结果,发现WP92-5柱样沉积物的磁性记录了3个地球磁场漂移(地球磁场极性反转),即Gothenburg,MonoLake(或Rubjerg)和Mungo(或Maelifell),其界限年龄分别为12.5kaB.P.,24.0(23)kaB.P.和31.0(28—31)kaB.P.;WP92-3柱样沉积物的磁性也记录了前两个地球磁场漂移。这一结果表明,西太平洋暖池区对35kaB.P.以来地球磁场极性发生的3次短暂的漂移有明显的响应。由于两柱样都采集于赤道附近南半球暖池区,其磁倾角的变化有一定的特殊性。  相似文献   

9.
基于1950~2011年间的月平均温、盐度资料,以28℃等温线作为西太平洋暖池的定义标准,并取ΔT=-0.4℃,分别计算了暖池区(20°N~15°S,120°E~140°W)各格点混合层、障碍层和深层的平均盐度,构成了暖池热盐结构的盐度场.据此,运用EOF分解法分析了暖池热盐结构盐度距平场主要模态的变化特征及其与ENSO间的关系,并探讨了主要模态的年际变异机理.结果表明,暖池热盐结构盐度场第一模态揭示了盐度场变异的关键区位于暖池中部;该模态具有2~4a的年际变化和准10a的年代际变化,并在1977年前后经历了一次气候跃变(此外,深层盐度场第一模态还在1999年前后发生了一次气候跃变),且在跃变前后与不同类型的ENSO事件有较密切的联系.暖池中部混合层和障碍层盐度的变化比较一致,即在跃变前盐度为偏高期,而在跃变后则变为偏低期.暖池中部深层盐度在1977年以前和1999年之后皆处于偏高期,而在1978~1999年间则处于偏低期.而且,从混合层至深层,盐度的变化幅度逐渐变小.进一步分析表明,暖池中部混合层和障碍层盐度的年际变化主要是由纬向风、南赤道流(SEC)和降水共同引起的,即当东风增强(减弱)时,强(弱)SEC将携带更多(少)的高盐水进入混合层或潜沉至障碍层,同时局地降水的减少(增多),也使得混合层和障碍层的盐度增加(减少);深层盐度的年际变化主要是由SEC和赤道潜流(EUC)导致的,即当SEC增强(减弱)时,将有更多(少)的高盐水进入暖池,而当EUC增强(减弱)时则有更多(少)的低盐水流出暖池,从而使得暖池的深层盐度升高(降低).  相似文献   

10.
西太平洋暖池研究综述   总被引:2,自引:0,他引:2  
西太平洋暖池(Western Pacific Warm Pool)是全球海温最高的海域,汇聚了巨大的热能,在地球气候系统中具有非常重要的作用。本文综述了近30年来有关西太平洋暖池的研究进展,包括西太平洋暖池的维持机制、在不同时间尺度西太平洋暖池的变异特征和物理机制,以及西太平洋暖池的观测和数值模拟等领域的研究进展。西太平洋暖池的维持是现有地形下大气过程和海洋过程相互作用导致的,在季节内到世纪尺度均存在很强的变化。其中:季节内变化的驱动机制主要包括与大气季节内振荡(Madden Julian Oscillation)相关的对流和海表面热通量变化,以及海洋波动等海洋动力过程;季节变化主要是太阳辐射的季节变化导致;在年际尺度上,西太平洋暖池作为El Ni?o-Southern Oscillation的一部分而振荡具有显著年际变化;太平洋代际振荡(Pacific Decadal Oscillation)和大西洋代际振荡(Atlantic Multi-decadal Oscillation)驱动着西太平洋暖池的年代际变化;世纪尺度的变化显示全球变暖背景下西太平洋暖池存在扩张趋势。人类对西太平洋暖池的系统观测始于海洋观测卫星的使用,随后历经WCRP/TOGA、TAO/TRITON、TOGA-COARE、WOCE、Argo、SPICE、NPOCE等多个观测计划,极大促进了西太平洋暖池的研究。但截止到第五次耦合模式比对计划(Coupled Model Intercomparison Project 5),多数气候模式仍未能克服热带模拟偏差,对西太平洋暖池的模拟效果较差,表明在西太平洋暖池动力学的理解和模拟方面仍有较大进步空间。  相似文献   

11.
基于AVHRR/SST的西太平洋暖池近期变化研究   总被引:10,自引:1,他引:10  
考虑到热结构和纬度分布 ,提出了更加合理的暖池中心和面积计算方法。利用 AVHRR/SST月平均数据 ,分析了西太平洋暖池近期 (1 993~ 2 0 0 1年 )的变化特征 :暖池中心移动在经向上是单一的年周期 ,而纬向上存在 3.3(最显著 ) ,1和 0 .5年 3个周期分量 ;暖池面积和表面强度都有 3个主要的周期分量 ,分别是 3.3,1 ,0 .5年和 1 .5,1 ,0 .67年 ,且都以 1年周期为最显著 ;2者的主频在正常年份大致呈同相关系 ,而在厄尔尼诺 /拉尼娜期间存在位相差 ,甚至反相。厄尔尼诺 /拉尼娜现象在1 993~ 2 0 0 1年之间的平均周期为 3.3年。  相似文献   

12.
西太平洋暖池表层暖水的纬向运移   总被引:20,自引:1,他引:19  
基于1950~2000年太平洋月平均SST资料,运用Morlet小波分析等方法研究了西太平洋暖池表层暖水的纬向运移特征.结果表明:暖池表层暖水纬向运移的年际(2~8a)和年代际(10~16a)变化都非常明显;表层暖水的纬向运移于1982年前后经历了一次气候跃变,跃变后暖水东界的平均位置比跃变前东移了10个经度;表层暖水的纬向运移对ENSO暖(ElNiño)、冷(LaNiña)事件的形成和发展具有直接的作用.  相似文献   

13.
西太平洋暖池变异及其对西太平洋次表层海温场的影响   总被引:9,自引:0,他引:9  
应用热带太平洋上层XBT温度资料,分析研究了西太平洋暖池区(0°~16°N,125°~145°E)上层海洋的变化特征以及与西太平洋次表层海温场之间的关系.研究表明,西太平洋暖池区的垂向温度存在显著的年际变化,尤其在次表层(120~200m)的变化最为明显.西太平洋暖池区的次表层冷暖信号明显早于西太平洋次表层的海温异常.分析发现,西太平洋暖池区的海温异常是导致整个西太平洋次表层海温场变异的关键区,当西太平洋暖池区的次表层冷暖信号加强时,3~4个月后西太平洋海温场出现大范围的冷暖异常.  相似文献   

14.
利用 TOGA COARE IOP期间“向阳红五号”调查船在 2°S、 1 55°E附近进行的 3个航段的多项目综合性科学考察资料 ,对西太平洋暖池海域的热状况进行了分析。结果表明 ,在 TO-GA COARE IOP期间 ,西太平洋暖池海域的热状况具有 El Nino事件发生前的特征。对航段平均来说 ,暖池深度、海洋上层混合层深度和海面至 2 60 m水层的平均温度 ,均是逐航段递次减小的。这种 El Nino事件发生前的热状况特征是该海域海表盛行风向转为西风 ,东向流加强 ,暖水流失的结果。此外 ,在航段内各热状况要素也存在由局地海气耦合性变化造成的数天至十多天尺度的变化。  相似文献   

15.
基于SODA再分析资料和TAO资料,利用EOF和统计分析等方法,分别研究了赤道太平洋海面纬向风应力异常和赤道太平洋上层纬向流异常的时空特征及其对西太平洋暖池纬向运移的影响。结果显示,赤道太平洋海面纬向风应力距平场第一模态具有2—5年的年际变化特征,其时空分布呈东、西向的反位相变化;而赤道太平洋上层纬向流距平场的第一模态则为1—2年的年和年际变化,且整个研究区域位相统一。纬向风应力和纬向流异常变化最显著的区域都在赤道中太平洋。相关分析显示,赤道中太平洋海面纬向风应力异常和赤道西太平洋上层纬向流异常分别对西太平洋暖池纬向运移有约2个月和4—6个月的超前影响,是暖池纬向运移的两个重要动力因素。回归分析表明,赤道中太平洋海面纬向风应力异常和赤道西太平洋上层纬向流异常对西太平洋暖池纬向运移有很好的预报意义。  相似文献   

16.
基于1950-2011年间热带太平洋月平均温盐度资料,以28°C等温线作为暖池的定义标准,分别计算了暖池区(20°N-15°S,120°E-140°W)各网格点混合层、障碍层和深层的平均温度,从而构成了暖池热盐结构的温度场。据此,运用EOF分析法研究了暖池混合层、障碍层和深层温度距平场的时空变化特征,并探讨了纬向风、纬向流和海面净热通量等要素对这3层温度场主要模态的影响。结果表明,第一模态揭示了暖池中东部3层温度都具有显著的年际变化和长期变化趋势,并在1985年前后经历了一次气候跃变,而第二模态则基本反映了暖池西部3层温度皆存在着明显的年际变化和长期变化趋势,并在1995年前后经历了一次气候跃变。暖池混合层(包括障碍层)温度场前两个模态的年际振荡主要是由纬向风和南赤道流(SEC)共同引起的,而暖池深层温度场前两个模态的年际振荡则是由SEC和赤道潜流(EUC)共同调制的。  相似文献   

17.
应用NCEP/NCAR SST资料和SODA海温资料,分析研究了热带太平洋海温场的变化特征,讨论了气候突变前后热带西太平洋暖池(以下简称WPWP)形态的显著变化及其差异,由此重新界定了WPWP的范围,并进一步分析了WPWP的时空变化特征。结果表明,新界定的WPWP气候平均场与前人定义的气候平均场分布特征基本相同,但也存在一定的差异。新界定的WPWP的优点在于它不仅能够客观反映出气候(海洋)突变前后西太平洋暖池的时空变化特征,而且重要的是可以避免由前人定义的WPWP与东太平洋暖池合为一体的现象发生,从而避免人为地计算WPWP面积变化带来的结果差异。新界定的WPWP平均深度可达130 m左右,呈现出西浅东深的"耳状"分布特征,在冬春季节,南北(经向)窄东西(纬向)宽,呈纬向带状分布;在夏秋季节,WP-WP明显向北扩展。平均深度最大中心位于(5°S,180°)附近。由WPWP区域不同深度的异常海温变化与Niño3指数的相关分析可知,WPWP次表层异常海温变化与Niño3指数呈显著的负相关关系,而与表层的异常海温的关系并不密切,这一结果进一步证明了西太平洋暖池对ENSO的贡献是来自次表层异常海温的东传。  相似文献   

18.
印尼海道的两度关闭与西太平洋暖池的形成和兴衰   总被引:4,自引:0,他引:4  
世界海洋表层水温最高的西太平洋暖池,是全球驱动大气环流的最大热源之一,也是全球热盐环流传输带的热源。新生代晚期印尼海道的关闭是暖池得以形成的基本条件。在印尼海道区划出了对印度尼西亚穿越流起阻挡作用的5道屏障,分析了5道屏障的形成过程和年代,据此提出了印尼海道两度关闭的模式。板块运动导致印尼海道关闭,有利于暖池发展,同时也存在不利的负面影响,本区构造运动对暖池的演变具有特有的双向复合控制作用;由此出发勾勒了近1000多万年来西太平洋暖池的形成和兴衰史:11~9MaBP为原始暖池形成期,9~6MaBP为暖池演化的第一衰退期,6MaBP以来为现代暖池的孕育和发展期,其间在1~0.2MaBP穿插着暖池演化的第二衰退期。上述暖池兴衰史的演化模式,得到了暖池区ODP1143站浮游有孔虫组合所反映的古海水温跃层深度的验证。  相似文献   

19.
西太平洋暖池海域热含量场的变异及其影响   总被引:7,自引:2,他引:7       下载免费PDF全文
基于 1 95 5— 1 999年间太平洋月平均海温资料 ,利用经验正交函数 (EOF)分解法 ,研究了西太平洋暖池海域 ( 1 2 0°E— 1 60°W ,1 8°N— 1 6°S)热含量场的时空变化 ,并分析了该海域东、西区热含量变化与南方涛动、副热带高压及ENSO的关系。结果表明 ,暖池海域热含量场主要包括年变化型、年际变化型和年代际变化型三个模态 ,其主要变化周期依次为 1 .0、3.6和 1 3.7年。相关和合成分析表明 ,暖池东、西区热含量的变化均与南方涛动、副热带高压和ENSO循环有十分密切的关系。  相似文献   

20.
Using the 28°C isotherm to define the Western Pacific Warm Pool(WPWP), this study analyzes the seasonal variability of the WPWP thermohaline structure on the basis of the monthly-averaged sea temperature and salinity data from 1950 to 2011, and the dynamic and thermodynamic mechanisms based on the monthly-averaged wind,precipitation, net heat fluxes and current velocity data. A DT=–0.4°C is more suitable than other temperature criterion for determining the mixed layer(ML) and barrier layer(BL) over the WPWP using monthly-averaged temperature and salinity data. The WPWP has a particular thermohaline structure and can be vertically divided into three layers, i.e., the ML, BL, and deep layer(DL). The BL thickness(BLT) is the thickest, while the ML thickness(MLT) is the thinnest. The MLT has a similar seasonal variation to the DL thickness(DLT) and BLT.They are all thicker in spring and fall but thinner in summer. The temperatures of the ML and BL are both higher in spring and autumn but lower in winter and summer with an annual amplitude of 0.15°C, while the temperature of the DL is higher in May and lower in August. The averaged salinities at these three layers are all higher in March but lower in September, with annual ranges of 0.41–0.45. Zonal currents, i.e., the South Equatorial Current(SEC)and North Equatorial Counter Current(NECC), and winds may be the main dynamic factors driving the seasonal variability in the WPWP thermohaline structure, while precipitation and net heat fluxes are both important thermodynamic factors. Higher(lower) winds cause both the MLT and BLT to thicken(thin), a stronger(weaker)NECC induces MLT, BLT, and DLT to thin(thicken), and a stronger(weaker) SEC causes both the MLT and BLT to thicken(thin) and the DLT to thin(thicken). An increase(decrease) in the net heat fluxes causes the MLT and BLT to thicken(thin) but the DLT to thin(thicken), while a stronger(weaker) precipitation favors thinner(thicker)MLT but thicker(thinner) BLT and DLT. In addition, a stronger(weaker) NECC and SEC cause the temperature of the three layers to decrease(increase), while the seasonal variability in salinity at the ML, BL, and DL might be controlled by the subtropical cell(STC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号