首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
通过涡度、时频分析等方法,研究了莫力达瓦、嫩江交界5.0级地震前,震中区域(124.50°E~126.50°E,47.50°N~52.50°N)红外遥感OLR时空分布特征,结果显示:莫力达瓦、嫩江交界5.0级地震前震中区域OLR涡度场存在显著增强的异常现象;震中区格点(125.50°E,49.50°N)OLR涡度值时序曲线在震前存在显著异常变化,其时频结果也显示在地震前存在能量密度增强现象,异常期间谱结构不断变化。  相似文献   

2.
本文通过涡度方法、时频分析等方法,研究了岷县漳县6.6级地震前,震中区域(102.50°E~105.50°E,33.50°N~37.50°N)红外遥感OLR时空分布特征,结果显示:(1)岷县漳县6.6级地震前震中区域涡度场存在显著增强的异常现象;(2)震中区格点OLR涡度值时序曲线一般情况下随机波动,但在震前存在明显异常变化,其时频结果也显示在地震前存在能量密度增强现象,异常期间谱结构不断变化。  相似文献   

3.
邵叶  刘特培  刘吉平 《地震》2016,36(2):132-140
利用广东新丰江锡场2012和2013年2次MS4.8地震震中附近的2009年1月至2015年6月精定位小震资料,依据小震丛集发生在大震断层面及附近的原则,采用模拟退火算法和高斯-牛顿算法相结合的方法,反演得到了锡场附近2条相交断层的详细参数及地理分布。NEE向断层F1的走向为78.5°,倾角为87.7°,长度约8.2km,以右旋走滑错动为主;NW向断层F2的走向为137.3°,倾角为87.9°,长度约5.9km,以左旋走滑错动为主。用断层附近ML3以上地震的震源机制解证明反演结果是可靠的,并由2次4.8级地震的震源机制解判断出各自的发震断层。  相似文献   

4.
分析2013年2-5月芦山地震震中区域长波辐射涡度场空间演化特征,结果显示,在芦山7.0级地震前存在涡度场明显增强的异常现象,2009-2013年同期并未出现。这一震例再次证明,在部分大震前OLR存在异常增强的变化。  相似文献   

5.
刘月  吕晓健  田勤俭 《地震》2016,36(2):94-104
本文基于“区域-时间-长度算法”(Region-Time-Length algorithm)回顾性检验了1976年以来发生在川滇地区的6个MS7.0以上和23个MS6.0~6.9地震前地震活动性变化。MS7.0以上强震前,5例检测到地震活动平静异常,仅1例检测到地震活动增强;MS6.0~6.9地震前,12例检测到平静,11例检测到地震活动增强。以上异常大部分出现于震前0.5~2.5a,持续0.5~2a。另外,发生在云南普洱地区的4个MS6.0以上地震震前都检测到平静异常;发生在北纬22.7°~31.0°N,99.6°~102.5°E范围内的17个地震,13例于震前检测到平静异常。以上研究对更好地认识川滇地区地震孕育过程和发震前兆提供了一些参考。  相似文献   

6.
2013年4月20日在我国四川省芦山(30.284o N, 102.955o E)发生MS7.0地震,计算该地区潮汐变化,地震时刻引潮力处于最低相位点,显示引潮力的诱震作用属于典型逆冲断层作用类型。以此潮汐周期为时间指示(4月12日~4月23日),利用NOAA卫星地面长波辐射(OLR)数据资料分析全国范围地震前后热辐射值连续变化,结果显示:伴随潮汐演化,在全国范围(17°N-55°N ~ 73°E-155°E)内,震前OLR仅震中及其相关联断裂附近发生了显著而连续异常变化过程:在时间上经历了起始增温→异常加强→高峰→衰减→发震→平静的演化过程;在空间上异常位置与震中基本吻合,发展过程表现出沿断裂带由分散→汇聚→分散的破裂过程,与岩石应力加载破裂演化经历:初始微动破裂→扩张破裂→应力闭锁→地震爆发→平静阶段的力学过程完全吻合,显示天体引潮力对处于临界状态的活动断层具有诱发作用,而长波辐射异常是地震构造应力应变过程辐射表征。将引潮力与OLR异常结合在地震前兆研究中有一定的实用价值。  相似文献   

7.
分析甘肃岷县M_S6.6地震前后潮汐变化发现,发震时刻引潮力处于最低相位点,显示引潮力的诱震属于典型逆冲断层作用类型。以潮汐周期为时间指示,利用NOAA卫星地面长波辐射(OLR)数据,分析震中及其邻近区域(30°~40°N,90°~110°E)地震前后(7月17~25日)地面长波辐射值的连续变化状况,结果显示,震前仅震中及其相关联断裂附近OLR发生了显著且连续的异常变化,在时间上经历了起始增温—异常加强—峰值—衰减—发震—平静的演化过程;在空间上异常区域覆盖震中,与汶川地震引发的应变积累正影响区之南北地震带北段基本吻合;在形态演化上,表现出沿断裂带分散—汇聚—分散的破裂过程,并与岩石应力加载破裂的初始微动破裂—扩张破裂—应力闭锁—地震爆发—恢复平静阶段的力学过程完全吻合。这可能预示该地震发震前后天体引潮力对处于临界状态的活动断层具有诱发作用以及长波辐射异常在一定程度上对地震构造应力应变过程辐射进行表征。  相似文献   

8.
分析2013年2—5月芦山地震震中区域长波辐射涡度场空间演化特征,结果显示,在芦山7.0级地震前存在涡度场明显增强的异常现象,2009—2013年同期并未出现。这一震例再次证明,在部分大震前OLR存在异常增强的变化。  相似文献   

9.
文安地震前华北区域长波辐射场的异常特征分析   总被引:7,自引:1,他引:6  
康春丽  王亚丽  刘德富 《地震》2007,27(3):83-88
利用NOAA/IR极轨卫星所获取并发布的热红外长波辐射(OLR)月平均网格数据信息(空间分辨率为2.5°×2.5°),采用涡度处理方法,在对华北地区OLR多年背景场分布特征分析的基础上,详细研究了2006年7月4日河北文安5.1级地震前华北地区OLR的短期异常演化特征。结果显示,华北地区OLR正常背景场变化较为平稳,但在文安地震之前这种平稳均一的分布格局发生了变化,主要表现为在地震发生之前2个月,在震中附近出现了OLR的显著增强异常现象。结合以往开展的大量的震例分析结果,显示出这种震前的异常演化特征具有广泛的普适性。这一认识的取得对于开展华北地区地震短临预报应用研究具有一定的现实意义。  相似文献   

10.
西藏日土-改则6.1级地震前的OLR值异常变化   总被引:1,自引:0,他引:1  
郭卫英  王琼  温和平  高歌 《内陆地震》2007,21(4):311-315
应用了美国国家环境监测中心的NOAA卫星长波辐射(OLR)月际资料。用月距平、涡度计算等处理方法,对2007年5月5日西藏日土—改则MS6.1地震前后的OLR资料进行分析,结果发现在震前的2个月,震中附近地区出现明显的高值辐射变化,其高值中心位于阿尔金断裂和西昆仑地震带的交汇部位,异常形态呈孤立的"V"字形,分析认为这种现象可能与地震前的热动力状态有关。  相似文献   

11.
做出了32°~40°N,89°~105°E范围内各经纬度结点1989年7月~1996年12月长波辐射(OLR)月距平值曲线.将各结点的曲线图按经纬度排列起来,构成OLR时空序列剖面图.根据对这些剖面图的分析,研究了强震前OLR的变化特征.结果表明,强震前1~4个月震中附近结点OLR曲线变化出现异常,表现为反向变化或振荡型.有的地震前异常的空间展布呈条带状.  相似文献   

12.
The Bolokenu-Aqikekuduk fault zone(B-A Fault)is a 1 000km long right-lateral strike-slip active fault in the Tianshan Mountains. Its late Quaternary activity characteristics are helpful to understand the role of active strike-slip faults in regional compressional strain distribution and orogenic processes in the continental compression environment, as well as seismic hazard assessment. In this paper, research on the paleoearthquakes is carried out by remote sensing image interpretation, field investigation, trench excavation and Quaternary dating in the Jinghe section of B-A Fault. In this paper, two trenches were excavated on in the pluvial fans of Fan2b in the bulge and Fan3a in the fault scarp. The markers such as different strata, cracks and colluvial wedges in the trenches are identified and the age of sedimentation is determined by means of OSL dating for different strata. Four most recent paleoearthquakes on the B-A Fault are revealed in trench TC1 and three most recent paleoearthquakes are revealed in trench TC2. Only the latest event was constrained by the OSL age among the three events revealed in the trench TC2. Therefore, when establishing the recurrence of the paleoearthquakes, we mainly rely on the paleoearthquake events in trench TC1, which are labeled E1-E4 from oldest to youngest, and their dates are constrained to the following time ranges: E1(19.4±2.5)~(19.0±2.5)ka BP, E2(18.6±1.4)~(17.3±1.4)ka BP, E3(12.2±1.2)~(6.6±0.8)ka BP, and E4 6.9~6.2ka BP, respectively. The earthquake recurrence intervals are(1.2±0.5)ka, (8.7±3.0)ka and(2.8±3)ka, respectively. According to the sedimentation rate of the stratum, it can be judged that there is a sedimentary discontinuity between the paleoearthquakes E2 and E3, and the paleoearthquake events between E2 and E3 may not be recorded by the stratum. Ignoring the sedimentary discontinuous strata and the earthquakes occurring during the sedimentary discontinuity, the earthquake recurrence interval of the Jinghe section of B-A Fault is ~1~3ka. This is consistent with the earthquake recurrence interval(~2ka)calculated from the slip rate and the minimum displacement. The elapsed time of the latest paleoearthquake recorded in the trench is ~6.9~6.2ka BP. The magnitude of the latest event defined by the single event displacement on the fault is ~MW7.4, and a longer earthquake elapsed time indicates the higher seismic risk of the B-A Fault.  相似文献   

13.
LI Tong  GUO Zhi  GAO Xing 《地震地质》1979,42(4):881-892
The August 2018 Tonghai earthquake sequence and focal mechanisms of the two main shocks about MS5.0 were investigated through relocation of catalog data and inversion of event waveform recordings downloaded from the China National Seismic Network. The epicenter of 2018 Tonghai earthquake locates in the southern edge of Chuandian block, where the Xiaojiang Fault separates the Chuandian block from South China block in the east, and the Red River Fault separates the Chuandian block from the Indo-China in the southwest. These two faults blocked and absorbed the continuous southward movement of Chuandian block, significant tectonic stress has been built up in the southern tip of Chuandian block. As a seismicity active zone, Tonghai has been struck by a M7.0 strong earthquake in 1970. The August 2018 Tonghai earthquake is the major earthquake occurring in Tonghai and surrounding areas since the 1970 strong earthquake. Therefore, detailed focal mechanism study for 2018 Tonghai earthquake sequence is crucial for the earthquake relief effect for the Tonghai and surrounding area. In this study, we first relocate the epicenter of earthquake sequence by using the double difference relocation method, then we inverted focal mechanism for two main earthquakes with magnitude of ~5.0 by using the W-phase method. The relocated epicentral locations of Tonghai earthquake sequence show a NE-SW trend narrow band, predominant depth range of 5~10km and near vertical seismogenic fault. The focal parameters for the August 13 earthquake are: strike of 298.2°, a dip of 45.2°, a rake of -172.9° and strike of 203.2°, a dip of 84.9°, a rake of -45.0°, respectively, and magnitude of MW=5.07; Focal parameters for the August 14 earthquake are: strike of 297.0°, a dip of 63.6°, a rake of -161.5° and strike of 198.5°, a dip of 73.5°, a rake of -27.7°, respectively, and magnitude of MW=4.89. Combined analysis of the relocated epicentral locations and obtained focal mechanisms suggest that the seismogenic fault of the August 2018 Tonghai earthquake sequences could be related to the NE-striking Mingxing-Erjie Fault, and the temporal and spatial distribution characteristics of the earthquake sequence is consistent with the regional seismotectonic background.  相似文献   

14.
中强地震前的长波辐射异常震例研究   总被引:6,自引:0,他引:6  
荆凤  申旭辉  康春丽  孟庆岩  熊攀 《地震》2009,29(4):117-122
文章利用NOAA提供的1°×1°长波辐射产品对2008年发生在我国的三次地震(2008年8月25日仲巴6.8级地震、 5月12日汶川8.0级地震和3月21日于田7.3级地震)进行了研究。 通过滑动平均, 标准方差阈值等方法分析了各地震震前2个月和震后2个月的长波辐射日数据的时间序列, 分析结果表明在震前40余天到震前几天均出现不同程度的长波辐射异常, 这些异常可能与地震相关, 并且异常的幅度和震级不是简单的线性关系。  相似文献   

15.
顾瑾萍  王海涛  赵翠萍  杨欣 《地震》2003,23(1):63-69
利用区域地震体波振幅传播特征,研究测定地震波源初始振幅辐射状态,企图得到中强震孕育的前兆信息。按这一思路,在北纬38. 0°~ 42. 0°,东经74. 5°~ 79. 0°(南天山西段的乌恰至柯坪)计算了1992~ 1999年的介质参数地震波初始振幅偏离系数。讨论了1996年3月阿图什7. 1级地震和1997年伽师震群前后该介质参数在时空演化过程中的可能前兆。结果表明,强震发生在介质性质变化的过渡区,也是应力环境变化梯度大的地点;从时间上讲,强震往往发生在介质参数由低值回升到高值时或以后。文中还依据参数的物理意义,对强震和震群发生的构造应力环境进行了讨论。  相似文献   

16.
On August 8, 2017, a strong earthquake of M7.0 occurred in Jiuzhaigou County, Aba Prefecture, northern Sichuan. The earthquake occurred on a branch fault at the southern end of the eastern section of the East Kunlun fault zone. In the northwest of the aftershock area is the Maqu-Maqin seismic gap, which is in a locking state under high stress. Destructive earthquakes are frequent along the southeast direction of the aftershocks area. In Songpan-Pingwu area, only 50~80km away from the Jiuzhaigou earthquake, two M7.2 earthquakes and one M6.7 earthquake occurred from August 16 to 23, 1976. Therefore, the Jiuzhaigou earthquake was an earthquake that occurred at the transition part between the historical earthquake fracture gap and the neotectonic active area. Compared with other M7.0 earthquakes, there are few moderate-strong aftershocks following this Jiuzhaigou earthquake, and the maximum magnitude of aftershocks is much smaller than the main shock. There is no surface rupture zone discovered corresponding to the M7.0 earthquake. In order to understand the feature of source structure and the tectonic environment of the source region, we calculate the parameters of the initial earthquake catalogue by Loc3D based on the digital waveform data recorded by Sichuan seismic network and seismic phase data collected by the China Earthquake Networks Center. Smaller events in the sequence are relocated using double-difference algorithm; source mechanism solutions and centroid depths of 29 earthquakes with ML≥3.4 are obtained by CAP method. Moreover, the source spectrum of 186 earthquakes with 2.0≤ML≤5.5 is restored and the spatial distribution of source stress drop along faults is obtained. According to the relocations and focal mechanism results, the Jiuzhaigou M7.0 earthquake is a high-angle left-lateral strike-slip event. The earthquake sequence mainly extends along the NW-SE direction, with the dominant focal depth of 4~18km. There are few shallow earthquakes and few earthquakes with depth greater than 20km. The relocation results show that the distribution of aftershocks is bounded by the M7.0 main shock, which shows obvious segmental characteristics in space, and the aftershock area is divided into NW segment and SE segment. The NW segment is about 16km long and 12km wide, with scattered and less earthquakes, the dominant focal depth is 4~12km, the source stress drop is large, and the type of focal mechanism is complicated. The SE segment is about 20km long and 8km wide, with concentrated earthquakes, the dominant depth is 4~12km, most moderate-strong earthquakes occurred in the depth between 11~14km. Aftershock activity extends eastward from the start point of the M7.0 main earthquake. The middle-late-stage aftershocks are released intensively on this segment, most of them are strike-slip earthquakes. The stress drop of the aftershock sequence gradually decreases with time. Principal stress axis distribution also shows segmentation characteristics. On the NW segment, the dominant azimuth of P axis is about 91.39°, the average elevation angle is about 20.80°, the dominant azimuth of T axis is NE-SW, and the average elevation angle is about 58.44°. On the SE segment, the dominant azimuth of P axis is about 103.66°, the average elevation angle is about 19.03°, the dominant azimuth of T axis is NNE-SSW, and the average elevation angle is about 15.44°. According to the fault profile inferred from the focal mechanism solution, the main controlling structure in the source area is in NW-SE direction, which may be a concealed fault or the north extension of Huya Fault. The northwest end of the fault is limited to the horsetail structure at the east end of the East Kunlun Fault, and the SE extension requires clear seismic geological evidence. The dip angle of the NW segment of the seismogenic fault is about 65°, which may be a reverse fault striking NNW and dipping NE. According to the basic characteristics of inverse fault ruptures, the rupture often extends short along the strike, the rupture length is often disproportionate to the magnitude of the earthquake, and it is not easy to form a rupture zone on the surface. The dip angle of the SE segment of the seismogenic fault is about 82°, which may be a strike-slip fault that strikes NW and dips SW. The fault plane solution shows significant change on the north and south sides of the main earthquake, and turns gradually from compressional thrust to strike-slip movement, with a certain degree of rotation.  相似文献   

17.
昆仑山地震前长波辐射异常特征分析   总被引:3,自引:1,他引:3  
应用NOAA、AVHRR资料反演的地气长波辐射值OLR对2001年11月14日昆仑山口西8.1级地震进行了追踪研究。结果表明:2001年10月起OLR出现明显的异常带,随时间的变化,异常区域不断向未来的震源聚拢,并且在未来地震震中区持续存在小的OLR高值闭合区,10月开始OLR出现突出的反常升势。  相似文献   

18.
The Tienshan orogenic belt is one of the most active intracontinental orogenic belts in the world. Studying the deep crust-mantle structure in this area is of great significance for understanding the deep dynamics of the Tienshan orogen. The distribution of fixed seismic stations in the Tianshan orogenic belt is sparse. The low resolution of the existing tomographic results in the Tienshan orogenic belt has affected the in-depth understanding of the deep dynamics of the Tienshan orogenic belt. In this paper, the observation data of 52 mobile seismic stations in the Xinjiang Seismic Network and the 11 new seismic stations in the Tienshan area for one-year observations are used. The seismic ambient noise tomography method is used to obtain the Rayleigh surface wave velocity distribution image in the range of 10~50s beneath the Chinese Tienshan and its adjacent areas (41°~48° N, 79°~91° E). The joint inversion of surface wave and receiver function reveals the S-wave velocity structure of the crust and uppermost mantle and the crustal thickness below the station beneath the Chinese Tienshan area(41°~46° N, 79°~91° E). The use of observation data from mobile stations and new fixed seismic stations has improved the resolution of surface wave phase velocity imaging and S-wave velocity structure models in the study area.
The results show that there are many obvious low-velocity layers in the crust near the basin-bearing zone in the northern Tienshan Mountains and the southern Tienshan Mountains. There are significant differences in the structural characteristics and distribution range of the low-velocity zone in the northern margin and the southern margin. Combining previous research results on artificial seismic profiles, receiver function profiles, teleseismic tomography, and continental subduction simulation experiments, it is speculated that the subduction of the Tarim Basin and the Junggar Basin to the Tienshan orogenic belt mainly occurs in the middle of the Chinese Tienshan orogenic belt, and the subduction of the southern margin of the Tienshan Mountains is larger than that of the northern margin, and the subduction of the eastern crust is not obvious or in the early subduction stage. There are many low-velocity layers in the inner crust of the Tienshan orogenic belt, and most of them correspond to the strong uplifting areas that are currently occurring. The thickness of the crust below the Tienshan orogenic belt is between 55km and 63km. The thickness of the crust(about 63km)is the largest near the BLT seismic station in the Bazhou region of Xinjiang. The average crustal thickness of the Tarim Basin is about 45km, and that of the Junggar Basin is 47km. The S-wave velocity structure obtained in this study can provide a new deep basis for the study of the segmentation of the Tienshan orogenic belt and the difference of the basin-mountain coupling type.  相似文献   

19.
将NASA官方网站下载的OLR原始数据资料,处理为二维空间数据和单点时序数据,通过地震目录核实对比,利用OLR月平均场演变法和月平均场距平法分析1974年以来内蒙古及周边地区发生的337次地震事件(Ms≥5)前,长波辐射的时空变化特征。结果发现:在震前约3—5个月,在许多地震前长波辐射(OLR)出现明显的异常反映,许多点位在震前异常比较明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号