首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Following the 1996 February 18 M L = 5.2 earthquake in the Agly massif in the eastern French Pyrenees, we installed a temporary network of seismometers around the epicentre. In this paper, we analyse 336 well-located aftershocks recorded from February 19 to February 23 by 18 temporary stations and two permanent stations located less than 35  km from the epicentre. Most aftershocks have been located with an accuracy better than 1.5  km in both horizontal and vertical positions. Their spatial distribution suggests the reactivation of a known fault system. We determined 39 fault-plane solutions using P -wave first motions. Despite their diversity, the focal mechanisms yield an E–W subhorizontal T-axis. We also determined fault-plane solutions and principal stress axes using the method developed by Rivera & Cisternas (1990 ) for the 15 best-recorded events. We obtain a pure-shear-rupture tectonic regime under N–S subhorizontal compression and E–W subhorizontal extension. These principal stress axes, which explain the focal mechanisms for at least 75 per cent of the 39 aftershocks, are different from the axes deduced from the main shock. The post-earthquake stress field caused by the main-shock rupture, modelled as sinistral strike slip on three vertical fault segments, is computed for various orientations and magnitudes of the regional stress field, assumed to be horizontal. The aftershock distribution is best explained for a compressive stress field oriented N30°E. Most aftershocks concentrate where the Coulomb failure stress change increases by more than 0.2  MPa. The diversity of aftershock focal mechanisms, poorly explained by this model, may reflect the great diversity in the orientations of pre-existing fractures in the Agly massif.  相似文献   

5.
6.
Several methods have been proposed to constrain the stress field from fault plane orientations and slip directions within a crustal volume characterized by brittle deformation. All the methods are based on the assumption that the stress field is uniform in the volume considered. If this hypothesis is not checked in advance, however, the methodology may lead to misleading conclusions. In this work, a procedure is defined to check stress-field uniformity by a statistical analysis of the available fault data. Since, in most cases, the statistical features of the uncertainties that affect such data are not well known, a distribution-free approach is proposed. It is based on a simple search algorithm, devoted to selecting stress configurations compatible with available data, combined with a bootstrap resampling approach. The test results are more conservative than the ones so far proposed in the literature. When the test allows stress heterogeneities to be safely excluded, approximate confidence intervals for the principal stress directions can be obtained; otherwise, the level of stress heterogeneity present in the volume under study can be assessed. An application of the proposed procedure to a sample of fault data deduced from seismological data is presented.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Previous investigations of the causal relationship between postglacial rebound and earthquakes in eastern Canada have focused on the mode of failure and the observed timing of the pulse of earthquake/faulting activity following deglaciation. In this study, the observational database has been extended to include observed orientations of the contemporary stress field and the rotation of stress since deglacial times. It is shown that many of these observations can be explained by a realistic ice history and a viscoelastic earth with a uniform 1021 Pa s mantle.
The effects of viscosity structure on the above predictions are also examined. It is shown that, since most of the above observations are found within the ice margin, they are not very sensitive to lithospheric thickness. Also, the inclusion of a 25 or 50 km ductile layer within the lithosphere will not decouple the seismogenic upper crust. High viscosity (1022 Pa s) in the lower mantle is rejected by the stress orientation and rotation observations. A low-viscosity (6 times 1020Pa s) upper mantle with 1.6 times 1021 Pa s in the upper part of the lower mantle and 3 times 1021 Pa s in the lower part of the lower mantle below 1200 km depth has been found to give predictions that are in general agreement with the observations.  相似文献   

15.
16.
17.
18.
Estimate of the stress field in Kilauea's South Flank, Hawaii   总被引:1,自引:0,他引:1  
We estimated stress and seismic strain tensors for the Kilauea volcano's south flank. the stress orientation inversion and the seismic strain calculation were performed using fault-plane solutions. the principal stress and seismic strain directions are approximately uniformly distributed in space and time during the interval covered by the data. However, the σ1, σ3 plane is approximately orthogonal to the 1, 3 plane. Therefore, a weak layer may exist beneath the south flank. σ1 has a plunge of 59° and an azimuth of 152°, with a 10° 95 per cent confidence range. We also developed a stress magnitude inversion to estimate magnitudes of boundary and interior stresses. In this inversion, the principal stress directions were taken as constraints in the seismic volume, and surface geodetic observations were used as data. the maximum magmatic pressure in Kilauea's rift zone is about 160 MPa. the direction of σ1 can be interpreted as the superposition of hydrostatic stress ( pgh ) and magmatic pressure. Without the constraint imposed by the direction of σ1, the estimated pressure is only 60MPa, the distribution of magmatic pressure may be similar to that of pgh . In contrast, the upper rift zone may be in tension. the shear stress in the rift zone is about one order of magnitude smaller than the maximum compressive stress, supporting the interpretation of magmatic flow as fluid in dikes or channels. the combination of stress orientation inversion, seismic strain calculation, and stress magnitude inversion performed in this study provides a means by which to estimate the stress state in seismic areas.  相似文献   

19.
For seven weeks, a temporary network of 68 seismological stations was operated in Central Greece, in the region of Thessaly and Evia, located at the western termination of the North Anatolian Fault system. We recorded 510 earthquakes and computed 80 focal mechanisms. Seismic activity is associated with the NE–SW dextral North Aegean Fault, or with very young E–W-striking normal faults that are located around the Gulf of Volos and the Gulf of Lamia. The important NW–SE-striking faults bounding the Pilion, or the basins of Larissa and Karditsa, are not seismically active, suggesting that it is easier to break continental crust, creating new faults perpendicular to the principal stresses, than to reactivate faults that strike obliquely to the principal stress axes  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号