首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
Several methods have been proposed to constrain the stress field from fault plane orientations and slip directions within a crustal volume characterized by brittle deformation. All the methods are based on the assumption that the stress field is uniform in the volume considered. If this hypothesis is not checked in advance, however, the methodology may lead to misleading conclusions. In this work, a procedure is defined to check stress-field uniformity by a statistical analysis of the available fault data. Since, in most cases, the statistical features of the uncertainties that affect such data are not well known, a distribution-free approach is proposed. It is based on a simple search algorithm, devoted to selecting stress configurations compatible with available data, combined with a bootstrap resampling approach. The test results are more conservative than the ones so far proposed in the literature. When the test allows stress heterogeneities to be safely excluded, approximate confidence intervals for the principal stress directions can be obtained; otherwise, the level of stress heterogeneity present in the volume under study can be assessed. An application of the proposed procedure to a sample of fault data deduced from seismological data is presented.  相似文献   

3.
4.
5.
  总被引:5,自引:0,他引:5  
Following the 1996 February 18 M L = 5.2 earthquake in the Agly massif in the eastern French Pyrenees, we installed a temporary network of seismometers around the epicentre. In this paper, we analyse 336 well-located aftershocks recorded from February 19 to February 23 by 18 temporary stations and two permanent stations located less than 35  km from the epicentre. Most aftershocks have been located with an accuracy better than 1.5  km in both horizontal and vertical positions. Their spatial distribution suggests the reactivation of a known fault system. We determined 39 fault-plane solutions using P -wave first motions. Despite their diversity, the focal mechanisms yield an E–W subhorizontal T-axis. We also determined fault-plane solutions and principal stress axes using the method developed by Rivera & Cisternas (1990 ) for the 15 best-recorded events. We obtain a pure-shear-rupture tectonic regime under N–S subhorizontal compression and E–W subhorizontal extension. These principal stress axes, which explain the focal mechanisms for at least 75 per cent of the 39 aftershocks, are different from the axes deduced from the main shock. The post-earthquake stress field caused by the main-shock rupture, modelled as sinistral strike slip on three vertical fault segments, is computed for various orientations and magnitudes of the regional stress field, assumed to be horizontal. The aftershock distribution is best explained for a compressive stress field oriented N30°E. Most aftershocks concentrate where the Coulomb failure stress change increases by more than 0.2  MPa. The diversity of aftershock focal mechanisms, poorly explained by this model, may reflect the great diversity in the orientations of pre-existing fractures in the Agly massif.  相似文献   

6.
7.
8.
9.
10.
Seismicity ( Ml <3.5) in the southern Aegean, located using data collected during seven weeks of recording by a temporary network of seismological stations, largely follows the Hellenic arc; the Sea of Crete is nearly aseismic, and only little activity is located south of the Hellenic trench, within the African plate. Focal mechanisms exhibit reverse faulting in the external part of the arc and normal faulting inside it. This normal faulting indicates N-S extension in the northern Aegean, the Gulf of Corinth, the Cyclades and Dodecanese Islands, but NW-SE extension in southern Peloponnese and western Crete and E-W extension in eastern Crete. This non-uniform strain pattern suggests that the Aegean region not only extends in a N-S sense, with the Hellenic arc moving south-westward relative to the Eurasian plate, but also by E-W extension of its southern margin, so that there is a net divergence of material.  相似文献   

11.
12.
13.
  总被引:4,自引:0,他引:4  
The study reappraises the deep seismicity of the Tyrrhenian Sea. Careful examination of the quality of reported hypocentres shows that the earthquakes define a zone dipping NW, about 200 km along strike, 50 km thick, and reaching a depth of about 500 km. The zone is slightly concave to the NW at a depth of 300 km, but, contrary to many previous reports, is not tightly concave, nor are there significant spatial gaps in the seismicity, which is effectively continuous with depth. Seismicity is, however, concentrated in the depth interval 250–300 km, where the dip of the seismic zone changes from 70° (above 250 km) to a more gentle dip of 45° at greater depths. Seven fault-plane solutions are available for the largest earthquakes in this depth interval, all of them consistent with a P -axis down the dip of the seismic zone, and all of them requiring movement on faults out of the plane of the subducting slab.
Two deep earthquakes near Naples lie well outside the main zone of activity; for one of which a fault-plane solution is available that has a P -axis not aligned with the dip of the seismic zone. The tightly concave slab-geometry favoured by other reports is supported mainly by the location of these events near Naples, which we think may represent deformation in a separate, probably shallower dipping, piece of subducted lithosphere.
The lack of shallow seismicity, and particularly of thrust faulting earthquakes, at the surface projection of the Benioff zone suggests that active subduction has ceased. Estimates of the convergence rate responsible for subduction in the last 10 Myr far exceed the present convergence rate of Africa and Eurasia, suggesting that the subduction was related instead to the stretching and thinning of the crust in the Tyrrhenian Sea.  相似文献   

14.
15.
16.
17.
Previous investigations of the causal relationship between postglacial rebound and earthquakes in eastern Canada have focused on the mode of failure and the observed timing of the pulse of earthquake/faulting activity following deglaciation. In this study, the observational database has been extended to include observed orientations of the contemporary stress field and the rotation of stress since deglacial times. It is shown that many of these observations can be explained by a realistic ice history and a viscoelastic earth with a uniform 1021 Pa s mantle.
The effects of viscosity structure on the above predictions are also examined. It is shown that, since most of the above observations are found within the ice margin, they are not very sensitive to lithospheric thickness. Also, the inclusion of a 25 or 50 km ductile layer within the lithosphere will not decouple the seismogenic upper crust. High viscosity (1022 Pa s) in the lower mantle is rejected by the stress orientation and rotation observations. A low-viscosity (6 times 1020Pa s) upper mantle with 1.6 times 1021 Pa s in the upper part of the lower mantle and 3 times 1021 Pa s in the lower part of the lower mantle below 1200 km depth has been found to give predictions that are in general agreement with the observations.  相似文献   

18.
  总被引:1,自引:0,他引:1  
  相似文献   

19.
  总被引:6,自引:0,他引:6  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号