首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Abstract

If a contained homogeneous, rotating fluid is forced near to a resonance for elastoid-inertia waves, strong vortices are observed to form. Numerical experiments reported here lend support to the explanation that these are due to a redistribution of the angular momentum by the waves. If the waves grow until the Angular momentum gradient is overturned somewhere, turbulent mixing there make the redistribution irreversible, resulting in a vortex. The process is analogous to the formation of steps in a stratified fluid by breaking internal waves.  相似文献   

2.
Abstract

In an ocean with a horizontal bottom where no wind is blowing it is shown that the spin (angular momentum) of the ocean is conserved. Thus, when energy is dissipated, at least one of three things will happen: i) Wave spectra may move towards lower frequencies. ii) The directional distribution may be changed towards long-crested waves. iii) Shear currents may be generated. By neglecting ii) and iii), the frequency shift of a spectrum is calculated due to molecular dissipation. When all energy transforming phenomena as e.g. wave breaking and turbulence generation are taken into account, the conservation of spin seems to be able to explain the frequency shift of wave spectra. In shallow water it is shown that there is energy transfer from the waves to shear currents.  相似文献   

3.
Waves, circulation and vertical dependence   总被引:1,自引:1,他引:0  
Longuet-Higgins and Stewart (J Fluid Mech 13:481–504, 1962; Deep-Sea Res 11:529–562, 1964) and later Phillips (1977) introduced the problem of waves incident on a beach, from deep to shallow water. From the wave energy equation and the vertically integrated continuity equation, they inferred velocities to be Stokes drift plus a return current so that the vertical integral of the combined velocities was nil. As a consequence, it can be shown that velocities of the order of Stokes drift rendered the advective term in the momentum equation negligible resulting in a simple balance between the horizontal gradients of the vertically integrated elevation and wave radiation stress terms; the latter was first derived by Longuet-Higgins and Stewart. Mellor (J Phys Oceanogr 33:1978–1989, 2003a), noting that vertically integrated continuity and momentum equations were not able to deal with three-dimensional numerical or analytical ocean models, derived a vertically dependent theory of wave–circulation interaction. It has since been partially revised and the revisions are reviewed here. The theory is comprised of the conventional, three-dimensional, continuity and momentum equations plus a vertically distributed, wave radiation stress term. When applied to the problem of waves incident on a beach with essentially zero turbulence momentum mixing, velocities are very large and the simple balance between elevation and radiation stress gradients no longer prevails. However, when turbulence mixing is reinstated, the vertically dependent radiation stresses produce vertical velocity gradients which then produce turbulent mixing; as a consequence, velocities are reduced, but are still larger by an order of magnitude compared to Stokes drift. Nevertheless, the velocity reduction is sufficient so that elevation set-down obtained from a balance between elevation gradient and radiation stress gradients is nearly coincident with that obtained by the aforementioned papers. This paper includes four appendices. The first appendix demonstrates the numerical process by which Stokes drift is excluded from the turbulence stress parameterization in the momentum equation. A second appendix determines a bottom slope criterion for the application of linear wave relations to the derivation of the wave radiation stress. The third appendix explores the possibility of generalizing results by non-dimensionalization. The final appendix applies the basic theory to a problem introduced by Bennis and Ardhuin (J Phys Oceanogr 41:2008–2012, 2011).  相似文献   

4.
Abstract

The subject is reviewed from the viewpoints of theory, internal tide and wave structure and their implications.

A wider theoretical context suggests scope for further investigation of natural or nearly-trapped forms above the inertial frequency.

Although internal tides in many locations are observed to have first-mode vertical structure, higher modes are seen offshore from shallow shelf-break forcing and for particular Froude numbers, and may be expected locally near generation. Bottom intensification is often observed where the sea floor matches the characteristic slope. Solitons form from internal tides of large amplitude or at large changes of depth.

Internal tides and solitons are observed also at many sills and in straits, and to intensify in canyons.

Non-linear effects of the waves, especially solitons, include the conveyance of water, nutrients, ‘‘mixing potential'’ etc. away from their source to other locations, and the generation of mean currents. The waves transfer energy and possibly heat between the ocean and shelf, may be a source of medium frequency waves on the shelf (periods of minutes) and can contribute to interior mixing and overturning, bottom stirring and sediment movement.  相似文献   

5.
Abstract

Fluxes of angular momentum produced by turbulence in rotating fluids are derived with the effects of a magnetic field included. It is assumed that the rotation is slow but that the magnetic field is of arbitrary strength. A mean magnetic field is shown to produce qualitative changes of the sources of the differential rotation rather than the quenching of differential rotation usually expected. A new equatorward flux of angular momentum arises through the influence of the toroidal magnetic field. The possibility of interpreting the torsional oscillations of the Sun as a consequence of the magnetic perturbations of the turbulent angular momentum fluxes is discussed.  相似文献   

6.
The dispersion and transport of single inertial particles through an oscillatory turbulent aquatic environment are examined numerically by a Lagrangian particle tracking model using a series of idealised test cases. The turbulent mixing is incorporated into the Lagrangian model by the means of a stochastic scheme in which the inhomogeneous turbulent quantities are governed by a one-dimensional k- ε turbulence closure scheme. This vertical mixing model is further modified to include the effects of surface gravity waves including Coriolis-Stokes forcing, wave breaking, and Langmuir circulations. To simplify the complex interactions between the deterministic and the stochastic phases of flow, we assume a time-invariant turbulent flow field and exclude the hydrodynamic biases due to the effects of ambient mean current. The numerical results show that the inertial particles acquire perturbed oscillations traced out as time-varying sinking/rising orbits in the vicinity of the sea surface under linear and cnoidal waves and acquire a non-looping single arc superimposed with the high-frequency fluctuations beneath the nonlinear solitary waves. Furthermore, we briefly summarise some recipes through the course of this paper on the implementation of the stochastic particle tracking models to realistically describe the drift and suspension of inertial particles throughout the water column.  相似文献   

7.

Knowledge of upper ocean currents is needed for trajectory forecasts and is essential for search and rescue operations and oil spill mitigation. This paper addresses effects of surface waves on ocean currents and drifter trajectories using in situ observations. The data set includes colocated measurements of directional wave spectra from a wave rider buoy, ocean currents measured by acoustic Doppler current profilers (ADCPs), as well as data from two types of tracking buoys that sample the currents at two different depths. The ADCP measures the Eulerian current at one point, as modelled by an ocean general circulation model, while the tracking buoys are advected by the Lagrangian current that includes the wave-induced Stokes drift. Based on our observations, we assess the importance of two different wave effects: (a) forcing of the ocean current by wave-induced surface fluxes and the Coriolis–Stokes force, and (b) advection of surface drifters by wave motion, that is the Stokes drift. Recent theoretical developments provide a framework for including these wave effects in ocean model systems. The order of magnitude of the Stokes drift is the same as the Eulerian current judging from the available data. The wave-induced momentum and turbulent kinetic energy fluxes are estimated and shown to be significant. Similarly, the wave-induced Coriolis–Stokes force is significant over time scales related to the inertial period. Surface drifter trajectories were analysed and could be reproduced using the observations of currents, waves and wind. Waves were found to have a significant contribution to the trajectories, and we conclude that adding wave effects in ocean model systems is likely to increase predictability of surface drifter trajectories. The relative importance of the Stokes drift was twice as large as the direct wind drag for the used surface drifter.

  相似文献   

8.
Abstract

In a nonrotating system, the shear Reynolds stresses exerted by surface or internal gravity waves vanish on account of the exact quadrature between the horizontal and vertical orbital velocities. It is shown that a rotation of the system induces small in‐phase perturbations, resulting in a mean Reynolds stress which can generate low frequency currents. If both the wave field and the ocean are homogeneous with respect to the horizontal coordinates, the low‐frequency response is an undamped inertial oscillation. If either the wave field or the ocean are weakly inhomogeneous, the oscillation disperses in the vertical and horizontal directions due to phase‐mixing of modes with closely neighboring frequencies. Other effects which produce small frequency shifts also contribute to phase‐mixing, for example the horizontal component of the Coriolis vector and nonlinear interactions with geo‐strophic currents. The analysis is based on operator representations which avoid normal mode decomposition and yield simple integro‐differential operators for each phase‐mixing process. Numerical results are presented for a continuously stratified model typical for a shallow sea (Baltic). The orders of magnitude and qualitative features are in reasonable agreement with observations.  相似文献   

9.

The pattern and propagation of waves generated by steady or oscillatory disturbances travelling horizontally in a rotating, stratified fluid are studied following a technique developed by Lighthill. Both two‐ and three‐dimensional distrubances are investigated. The results show how rotation modifies internal wave patterns in a stratified fluid and how stratification modifies inertial wave patterns in a rotating fluid. The results are used to compute the effective diminution of Taylor column length due to the presence of density stratification. They also show that the appearance of wave crests upstream of a disturbance is possible only when the disturbance is unsteady and that observations of upstream blocking in a two‐dimensional stratified flow can be explained by the existence of a certain class of plane waves as modified by viscosity.  相似文献   

10.
Abstract

We consider the mixing of passive tracers and vorticity by temporally fluctuating large scale flows in two dimensions. In analyzing this problem, we employ modern developments stemming from properties of Hamiltonian chaos in the particle trajectories; these developments generally come under the heading “chaotic advection” or “Lagrangian turbulence.” A review of the salient properties of this kind of mixing, and the mathematics used to analyze it, is presented in the context of passive tracer mixing by a vacillating barotropic Rossby wave. We then take up the characterization of subtler aspects of the mixing. It is shown the chaotic advection produces very nonlocal mixing which cannot be represented by eddy diffusivity. Also, the power spectrum of the tracer field is found to be k ? l at shortwaves—precisely as for mixing by homogeneous, isotropic two dimensional turbulence,—even though the physics of the present case is very different. We have produced two independent arguments accounting for this behavior.

We then examine integrations of the unforced barotropic vorticity equation with initial conditions chosen to give a large scale streamline geometry similar to that analyzed in the passive case. It is found that vorticity mixing proceeds along lines similar to passive tracer mixing. Broad regions of homogenized vorticity ultimately surround the separatrices of the large scale streamline pattern, with vorticity gradients limited to nonchaotic regions (regions of tori) in the corresponding passive problem.

Vorticity in the chaotic zone takes the form of an arrangement of strands which become progressively finer in scale and progressively more densely packed; this process transfers enstrophy to small scales. Although the enstrophy cascade is entirely controlled by the large scale wave, the shortwave enstrophy spectrum ultimately takes on the classical k ? l form. If one accepts that the enstrophy cascade is indeed mediated by chaotic advection, this is the expected behavior. The extreme form of nonlocality (in wavenumber space) manifest in this example casts some doubt on the traditional picture of enstrophy cascade in the Atmosphere, which is based on homogeneous two dimensional turbulence theory. We advance the conjecture that these transfers are in large measure attributable to large scale, low frequency, planetary waves.

Upscale energy transfers amplifying the large scale wave do indeed occur in the course of the above-described process. However, the energy transfer is complete long before vorticity mixing has gotten very far, and therefore has little to do with chaotic advection. In this sense, the vorticity involved in the enstrophy cascade is “fossil vorticity,” which has already given up its energy to the large scale.

We conclude with some speculations concerning statistical mechanics of two dimensional flow, prompted by our finding that flows with identical initial energy and enstrophy can culminate in very different final states. We also outline prospects for further applications of chaotic mixing in atmospheric problems.  相似文献   

11.
Since gravity waves significantly influence the atmosphere by transporting energy and momentum, it is important to study their wave spectrum and their energy dissipation rates. Besides that, knowledge about gravity wave sources and the propagation of the generated waves is essential. Originating in the lower atmosphere, gravity waves can move upwards; when the background wind field is equal to their phase speed a so-called critical layer is reached. Their breakdown and deposition of energy and momentum is possible. Another mechanism which can take place at critical layers is gravity wave reflection.In this paper, gravity waves which were observed by foil chaff measurements during the DYANA (DYnamics Adapted Network for the Atmosphere) campaign in 1990 in Biscarrosse (44°N, 1°W)—as reported by Wüst and Bittner [2006. Non-linear wave–wave interaction: case studies based on rocket data and first application to satellite data. Journal of Atmospheric and Solar-Terrestrial Physics 68, 959–976]—are investigated to look for gravity wave reflection processes. Following nonlinear theory, energy dissipation rates according to Weinstock [1980. Energy dissipation rates of turbulence in the stable free atmosphere. Journal of the Atmospheric Sciences 38, 880–883] are calculated from foil chaff cloud and falling sphere data and compared with the critical layer heights. Enhanced energy dissipation rates are found at those altitudes where the waves’ phase speed matches the zonal background wind speeds. Indication of gravity wave trapping is found between two altitudes of around 95 and 86 km.  相似文献   

12.

In 1996, St Pierre (1996) reported numerical simulations of a buoyant blob migrating across the earth's outer core and subject to the combined effects of rotation and an azimuthal magnetic field. He noted that the blob rapidly fragments into a series of plate-like structures. Quite independently, Davidson (1995, 1997) discovered a similar behaviour in the context of low- R m turbulence (without a Coriolis force) and showed that this phenomenon has its roots in the destruction of angular momentum by the Lorentz force. The purpose of this paper is to pull together these earlier studies and, in particular, to determine whether or not St. Pierre's platelets are also a consequence of the destruction of angular momentum. We confirm that this is indeed the case.  相似文献   

13.
Abstract

Broad band secondary instability of elliptical vortex motion has been proposed as a principal source of shear-flow turbulence. Here experiments on such instability in an elliptical flow with no shear boundary layer are described. This is made possible by the mechanical distortion in the laboratory frame of a rotating fluid-filled elastic cylinder. One percent ellipticity of a 10 cm diameter cylinder rotating once each second can give rise to an exponentially-growing mode stationary in the laboratory frame. In first order this mode is a sub-harmonic parametric Faraday instability. The finite-amplitude equations represent angular momentum transfer on an inertial time scale due to Reynolds stresses. The growth of this mode is not limited by boundary friction but by detuning and centrifugal stabilization. On average, a generalized Richardson number achieves a marginal value through much of the evolved flow. However, the characteristic flow is intermittent with the cycle: rapid growth, stabilizing momentum transfer from the mean flow, interior re-spin up, and then again. Data is presented in which, at large Reynolds numbers, seven percent ellipticity causes a fifty percent reduction in the kinetic energy of the rotating fluid. In the geophysical setting, this tidal instability in the earth's interior could be inhibited by sub-adiabatic temperature gradients. A near adiabatic region greater than 10 km in height would permit the growth of tidally destabilized modes and the release of energy to three-dimensional disturbances. Such disturbances might play a central role in the geodynamo and add significantly to overall tidal dissipation.  相似文献   

14.
Abstract

The south-easterly surface flow down the slopes of Antarctica induces a transfer of westerly angular momentum to the atmosphere, which must be removed from the Antarctic domain by atmospheric transports. It is suggested that synoptic eddies protruding from the northern baroclinic zone into the polar regions are modified by the topography such that they are able to perform these meridional transports. A simple linear two-layer model of the axisymmetric circulation of Antarctica is presented where the eddy effects are incorporated via a K-ansatz. It is shown that qualitatively realistic mean flow patterns can be obtained with this model. The limitations of this approach are exposed.  相似文献   

15.
Abstract

With the help of simplifying approximations, we have derived expressions for the non-diffusive fluxes of the angular momentum which are brought about by the action of Coriolis forces on the convective motion. The original turbulence, which is not perturbed by the Coriolis forces, is considered given and weakly anisotropic, the anisotropy having a preferred radial direction. The eddy viscosities are evaluated. Hence, a closed equation for the angular velocity is derived, and then solved for the case of slow rotation. It is shown that the differential rotation is generated most effectively in the case of moderate rotation when the Rossby number is of order unity. At small Rossby numbers, the rotation differentiality is inhibited. A negative eddy viscosity is suggested for the case of rapid rotation. Some implications for the Sun and other astrophysical objects are discussed.  相似文献   

16.
Abstract

A general fluid dynamical theory of discrete unstable spiral modes in disk-shaped galaxies is described. This formulation of modes includes a radiation boundary condition and an exact numerical treatment of the Poisson equation. Thus, the modes are maintained by an outward transport of angular momentum, but they may be composed of both leading and trailing waves. A numerical scheme based on this formulation is described, and examples of modes obtained with this scheme are presented. These examples compare favorably with calculations based on the original asymptotic theory of Bertin, Lau, Lin and Mark. The implications of the present formulation of modes in galactic models support the hypothesis of a quasi-stationary spiral structure.  相似文献   

17.
A method of wave mode determination, which was announced in Balikhin and Gedalin, is applied to AMPTE UKS and AMPTE IRM magnetic field measurements downstream of supercritical quasiperpendicular shock. The method is based on the fact that the relation between phase difference of the waves measured by two satellites, Doppler shift equation, the direction of the wave propagation are enough to obtain the dispersion equation of the observed waves. It is shown that the low frequency turbulence mainly consists of waves observed below 1 Hz with a linear dependence between the absolute value of wave vector |k| and the plasma frame wave frequency. The phase velocity of these waves is close to the phase velocity of intermediate waves Vint = Vacos().  相似文献   

18.
Observations of turbulent dissipation rates measured by two independent instruments are compared with numerical model runs to investigate the injection of turbulence generated by sea surface gravity waves. The near-surface observations are made by a moored autonomous instrument, fixed at approximately 8 m below the sea surface. The instrument is equipped with shear probes, a high-resolution pressure sensor, and an inertial motion package to measure time series of dissipation rate and nondirectional surface wave energy spectrum. A free-falling profiler is used additionally to collect vertical microstructure profiles in the upper ocean. For the model simulations, we use a one-dimensional mixed layer model based on a kε type second moment turbulence closure, which is modified to include the effects of wave breaking and Langmuir cells. The dissipation rates obtained using the modified kε model are elevated near the sea surface and in the upper water column, consistent with the measurements, mainly as a result of wave breaking at the surface, and energy drawn from wave field to the mean flow by Stokes drift. The agreement between observed and simulated turbulent quantities is fairly good, especially when the Stokes production is taken into account.  相似文献   

19.
The quasi-normal scale elimination (QNSE) is an analytical spectral theory of turbulence based upon a successive ensemble averaging of the velocity and temperature modes over the smallest scales of motion and calculating corresponding eddy viscosity and eddy diffusivity. By extending the process of successive ensemble averaging to the turbulence macroscale one eliminates all fluctuating scales and arrives at models analogous to the conventional Reynolds stress closures. The scale dependency embedded in the QNSE method reflects contributions from different processes on different scales. Two of the most important processes in stably stratified turbulence, internal wave propagation and flow anisotropization, are explicitly accounted for in the QNSE formalism. For relatively weak stratification, the theory becomes amenable to analytical processing revealing just how increasing stratification modifies the flow field via growing anisotropy and gravity wave radiation. The QNSE theory yields the dispersion relation for internal waves in the presence of turbulence and provides a theoretical reasoning for the Gargett et al. (J Phys Oceanogr 11:1258–1271, 1981) scaling of the vertical shear spectrum. In addition, it shows that the internal wave breaking and flow anisotropization void the notion of the critical Richardson number at which turbulence is fully suppressed. The isopycnal and diapycnal viscosities and diffusivities can be expressed in the form of the Richardson diffusion laws thus providing a theoretical framework for the Okubo dispersion diagrams. Transitions in the spectral slopes can be associated with the turbulence- and wave-dominated ranges and have direct implications for the transport processes. We show that only quasi-isotropic, turbulence-dominated scales contribute to the diapycnal diffusivity. On larger, buoyancy dominated scales, the diapycnal diffusivity becomes scale independent. This result underscores the well-known fact that waves can only transfer momentum but not a scalar and sheds a new light upon the Ellison–Britter–Osborn mixing model. It also provides a general framework for separation of the effects of turbulence and waves even if they act on the same spatial and temporal scales. The QNSE theory-based turbulence models have been tested in various applications and demonstrated reliable performance. It is suggested that these models present a viable alternative to conventional Reynolds stress closures.  相似文献   

20.
Abstract

Edge waves are known to give rise to beach cusps. This paper investigates the topographic feed-back upon the waves. For edge waves generated by subharmonic resonance with incident waves, the topography acts to decrease the edge wave response. As well as causing frequency detuning (Guza and Bowen, 1981) the topography can cause the scattering of edge wave energy. For synchronous waves the topographic irregularities have the opposite effect, and there can be a feed of energy into the edge waves by scattering from the incident waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号