首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Whether in the mantle or in magma chambers, convective flows are characterized by large variations of viscosity. We study the influence of the viscosity structure on the development of convective instabilities in a viscous fluid which is cooled from above. The upper and lower boundaries of the fluid are stress-free. A viscosity dependence with depth of the form ν0 + ν1 exp(?γ.z) is assumed. After the temperature of the top boundary is lowered, velocity and temperature perturbations are followed numerically until convective breakdown occurs. Viscosity contrasts of up to 107 and Rayleigh numbers of up to 108 are studied.For intermediate viscosity contrasts (around 103), convective breakdown is characterized by the almost simultaneous appearance of two modes of instability. One involves the whole fluid layer, has a large horizontal wavelength (several times the layer depth) and exhibits plate-like behaviour. The other mode has a much smaller wavelength and develops below a rigid lid. The “whole layer” mode dominates for small viscosity contrasts but is suppressed by viscous dissipation at large viscosity contrasts.For the “rigid lid” mode, we emphasize that it is the form of the viscosity variation which determines the instability. For steep viscosity profiles, convective flow does not penetrate deeply in the viscous region and only weak convection develops. We propose a simple method to define the rigid lid thickness. We are thus able to compute the true depth extent and the effective driving temperature difference of convective flow. Because viscosity contrasts in the convecting region do not exceed 100, simple scaling arguments are sufficient to describe the instability. The critical wavelength is proportional to the thickness of the thermal boundary layer below the rigid lid. Convection occurs when a Rayleigh number defined locally exceeds a critical value of 160–200. Finally, we show that a local Rayleigh number can be computed at any depth in the fluid and that convection develops below depth zr (the rigid lid thickness) such that this number is maximum.The simple similarity laws are applied to the upper mantle beneath oceans and yield estimates of 5 × 1015?5 × 1016 m2 s?1 for viscosity in the thermal boundary layer below the plate.  相似文献   

2.
Numerical experiments have been carried out on two-dimensional thermal convection, in a Boussinesq fluid with infinite Prandtl number, at high Rayleigh numbers. With stress free boundary conditions and fixed heat flux on upper and lower boundaries, convection cells develop with aspect ratios (width/depth) λ? 5, if heat is supplied either entirely from within or entirely from below the fluid layer. The preferred aspect ratio is affected by the lateral boundary conditions. If the temperature, rather than the heat flux, is fixed on the upper boundary the cells haveλ ≈ 1. At Rayleigh numbers of 2.4 × 105 and greater, small sinking sheets are superimposed on the large aspect ratio cells, though they do not disrupt the circulation. Similar two-scale flows have been proposed for convection in the earth's mantle. The existence of two scales of flow in two-dimensional numerical experiments when the viscosity is constant will allow a variety of geophysically important effects to be investigated.  相似文献   

3.
Abstract

Two upper bounding problems for thermal convection in a layer of fluid contained between perfectly conducting stress-free boundaries are treated numerically. Since the Euler equations resulting from this variational approach are simpler than the Navier-Stokes equations, they allow numerical calculations to be carried out economically to fairly large values of the Rayleigh number. The upper bounding problem formulated by Howard (1963), which yields a Nusselt number independent of Prandtl number, diverges from the correct behavior as the Rayleigh number increases. In hopes of coming closer to results of previous investigations of the Boussinesq equations of motion, a more restrictive upper bounding problem is formulated. For large Prandtl numbers the momentum equation is linearized and is used as an explicit side constraint on the variational problem, thereby forcing the solutions to more closely resemble the solutions of the Boussinesq equations. Numerical calculations at values of the Rayleigh number up to 1.5 × 105 indicate that the additional constraint decreases the upper bound on the Nusselt number; it appears that this upper bound differs by only a multiplicative factor from that calculated from solutions of the full equations of motion and may be a reasonable approximation for large Rayleigh numbers.  相似文献   

4.
Abstract

We describe nonlinear time-dependent numerical simulations of whole mantle convection for a Newtonian, infinite Prandtl number, anelastic fluid in a three-dimensional spherical shell for conditions that approximate the Earth's mantle. Each dependent variable is expanded in a series of 4,096 spherical harmonics to resolve its horizontal structure and in 61 Chebyshev polynomials to resolve its radial structure. A semiimplicit time-integration scheme is used with a spectral transform method. In grid space there are 61 unequally-spaced Chebyshev radial levels, 96 Legendre colatitudinal levels, and 192 Fourier longitudinal levels. For this preliminary study we consider four scenarios, all having the same radially-dependent reference state and no internal heating. They differ by their radially-dependent linear viscous and thermal diffusivities and by the specified temperatures on their isothermal, impermeable, stress-free boundaries. We have found that the structure of convection changes dramatically as the Rayleigh number increases from 105 to 106 to 107. The differences also depend on how the Rayleigh number is increased. That is, increasing the superadiabatic temperature drop, δT, across the mantle produces a greater effect than decreasing the diffusivities. The simulation with a Rayleigh number of 107 is approximately 10,000 times critical, close to estimates of that for the Earth's mantle. However, although the velocity structure for this highest Rayleigh number scenario may be adequately resolved, its thermodynamic structure requires greater horizontal resolution. The velocity and thermodynamic structures of the scenarios at Rayleigh numbers of 105 and 106 appear to be adequately resolved. The 105 Rayleigh number solution has a small number of broad regions of warm upflow embedded in a network of narrow cold downflow regions; whereas, the higher Rayleigh number solutions (with large δT) have a large number of small hot upflow plumes embedded in a broad weak background of downflow. In addition, as would be expected, these higher Rayleigh number solutions have thinner thermal boundary layers and larger convective velocities, temperatures perturbations, and heat fluxes. These differences emphasize the importance of developing even more realistic models at realistic Rayleigh numbers if one wishes to investigate by numerical simulation the type of convection that occurs in the Earth's mantle.  相似文献   

5.
— A novel class of nonlinear, visco-elastic rheologies has recently been developed by MÜHLHAUS et al.(2002a, b). The theory was originally developed for the simulation of large deformation processes including folding and kinking in multi-layered visco-elastic rock . The orientation of the layer surfaces or slip planes in the context of crystallographic slip is determined by the normal vector the so-called director of these surfaces. Here the model (MÜHLHAUS et al., 2002a, b) is generalized to include thermal effects; it is shown that in 2-D steady states the director is given by the gradient of the flow potential. The model is applied to anisotropic simple shear where the directors are initially parallel to the shear direction. The relative effects of textural hardening and thermal softening are demonstrated. We then turn to natural convection and compare the time evolution and approximately steady states of isotropic and anisotropic convection for a Rayleigh number R a=5.64×105 for aspect ratios of the experimental domain of 1 and 2, respectively. The isotropic case has a simple steady-state solution, whereas in the orthotropic convection model patterns evolve continuously in the core of the convection cell, which makes only a near-steady condition possible. This near-steady state condition shows well aligned boundary layers, and the number of convection cells which develop appears to be reduced in the orthotropic case. At the moderate Rayleigh numbers explored here we found only minor influences in the change from aspect ratio one to two in the model domain.  相似文献   

6.
In our previous works, based on numerical models, it was shown that under certain conditions a hot material can rise in portions in the tails of thermal mantle plumes. The spectrum of these pulsations can correspond to the observed spectra of catastrophic hotspot eruptions. Since most of the existing numerical models of thermal convection for the mantle of the present Earth do not reveal these pulsations, in this work, we analyze the physical cause and initiation conditions of pulsations of thermal plumes. The results of a numerical solution of the thermal convection equations for a material with varying parameters in the extended Boussinesq approximation are presented. It is shown how the structure of the convection is transformed with the increase of convection intensity. At the Rayleigh numbers Ra > 106, convection becomes unsteady, and the configuration of the ascending and descending flows changes. The new flow emerging at the mantle bottom acquires a mushroom shape with a head and a tail. After the rise of the plume’s head to the surface, the tail remains in the mantle in the form of a quasi-stationary hot steam. It turns out that at Ra ~ 5 × 107, the thermal mantle plume becomes pulsating and its tail is in fact a heated channel through which the hot material rises in successive portions. At the Rayleigh numbers Ra > 5 × 108, the tail of the thermal plume breaks and the plume becomes a regular conveyor of separate ascending portions of the hot material, which are referred to as thermals. Thus, thermal convection with pulsating plumes takes place at the transitional stage from the regime of quasi-stationary plumes to the regime of thermals.  相似文献   

7.
The paper presents results obtained in experiments on a horizontal layer heated from below in its central part and cooled from above; the layer models the oceanic asthenosphere. Flow velocity and temperature profiles are measured and the flow structure under boundary layer conditions is determined (at Rayleigh numbers Ra > 5 × 105). The flow in the core of a plane horizontal layer heated laterally and cooled from above develops under conditions of a constant temperature gradient averaged over the layer thickness. The flow core is modeled by a horizontal layer with a moving upper boundary and with adiabatic bounding surfaces under conditions of a constant horizontal gradient of temperature. Exact solutions of free convection equations are found for this model in the Boussinesq approximation. Model results are compared with experimental data. Temperature and flow velocity ranges are determined for the boundary layer regime. Based on the experimental flow velocity profiles, an expression is found for the flow velocity profile in a horizontal layer with a mobile upper boundary heated laterally and cooled from above. Free convection velocity profiles are obtained for the asthenosphere beneath a mid-ocean ridge (MOR) with a mobile lithosphere. An expression is obtained for the tangential stress at the top of the asthenosphere beneath an MOR and the total friction force produced by the asthenospheric flow at the asthenosphere-lithosphere boundary is determined.  相似文献   

8.
Introduction The velocity field of surface plate motion can be split into a poloidal and a toroidal parts.At the Earth′s surface,the toroidal component is manifested by the existence of transform faults,and the poloidal component by the presence of convergence and divergence,i.e.spreading and subduc-tion zones.They have coupled each other and completely depicted the characteristics of plate tec-tonic motions.The mechanism of poloidal field has been studied fairly clearly which is related to …  相似文献   

9.
10.
The case is presented that the efficiency of variable viscosity convection in the Earth's mantle to remove heat may depend only very weakly on the internal viscosity or temperature. An extensive numerical study of the heat transport by 2-D steady state convection with free boundaries and temperature dependent viscosity was carried out. The range of Rayleigh numbers (Ra) is 104?107 and the viscosity contrast goes up to 250000. Although an absolute or relative maximum of the Nusselt number (Nu) is obtained at long wavelength in a certain parameter range, at sufficiently high Rayleigh number optimal heat transport is achieved by an aspect ratio close to or below one. The results for convection in a square box are presented in several ways. With the viscosity ratio fixed and the Rayleigh number defined with the viscosity at the mean of top and bottom temperature the increase of Nu with Ra is characterized by a logarithmic gradient β = ?ln(Nu)/? ln(Ra) in the range of 0.23–0.36, similar to constant viscosity convection. More appropriate for a cooling planetary body is a parameterization where the Rayleigh number is defined with the viscosity at the actual average temperature and the surface viscosity is fixed rather than the viscosity ratio. Now the logarithmic gradient β falls below 0.10 when the viscosity ratio exceeds 250, and the velocity of the surface layer becomes almost independent of Ra. In an end-member model for the Earth's thermal evolution it is assumed that the Nusselt number becomes virtually constant at high Rayleigh number. In the context of whole mantle convection this would imply that the present thermal state is still affected by the initial temperature, that only 25–50% of the present-day heat loss is balanced by radiogenic heat production, and the plate velocities were about the same during most of the Earth's history.  相似文献   

11.
Abstract

Chandrasekhar (1961) has summarized the stability results of Bénard convection in a rotating fluid for the cases where the boundary surfaces are both rigid and free, and for both exchange of stabilities and overstability. His analysis provides very accurate results for a limited range of Taylor number J. Bisshopp and Niiler (1965) presented an asymptotic analysis of the rigid boundary problem for exchange of stabilities which is valid for very large Taylor number. The present paper makes use of modern rotating fluid theory to develop an approximate scheme for evaluating the Rayleigh number and other parameters and variables. Known asymptotic results for the free boundary problem at large J are used and an expansion in powers of E1/6 (the Ekman number, E = 2J ) yields a sequence of equations and appropriate boundary conditions for the rigid boundary problem. After the algorithm for the calculation is developed, results are given for the problem to second order in the expansion parameter for the case of exchange of stabilities and to first order in the expansion parameters for the overstable case. Ekman boundary layers are important in the development as one might expect. However, an additional, diffusive boundary layer of thickness E? is necessary to provide the details of the temperature field. This boundary layer is the thermal response in the vertical direction to the horizontal spacing of the cells which is also order E?. The horizontal spacing of the cells is essentially a series of contiguous, Stewartson (1957) layers of thickness E?.  相似文献   

12.
Abstract

Models of a differentially rotating compressible convection zone are calculated, considering the inertial forces in the poloidal components of the equations of motion. Two driving mechanisms have been considered: latitude dependent heat transport and anisotropic viscosity. In the former case a meridional circulation is induced initially which in turn generates differential rotation, whereas in the latter case differential rotation is directly driven by the anisotropic viscosity, and the meridional circulation is a secondary effect.

In the case of anisotropic viscosity the choice of boundary conditions has a big influence on the results: depending on whether or not the conditions of vanishing pressure perturbation are imposed at the bottom of the convection zone, one obtains differential rotation with a fast (≥ 10 ms?1) or a slow (~ 1 ms?1) circulation. In the latter case the rotation law is mainly a function of radius and the rotation rate increases inwards if the viscosity is larger in radial direction than in the horizontal directions.

The models with latitude dependent heat transport exhibit a strong dependence on the Prandtl number. For values of the Prandtl number less than 0.2 the pole-equator temperature difference and the surface velocity of the meridional circulation are compatible with observations. For sufficiently small values of the Prandtl number the convection zone becomes globally unstable like a layer of fluid for which the critical Rayleigh number is exceeded.  相似文献   

13.
Convection in the Earth's core is driven much harder at the bottom than the top. This is partly because the adiabatic gradient steepens towards the top, partly because the spherical geometry means the area involved increases towards the top, and partly because compositional convection is driven by light material released at the lower boundary and remixed uniformly throughout the outer core, providing a volumetric sink of buoyancy. We have therefore investigated dynamo action of thermal convection in a Boussinesq fluid contained within a rotating spherical shell driven by a combination of bottom and internal heating or cooling. We first apply a homogeneous temperature on the outer boundary in order to explore the effects of heat sinks on dynamo action; we then impose an inhomogeneous temperature proportional to a single spherical harmonic Y 2² in order to explore core-mantle interactions. With homogeneous boundary conditions and moderate Rayleigh numbers, a heat sink reduces the generated magnetic field appreciably; the magnetic Reynolds number remains high because the dominant toroidal component of flow is not reduced significantly. The dipolar structure of the field becomes more pronounced as found by other authors. Increasing the Rayleigh number yields a regime in which convection inside the tangent cylinder is strongly affected by the magnetic field. With inhomogeneous boundary conditions, a heat sink promotes boundary effects and locking of the magnetic field to boundary anomalies. We show that boundary locking is inhibited by advection of heat in the outer regions. With uniform heating, the boundary effects are only significant at low Rayleigh numbers, when dynamo action is only possible for artificially low magnetic diffusivity. With heat sinks, the boundary effects remain significant at higher Rayleigh numbers provided the convection remains weak or the fluid is stably stratified at the top. Dynamo action is driven by vigorous convection at depth while boundary thermal anomalies dominate in the upper regions. This is a likely regime for the Earth's core.  相似文献   

14.
Abstract

A theoretical analysis of pseudo two-dimensional, finite-amplitude, thermal convection is made for an infinite Prandtl number fluid which is subjected to a constant heat flux out of the top boundary and insulated at the bottom. For large Rayleigh numbers the convective flow becomes intermittent and the system is characterized by the following cyclic process: the formation of a thermal boundary layer by diffusion, the instability of this layer when it becomes sufficiently thick, the destruction of the layer by the convective flow, the dying down of the convection, and the reforming of the thermal boundary layer by diffusion. The periodicity and the horizontal wave number of the intermittent convective flow are found to be independent of the depth of the fluid layer but depend on the rate of cooling and the properties of the fluid.  相似文献   

15.
Results of a detailed petromagnetic study of sediments of the Koshak section, including the Mesozoic/Cenozoic (K/T) boundary, are presented. The rocks are shown to have a very low magnetization. A relatively high magnetization is characteristic of two thin clayey beds, one at the K/T boundary and the other 0.6 m above it: x up to 2.5 × 10?9 m3/kg, M s up to 0.6 × 10?3 A m2/kg, and M rs up to 0.4 × 10?3 A m2/kg. This is related to relatively high concentrations of hemoilmenite (up to 0.2%), magnetite (up to 0.01%), and goethite (up to 0.24%) in these beds. It is evident that the distribution of these magnetic minerals is lithologically controlled (the predominant occurrence in clayey beds), which is expressed, in particular, in the relation between the paramagnetic (clayey) and diamagnetic (carbonate) contributions to the magnetization of the sediments. Thus, clayey interbeds are sharply distinguished by the value of the paramagnetic magnetization (M p = (83–86) × 10?5 A m2/kg) as compared with purely diamagnetic chalk (M d = ?(26–35) × 10?5 A m2/kg). Minor concentrations of metallic iron (up to ~0.002%) discovered in the sediments have a lithologically uncontrolled distribution (metallic iron is more often observed near the K/T boundary rather than in clayey beds). Most probably, magnetite, hemoilmenite, and goethite were accumulated mostly with clay and other terrigenous material, while fine particles of iron are likely to have been dispersed by air. The whole set of the data of this work suggests that the K/T boundary is not distinguished by characteristic magnetomineralogical and magnetolithologic features.  相似文献   

16.
A new model is proposed for passive degassing from sub-volcanic magma chambers. The water content in stably stratified shallow magma chamber will be equated to its solubility at the upper boundary by convection. Water from a lower layer high in water content can enrich the contact zone of the upper layer and lead to further convective overturn of this boundary layer. A complete set of equations describing convection with bubble formation and dissolution is reduced to a simplified form by assuming a small bubble content. The development and pattern of flow driven by vesiculation is modeled numerically in a 2D magma chamber for relatively low Raleigh numbers (5×105). Bubbles rising from the magma will collect near the roof in a layer of 8–10 vol% and then escape upward to fumaroles. The Stokes flux of bubbles escaping from an andesitic magma with viscosity 104 P and a top surface of about 500×500 m corresponds with observed total magmatic water fluxes of 35 kg/s. Pressure within the chamber is buffered by elastic (and local visco-elastic) deformations in the solid rocks bounding the chamber to the range between ambient and close to lithostatic values. In a chamber closed to fresh magma inputs, the decrease in volume due to such gentle volatile escape lowers the reference pressure. Bubbles flux from the lower layer induced by variation of the saturation level around stratification boundary may be efficient mechanism for the water transport between layers.  相似文献   

17.
In many natural environments, such as in underwater hot springs and hydrothermal vents, thermal gradients are accompanied with changes in the concentration of chemical compounds transported to the seawater, causing the so-called double-diffusive, mixed convection. To study the physical scenarios in such systems, a vertical channel filled with a porous medium saturated with saline water is considered. The motion in the sediment-filled channel is induced by two buoyancy forces and an external pressure gradient, similar to the situation in a vent with an upward flow direction. The fluid flow has been modeled by an extended Darcy model, and the flow instability mechanisms have been studied numerically. The linear stability analysis is performed considering a wide range of Darcy number (Da = 10−5 -10−8). The instability boundary curve showed three distinct dynamic regimes: (i) Rayleigh-Taylor (R-T), (ii) log-log non-linear variation, and (iii) log-log linear variation. The domain of different regimes were sensitive to external pressure gradient as well as permeability. Similar to cross-diffusive natural convection in pure viscous fluids, a linear relationship between logarithmic absolute values of critical thermal Rayleigh number (∣RaT∣) and solute Rayleigh number (RaC) is found in the third regime. Based on the permeability, for any solute Rayleigh number (RaC), there existed a minimum value of Reynolds number (Re), below which R-T type of instability appeared. Above this minimum value, the instability was due to two buoyancy forces, known as buoyant instability. Simulations of secondary flow via energy analysis demonstrated the development of complex dynamics at the critical state in all three regimes characterized by transition of multi to uni-cellular structures and vice verse.  相似文献   

18.
Three-dimensional (3-D) numerical simulations of single turbulent thermal plumes in the Boussinesq approximation are used to understand more deeply the interaction of a plume with itself and its environment. In order to do so, we varied the Rayleigh and Prandtl numbers from Ra?~?105 to Ra?~?108 and from Pr?~?0.025 to Pr?~?70. We found that thermal dissipation takes place mostly on the border of the plume. Moreover, the rate of energy dissipation per unit mass ε T has a critical point around Pr?~?0.7. The reason is that at Pr greater than ~0.7, buoyancy dominates inertia and thermal advection dominates wave formation whereas this trend is reversed at Pr less than ~0.7. We also found that for large enough Prandtl number (Pr?~?70), the velocity field is mostly poloidal although this result was known for Rayleigh–Bénard convection (see Schmalzl et al. [On the validity of two-dimensional numerical approaches to time-dependent thermal convection. Europhys. Lett. 2004, 67, 390--396]). On the other hand, at small Prandtl numbers, the plume has a large helicity at large scale and a non-negligible toroidal part. Finally, as observed recently in details in weakly compressible turbulent thermal plume at Pr?=?0.7 (see Plourde et al. [Direct numerical simulations of a rapidly expanding thermal plume: structure and entrainment interaction. J. Fluid Mech. 2008, 604, 99--123]), we also noticed a two-time cycle in which there is entrainment of some of the external fluid to the plume, this process being most pronounced at the base of the plume. We explain this as a consequence of calculated Richardson number being unity at Pr?=?0.7 when buoyancy balance inertia.  相似文献   

19.
Abstract

Numerical simulations of thermal convection in a rapidly rotating spherical fluid shell with and without inhomogeneous temperature anomalies on the top boundary have been carried out using a three-dimensional, time-dependent, spectral-transform code. The spherical shell of Boussinesq fluid has inner and outer radii the same as those of the Earth's liquid outer core. The Taylor number is 107, the Prandtl number is 1, and the Rayleigh number R is 5Rc (Rc is the critical value of R for the onset of convection when the top boundary is isothermal and R is based on the spherically averaged temperature difference across the shell). The shell is heated from below and cooled from above; there is no internal heating. The lower boundary of the shell is isothermal and both boundaries are rigid and impermeable. Three cases are considered. In one, the upper boundary is isothermal while in the others, temperature anomalies with (l,m) = (3,2) and (6,4) are imposed on the top boundary. The spherically averaged temperature difference across the shell is the same in all three cases. The amplitudes of the imposed temperature anomalies are equal to one-half of the spherically averaged temperature difference across the shell. Convective structures are strongly controlled by both rotation and the imposed temperature anomalies suggesting that thermal inhomogeneities imposed by the mantle on the core have a significant influence on the motions inside the core. The imposed temperature anomaly locks the thermal perturbation structure in the outer part of the spherical shell onto the upper boundary and significantly modifies the velocity structure in the same region. However, the radial velocity structure in the outer part of the shell is different from the temperature perturbation structure. The influence of the imposed temperature anomaly decreases with depth in the shell. Thermal structure and velocity structure are similar and convective rolls are more columnar in the inner part of the shell where the effects of rotation are most dominant.  相似文献   

20.
We present the first attempt to explain slow earthquakes as cascading thermal-mechanical instabilities. To attain this goal we investigate brittle-ductile coupled thermal-mechanical simulation on vastly different time scales. The largest scale model consists of a cross section of a randomly perturbed elasto-visco-plastic continental lithosphere on the order of 100 × 100 km scale with no other initial structures. The smallest scale model investigates a km-scale subsection of the large model and has a local resolution of 40 × 40 m. The model is subject to a constant extension velocity applied on either side. We assume a free top surface and with a zero tangential stress along the other boundaries. Extension is driven by velocity boundary conditions of 1 cm/a applied on either side of the model. This is the simplest boundary condition, and makes it an ideal starting point for understanding the behavior of a natural system with multiscale brittle-ductile coupling. Localization feedback is observed as faulting in the brittle upper crust and ductile shearing in an elasto-viscoplastic lower crust. In this process brittle faulting may rupture at seismogenic rates, e.g., at 102–103 ms?1, whereas viscous shear zones propagate at much slower rates, up to 3 × 10?9 ms?1. This sharp contrast in the strain rates leads to complex short-time-scale interactions at the brittle-ductile transition. We exploit the multiscale capabilities from our new simulations for understanding the underlying thermo-mechanics, spanning vastly different, time- and length-scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号