首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to gain a better understanding of the physical processes underlying fast dynamo action it is instructive to investigate the structure of both the magnetic field and the velocity field after the dynamo saturates. Previously, computational results have been presented (Cattaneo, Hughes and Kim, 1996) that indicate, in particular, that Lagrangian chaos is suppressed in the dynamical regime of the dynamo. Here we extend their model by removing the assumption of neglecting the inertial term. This allows for an investigation into the effect of this term on the evolution of the dynamo via a comparison of the two models. Our results indicate that this term plays a crucial role in the physics of the dynamo.  相似文献   

2.
As a step towards a physically realistic model of a fast dynamo, we study numerically a kinematic dynamo driven by convection in a rapidly rotating cylindrical annulus. Convection maintains the quasi-geostrophic balance whilst developing more complicated time-dependence as the Rayleigh number is increased. We incorporate the effects of Ekman suction and investigate dynamo action resulting from a chaotic flow obtained in this manner. We examine the growth rate as a function of magnetic Prandtl number Pm, which is proportional to the magnetic Reynolds number. Even for the largest value of Pm considered, a clearly identifiable asymptotic behaviour is not established. Nevertheless the available evidence strongly suggests a fast dynamo process.  相似文献   

3.
Fausto Cattaneo and David W Hughes delve beneath the surface of the Sun with numerical models of turbulent convection.
Although magnetic dynamo action is traditionally associated with rotation, fast dynamo theory shows that chaotic flows, even without rotation, can act as efficient small-scale dynamos. Indeed, numerical simulations suggest that granular and supergranular convection may generate locally a substantial part of the field in the quiet photosphere.  相似文献   

4.
Abstract

Finite amplitude solutions for convection in a rotating spherical fluid shell with a radius ratio of η=0.4 are obtained numerically by the Galerkin method. The case of the azimuthal wavenumber m=2 is emphasized, but solutions with m=4 are also considered. The pronounced distinction between different modes at low Prandtl numbers found in a preceding linear analysis (Zhang and Busse, 1987) is also found with respect to nonlinear properties. Only the positive-ω-mode exhibits subcritical finite amplitude convection. The stability of the stationary drifting solutions with respect to hydrodynamic disturbances is analyzed and regions of stability are presented. A major part of the paper is concerned with the growth of magnetic disturbances. The critical magnetic Prandtl number for the onset of dynamo action has been determined as function of the Rayleigh and Taylor numbers for the Prandtl numbers P=0.1 and P=1.0. Stationary and oscillatory dynamos with both, dipolar and quadrupolar, symmetries are close competitors in the parameter space of the problem.  相似文献   

5.
Abstract

This paper develops further a convection model that has been studied several times previously as a very crude idealization of planetary core dynamics. A plane layer of electrically-conducting fluid rotates about the vertical in the presence of a magnetic field. Such a field can be created spontaneously, as in the Childress—Soward dynamo, but here it is uniform, horizontal and externally-applied. The Prandtl number of the fluid is large, but the Ekman, Elsasser and Rayleigh numbers are of order unity, as is the ratio of thermal to magnetic diffusivity. Attention is focused on the onset of convection as the temperature difference applied across the layer is increased, and on the preferred mode, i.e., the planform and time-dependence of small amplitude convection. The case of main interest is the layer confined between electrically-insulating no-slip walls, but the analysis is guided by a parallel study based on illustrative boundary conditions that are mathematically simpler.  相似文献   

6.
Abstract

A magnetohydrodynamic, dynamo driven by convection in a rotating spherical shell is supposed to have averages that are independent of time. Two cases are considered, one driven by a fixed temperature difference R and the other by a given internal heating rate Q. It is found that when q, the ratio of thermal conductivity to magnetic diffusivity, is small, R must be of order q ?4/3 and Q of order q ?2 for dynamo action to be possible; q is small in the Earth's core, so it is hoped that the criteria will prove useful in practical as well as theoretical studies of dynamic dynamos. The criteria can be further strengthened when the ohmic dissipation of the field is significant in the energy balance. The development includes the derivation of two necessary conditions for dynamo action, both based on the viscous dissipation rate of the velocity field that drives the dynamo.  相似文献   

7.
Convection in the Earth's core is driven much harder at the bottom than the top. This is partly because the adiabatic gradient steepens towards the top, partly because the spherical geometry means the area involved increases towards the top, and partly because compositional convection is driven by light material released at the lower boundary and remixed uniformly throughout the outer core, providing a volumetric sink of buoyancy. We have therefore investigated dynamo action of thermal convection in a Boussinesq fluid contained within a rotating spherical shell driven by a combination of bottom and internal heating or cooling. We first apply a homogeneous temperature on the outer boundary in order to explore the effects of heat sinks on dynamo action; we then impose an inhomogeneous temperature proportional to a single spherical harmonic Y 2² in order to explore core-mantle interactions. With homogeneous boundary conditions and moderate Rayleigh numbers, a heat sink reduces the generated magnetic field appreciably; the magnetic Reynolds number remains high because the dominant toroidal component of flow is not reduced significantly. The dipolar structure of the field becomes more pronounced as found by other authors. Increasing the Rayleigh number yields a regime in which convection inside the tangent cylinder is strongly affected by the magnetic field. With inhomogeneous boundary conditions, a heat sink promotes boundary effects and locking of the magnetic field to boundary anomalies. We show that boundary locking is inhibited by advection of heat in the outer regions. With uniform heating, the boundary effects are only significant at low Rayleigh numbers, when dynamo action is only possible for artificially low magnetic diffusivity. With heat sinks, the boundary effects remain significant at higher Rayleigh numbers provided the convection remains weak or the fluid is stably stratified at the top. Dynamo action is driven by vigorous convection at depth while boundary thermal anomalies dominate in the upper regions. This is a likely regime for the Earth's core.  相似文献   

8.
We study the effect of stratification on large-scale dynamo action in convecting fluids in the presence of background rotation. The fluid is confined between two horizontal planes and both boundaries are impermeable, stress-free and perfectly conducting. An asymptotic analysis is performed in the limit of rapid rotation (τ???1 where τ is the Taylor number). We analyse asymptotic magnetic dynamo solutions in rapidly rotating systems generalising the results of Soward [A convection-driven dynamo I. The weak field case. Philos. Trans. R. Soc. Lond. A 1974, 275, 611–651] to include the effects of compressibility. We find that in general the presence of stratification delays the efficiency of large-scale dynamo action in this regime, leading to a reduction of the onset of dynamo action and in the nonlinear regime a diminution of the large-scale magnetic energy for flows with the same kinetic energy.  相似文献   

9.
Solutions for chaotic dynamos driven by thermal convection in a rotating spherical shell are obtained numerically for different Prandtl numbers. The influence of this parameter which is usually suppressed in the magnetostrophic approximation is emphasized in the present analysis.  相似文献   

10.
Abstract

The weak-field Benard-type dynamo treated by Soward is considered here at higher levels of the induced magnetic field. Two sources of instability are found to occur in the intermediate field regime M ~ T 1/12, where M and T are the Hartmann and Taylor numbers. On the time scale of magnetic diffusion, solutions may blow up in finite time owing to destabilization of the convection by the magnetic field. On a faster time scale a dynamic instability related to MAC-wave instability can also occur. It is therefore concluded that the asymptotic structure of this dynamo is unstable to virtual increases in the magnetic field energy.

In an attempt to model stabilization of the dynamo in a strong-field regime we consider two approximations. In the first, a truncated expansion in three-dimensional plane waves is studied numerically. A second approach utilizes an ad hoc set of ordinary differential equations which contains many of the features of convection dynamos at all field energies. Both of these models exhibit temporal intermittency of the dynamo effect.  相似文献   

11.
Abstract

High resolution numerical simulations extending those of Arnold and Korkina (1983) reveal the existence of at least two windows for kinematic dynamo action in a spatially periodic flow with chaotic streamlines. These occur at moderate magnetic Reynolds number R (8–18) and at high R (27 to 200 or more).  相似文献   

12.
Abstract

Dynamo action in a highly conducting fluid with small magnetic diffusivity η is particularly sensitive to the topology of the flow. The sites of rapid magnetic field regeneration, when they occur, appear to be located at the stagnation points or in regions where the particle paths are chaotic. Elsewhere only slow dynamo action is to be expected. Two such examples are the nearly axially symmetric dynamo of Braginsky and the generalisation to smooth velocity fields of the Ponomarenko dynamo. Here a method of solution is developed, which applies to both these examples and is applicable to other situations, where magnetic field lines are close to either closed or spatially periodic contours. Particular attention is given to field generation in the neighbourhood of resonant surfaces where growth rates may be intermediate between the slow diffusive and fast convective time scales. The method is applied to the case of the two-dimensional ABC-flows, where it is shown that such intermediate dynamo action can occur on resonant surfaces.  相似文献   

13.
Investigation of magnetic field generation by convective flows is carried out for three values of kinematic Prandtl number: P = 0.3, 1 and 6.8. We consider Rayleigh–Bénard convection in Boussinesq approximation assuming stress-free boundary conditions on horizontal boundaries and periodicity with the same period in the x and y directions. Convective attractors are modelled for increasing Rayleigh numbers for each value of the kinematic Prandtl number. Linear and non-linear dynamo action of these attractors is studied for magnetic Prandtl numbers P m ≤ 100. Flows, which can act as magnetic dynamos, have been found for all the three considered values of P, if the Rayleigh number R is large enough. The minimal R, for which of magnetic field generation occurs, increases with P. The minimum (over R) of critical Pm for magnetic field generation in the kinematic regime is admitted for P = 0.3. Thus, our study indicates that smaller values of P are beneficial for magnetic field generation.  相似文献   

14.

Linear and nonlinear dynamo action is investigated for square patterns in nonrotating and weakly rotating Boussinesq Rayleigh-Bénard convection in a plane horizontal layer. The square-pattern solutions may or may not be symmetric to up-down reflections. Vertically symmetric solutions correspond to checkerboard patterns. They do not possess a net kinetic helicity and are found to be incapable of kinematic dynamo action at least up to magnetic Reynolds numbers of , 12 000. There also exist vertically asymmetric squares, characterized by rising (descending) motion in the centers and descending (rising) motion near the boundaries, among them such that possess full horizontal square symmetry and others lacking also this symmetry. The flows lacking both the vertical and horizontal symmetries possess kinetic helicity and show kinematic dynamo action even without rotation. The generated magnetic fields are concentrated in vertically oriented filamentary structures. Without rotation these dynamos are, however, always only kinematic, not nonlinear dynamos since the back-reaction of the magnetic field then forces the solution into the basin of attraction of a roll pattern incapable of dynamo action. But with rotation added parameter regions are found where stationary asymmetric squares are also nonlinear dynamos. These nonlinear dynamos are characterized by a subtle balance between the Coriolis and Lorentz forces. In some parameter regions also nonlinear dynamos with flows in the form of oscillating squares or stationary modulated rolls are found.  相似文献   

15.
Abstract

We consider the turbulent dynamo action in a differentially rotating flow by making use of a kinematic approach when the effect of a generated magnetic field on turbulent motions is neglected. The mean electromotive force is calculated in a quasilinear approximation. Differential rotation can stretch turbulent magnetic field lines and break the symmetry of turbulence in such a way that turbulent motions become suitable for the generation of a large scale magnetic field. The presence of shear changes the type of an equation governing the mean magnetic field. Due to shear stresses the mean magnetic field can be generated by a turbulent dynamo action even in a uniform turbulence. The growth rate depends on the length scale of the mean field being faster for the field with a smaller length scale.  相似文献   

16.
Abstract

This paper develops further a convection model that has been studied several times previously as a very crude idealization of planetary core dynamics. A plane layer of electrically-conducting fluid rotates about the vertical in the presence of a magnetic field. Such a field can be created spontaneously, as in the Childress-Soward dynamo, but here it is uniform, horizontal and externally-applied. The Prandtl number of the fluid is large, but the Ekman, Elsasser and Rayleigh numbers are of unit order. In Part I of this series, it was also supposed that the ratio thermal diffusivity diffusivity/magnetic diffusivity is O(1), but here we suppose that this ratio is large. The character of the solution is changed in this limit. In the case of main interest, when the layer is confined between electrically-insulating no-slip walls, the solution is significantly different from the solution when the mathematically simpler, illustrative boundary conditions also considered in Part I are employed. As in Part I, attention is focussed on the onset of convection as the temperature difference applied across the layer is increased, and on the preferred mode, i.e., the planform and time-dependence of small amplitude convection.  相似文献   

17.
Abstract

A generalized two-disk dynamo model is considered that includes mechanical friction; this model is intended to simulate in its broad character the behavior of the geodynamo. Fixed points, limit cycles and chaotic attractors are located for different input parameters of the model. The chaotic regimes are of several kinds as are the “routes to chaos”. Several approximate models, helpful for studying the dynamo are discussed. A number of essential differences from the well-known Rikitake dynamo are demonstrated.  相似文献   

18.
Abstract

In this paper a method for solving the equation for the mean magnetic energy <BB> of a solar type dynamo with an axisymmetric convection zone geometry is developed and the main features of the method are described. This method is referred to as the finite magnetic energy method since it is based on the idea that the real magnetic field B of the dynamo remains finite only if <BB> remains finite. Ensemble averaging is used, which implies that fields of all spatial scales are included, small-scale as well as large-scale fields. The method yields an energy balance for the mean energy density ε ≡ B 2/8π of the dynamo, from which the relative energy production rates by the different dynamo processes can be inferred. An estimate for the r.m.s. field strength at the surface and at the base of the convection zone can be found by comparing the magnetic energy density and the outgoing flux at the surface with the observed values. We neglect resistive effects and present arguments indicating that this is a fair assumption for the solar convection zone. The model considerations and examples presented indicate that (1) the energy loss at the solar surface is almost instantaneous; (2) the convection in the convection zone takes place in the form of giant cells; (3) the r.m.s. field strength at the base of the solar convection zone is no more than a few hundred gauss; (4) the turbulent diffusion coefficient within the bulk of the convection zone is about 1014cm2s?1, which is an order of magnitude larger than usually adopted in solar mean field models.  相似文献   

19.
Abstract

The linear problem of the onset of convection in rotating spherical shells is analysed numerically in dependence on the Prandtl number. The radius ratio η=r i/r o of the inner and outer radii is generally assumed to be 0.4. But other values of η are also considered. The goal of the analysis has been the clarification of the transition between modes drifting in the retrograde azimuthal direction in the low Taylor number regime and modes traveling in the prograde direction at high Taylor numbers. It is shown that for a given value m of the azimuthal wavenumber a single mode describes the onset of convection of fluids of moderate or high Prandtl number. At low Prandtl numbers, however, three different modes for a given m may describe the onset of convection in dependence on the Taylor number. The characteristic properties of the modes are described and the singularities leading to the separation with decreasing Prandtl number are elucidated. Related results for the problem of finite amplitude convection are also reported.  相似文献   

20.
Abstract

In order to show that aperiodic magnetic cycles, with Maunder minima, can occur naturally in nonlinear hydromagnetic dynamos, we have investigated a simple nonlinear model of an oscillatory stellar dynamo. The parametrized mean field equations in plane geometry have a Hopf bifurcation when the dynamo number D=1, leading to Parker's dynamo waves. Including the nonlinear interaction between the magnetic field and the velocity shear results in a system of seven coupled nonlinear differential equations. For D>1 there is an exact nonlinear solution, corresponding to periodic dynamo waves. In the regime described by a fifth order system of equations this solution remains stable for all D and the velocity shear is progressively reduced by the Lorentz force. In a regime described by a sixth order system, the solution becomes unstable and successive transitions lead to chaotic behaviour. Oscillations are aperiodic and modulated to give episodes of reduced activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号