首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

The “viscous overturning” mechanism, described in its simplest form by the linearized instability theory of the previous paper, is discussed in relation to certain numerical solutions recently obtained by G. P. Williams for steady thermally driven axisymmetric convective flow of water (Prandtl number = 7) in a rotating annulus differentially heated in the horizontal, in the “upper symmetric regime” parameter range. Viscous overturning plays an important and clearly identifiable role in the flows A3B, A4 and A5, which have free‐slip side walls and top surface, and a less clearcut role in A3 and B2, for which only the top surface is free. The discussion leads to various predictions about annulus flows not yet studied in detail.  相似文献   

2.
Summary With a view to modelling more realistically certain large-scale meteorological and oceanographic flows, some experiments are described in which temperature and velocity fields are measured in a rotating, differentially heated fluid annulus, and their dependence upon the imposed boundary conditions is investigated. It is demonstrated that with suitable construction of the annulus walls the strength of the zonal baroclinic motion may be chosen independently of the basic density stratification. Most of the measurements described are for the symmetric flow regime. In the experiments it is found that certain aspects of the observed temperature and flow fields — in particular the basic stratification and the slope of the isotherms — agree reasonably well with theoretical estimates.  相似文献   

3.
Abstract

A series of experiments has been undertaken to investigate the onset of convection in a rapidly rotating fluid filled sphere. The boundary is subjected to a time varying temperature allowing the simulation of radial temperature profiles associated with internal heating. The system is similar to that treated theoretically by Roberts (1968), Busse (1970) and Soward (1977). It is found that Busse's modification of Roberts' linear analysis, taking into account velocity perturbations which are antisymmetric about the equatorial plane, provides a good estimate of the temperature gradient required to initiate convection. As observed in the experiments of Carrigan and Busse (1983) and predicted by linear theory, convection appears in the form of rolls or columns, aligned parallel to the rotation axis. As in earlier experiments, observed azimuthal wavenumbers are consistently smaller than predicted which we postulate to be a consequence of nonlinear effects. Owing to the presence of a centrifugally driven thermal wind, the predicted azimuthal drift of the rolls has not been observed.  相似文献   

4.
Abstract

Some new measurements are presented of the axisymmetric heat transport in a differentially heated rotating fluid annulus. Both rigid and free upper surface cases are studied, for Prandtl numbers of 7 and 45, from low to high rotation rates. The rigid lid case is extended to high rotation rates by suppressing the baroclinic waves, that would normally develop at some intermediate rotation rate, with the use of sloping endwalls.

A parameter P is defined as the square of the ratio of the (non-rotating) thermal sidewall layer thickness to the Ekman layer thickness. For small P the heat transport remains unaffected by the rotation, but as P increases to order unity the Ekman layer becomes thin enough to inhibit the radial mass transport, and hence the heat flux. No explicit Prandtl number dependence is observed. Also this scaling allows the identification of the region in which the azimuthal velocity reaches its maximum. Direct comparisons are drawn with previous experimental and numerical results, which show what can be interpreted as an inhibiting effect of increasing curvature on the heat transport.  相似文献   

5.
Abstract

The radial temperature differences at which the transitions from one wave number to the next occur have been measured with either increasing or decreasing positive radial temperature gradients, at five different rotation rates, with the fluid being always in thermal equilibrium and being in contact with an upper rigid lid. Hysteresis has been observed in all wave number transitions, and also in the transition to upper symmetry. There are, nevertheless, regions in the stability diagram where the wave number is unique. There is an excluded region where the wave number four cannot be obtained through quasi-steady procedure. There is a reversal of the sense of the hysteresis of the transitions. At low ΔT, a wave number transition with increasing radial temperature difference occurs at a higher ΔT, than the same transition with decreasing temperature difference. On the other hand, at large values of ΔT, a wave number transition with increasing radial temperature difference occurs at a lower ΔT, than the same transition with decreasing temperature difference. Wave number transitions with increasing ΔT, occur spontaneously out of amplitude oscillations. Wave number transitions with decreasing ΔT, occur via slow wave splitting in association with phase modulations of the waves. The uniqueness of the wave number in the unique areas of the stability diagram has been confirmed by sudden start experiments.  相似文献   

6.
Summary The transition between axisymmetric and wave convection in a rotating, cylindrical annulus of fluid subjected to a horizontal temperature gradient is usually determined in laboratory experiments by visually observing the motion of tracer particles at the top surface of the fluid. More recent transition determinations by means of small transducers suspended within the body of the fluid give evidence of quantitative disagreement with the visual method. The dgree of disagreement and experimental details are discussed in this note.Contribution No. 20 of the Geophysical Fluid Dynamics Institute.  相似文献   

7.
Abstract

The radial temperature differences at which the transition from lower symmetry to the wave regime and the transition from the wave regime to lower symmetry occur have been measured for rotation rates ≦2rad/sec. It was found that the temperature differences at which the transitions occur differ for a fixed rotation rate, depending on whether the radial temperature difference is either increased or decreased with time. There is hysteresis in the transition at lower symmetry.  相似文献   

8.
This paper documents an experimental investigation in which a differentially-heated rotating annulus experiment was used to investigate the effects of topography on fluid flow under conditions similar to the atmospheric and oceanic circulation on Earth and other planets. In particular, the relationship between the effects of topographic resonance and the existence and mechanism for generation of low-frequency variability (LFV) were studied, motivated by outstanding questions in works such as Jin and Ghil (J. Atmos. Sci., 1990, 47) and Read and Risch (Geophys. Astrophys. Fluid Dyn., 2011, 105). Whilst employing sinusoidal wavenumber-3 topography a new regime was encountered within a region of stationary wavenumber-3 structural vacillation. Denoted as the “stationary-transition” regime, it featured periodic oscillations between a dominant stationary wavenumber-3 flow and axisymmetric or chaotic flow. Further investigation found that the “stationary-transition” regime appeared to be a near-resonant region where nonlinear topographic resonant instability led to a 23–42 “day” oscillatory behaviour. Within the regime, a Hopf bifurcation sequence was discovered, and the nonlinear instabilities were found to have terms in both wave-zonal flow and wave–wave interactions, including a notable resonant wave-triad. This report summarises the nature of the “stationary-transition” regime, and also makes comparisons with similar regimes of LFV found in other experimental studies, as well as intraseasonal oscillations in the atmosphere.  相似文献   

9.
Abstract

The velocities of the wave patterns relative to the rotating annulus have been measured with either increasing or decreasing positive radial temperature gradients and different rotation rates, with the fluid in thermal equilibrium and in contact with a rigid lid. The pattern velocities are dependent on initial conditions except in the unique areas of the stability diagram, where the velocities observed with either increasing or decreasing ΔT, overlap. The pattern velocities change discontinuously with each wave number transition, with a particularly large discontinuity at the transition from two to one wave. The frequency of the amplitude oscillations of the waves has been measured also. It has been found that the period of the oscillation of the three wave pattern is inversely proportional to the period of the pattern velocity, which means that in this case the ratio of the frequency of amplitude oscillation and the frequency of the pattern revolution is incommensurate.  相似文献   

10.
The effect of phenocrysts on convection in magma chambers is investigated experimentally using small heavy particles in convecting fluids. The particles are initially uniformly distributed in a fluid which is either heated from below or cooled from above. The system is allowed to evolve, and temperature and particle concentration profiles are measured as functions of time. When the concentration of particles is sufficiently small, convection is basically unaffected by their presence. When the concentration is above a critical value, however, the convective motion is considerably altered. The effect of particles on the subsequent fluid behaviour is different in the cases of heating from below and cooling from above. In the former case, there are strong convective motions confined to a sedimentary layer of decreasing thickness beneath a clear layer which displays rather weak convective motions. With time, the destabilizing increase of temperature in the lower layer overcomes the stabilizing contribution to the bulk density due to the particles and the layer overturns quite suddenly. In the situation of cooling from above, a critical condition separates a case of continual overturn from a case of no overturn at all, with the sedimentary layer falling unimpeded to the bottom. Theoretical analysis suggests that the critical value is determined primarily by the ratio of the contribution to the bulk density of the suspension due to particles to the change in fluid density due to the thermal effect. The size distribution of the particles can also modify the fluid behaviour. Applying our general results to geological situations, we suggest that the presence of relatively small concentrations of phenocrysts can critically influence the mode of convection in magmas.  相似文献   

11.
We present a series of experimental investigations in which a differentially-heated annulus was used to investigate the effects of topography on rotating, stratified flows with similarities to the Earth’s atmospheric or oceanic circulation. In particular, we compare and investigate blocking effects via partial mechanical barriers to previous experiments by the authors utilising azimuthally-periodic topography. The mechanical obstacle used was an isolated ridge, forming a partial barrier, employed to study the difference between partially blocked and fully unblocked flow. The topography was found to lead to the formation of bottom-trapped waves, as well as impacting the circulation at a level much higher than the top of the ridge. This produced a unique flow structure when the drifting flow and the topography interacted in the form of an “interference” regime at low Taylor number, but forming an erratic “irregular” regime at higher Taylor number. The results also showed evidence of resonant wave-triads, similar to those noted with periodic wavenumber-3 topography by Marshall and Read (Geophys. Astrophys. Fluid Dyn., 2015, 109), though the component wavenumbers of the wave-triads and their impact on the flow were found to depend on the topography in question. With periodic topography, wave-triads were found to occur between both the baroclinic and barotropic components of the zonal wavenumber-3 mode and the wavenumber-6 baroclinic component, whereas with the partial barrier two nonlinear resonant wave-triads were noted, each sharing a common wavenumber-1 mode.  相似文献   

12.
Abstract

Thermal convection in a vertically-mounted, rotating annulus of a particular design proposed by Davies and Walin (1977) is investigated. The annulus used in the present study differs from the conventional type in some important aspects: the sidewalls are finitely conducting, and the thermal conductance of the sidewalls is height-dependent. The theoretical model due to Davies and Walin is briefly recounted. The present study aims to verify the theoretical model; we have acquired numerical solutions to the governing Navier-Stokes equations. The numerical results are supportive of the theoretical contentions. The near-linear dependence of the isothermal slope on the parameter D, which is a function of Ω and ΔT, is corroborated within reasonable limits. New data on the vertical and radial structures of the meridional and azimuthal flows are presented. The numerical results also confirm that the shape of the sidewall thickness has a substantial influence on the meridional flow patterns. In the bulk of the interior flow field, the dominant azimuthal flow field and the temperature field are linked by the thermal wind relation.  相似文献   

13.
A strong Coriolis force in a rapidly rotating planet and star not only enforces two-dimensionality of fluid motion driven by thermal instabilities but also generates strong differential rotation even in the vicinity of the onset of instabilities. We derive an asymptotic solution describing convection-driven differential rotation in rotating, self-gravitating Boussinesq fluid spheres with the no-slip boundary condition, taking into account full spherical curvature and being valid for asymptotically small Ekman numbers. For the purpose of validating the asymptotic solution, the corresponding numerical analysis valid for large or small Ekman numbers is also carried out, showing a satisfactory agreement between the asymptotic and numerical solutions.  相似文献   

14.
15.
The effects of rotation and a toroidal magnetic field on the preferred pattern of small amplitude convection in spherical fluid shells are considered. The convective motions are described in terms of associated Legendre functions Pl|m| (cos θ). For a given pair of Prandtl number P and magnetic Prandtl number Pm the physically realized solution is represented either by m = 0 or |m| = l depending on the ratio of the rotation rate Λ to the magnetic field amplitude H. The case of m = 0 is preferred if this ratio ranges below a critical value, which is a function of the shell thickness, and |m| = l otherwise.  相似文献   

16.
Abstract

The problem of the removal of the degeneracy of the patterns of convective motion in a spherically symmetric fluid shell by the effects of rotation is considered. It is shown that the axisymmetric solution is preferred in sufficiently thick shells where the minimum Rayleigh number corresponds to degree l = 1 of the spherical harmonics. In all cases with l > 1 the solution described by sectional spherical harmonics Yl l (θ,φ) is preferred.  相似文献   

17.
Abstract

Numerical simulations of thermal convection in a rapidly rotating spherical fluid shell with and without inhomogeneous temperature anomalies on the top boundary have been carried out using a three-dimensional, time-dependent, spectral-transform code. The spherical shell of Boussinesq fluid has inner and outer radii the same as those of the Earth's liquid outer core. The Taylor number is 107, the Prandtl number is 1, and the Rayleigh number R is 5Rc (Rc is the critical value of R for the onset of convection when the top boundary is isothermal and R is based on the spherically averaged temperature difference across the shell). The shell is heated from below and cooled from above; there is no internal heating. The lower boundary of the shell is isothermal and both boundaries are rigid and impermeable. Three cases are considered. In one, the upper boundary is isothermal while in the others, temperature anomalies with (l,m) = (3,2) and (6,4) are imposed on the top boundary. The spherically averaged temperature difference across the shell is the same in all three cases. The amplitudes of the imposed temperature anomalies are equal to one-half of the spherically averaged temperature difference across the shell. Convective structures are strongly controlled by both rotation and the imposed temperature anomalies suggesting that thermal inhomogeneities imposed by the mantle on the core have a significant influence on the motions inside the core. The imposed temperature anomaly locks the thermal perturbation structure in the outer part of the spherical shell onto the upper boundary and significantly modifies the velocity structure in the same region. However, the radial velocity structure in the outer part of the shell is different from the temperature perturbation structure. The influence of the imposed temperature anomaly decreases with depth in the shell. Thermal structure and velocity structure are similar and convective rolls are more columnar in the inner part of the shell where the effects of rotation are most dominant.  相似文献   

18.
The flow of dense water along continental slopes is considered. There is a large literature on the topic based on observations and laboratory experiments. In addition, there are many analytical and numerical studies of dense water flows. In particular, there is a sequence of numerical investigations using the dynamics of overflow mixing and entrainment (DOME) setup. In these papers, the sensitivity of the solutions to numerical parameters such as grid size and numerical viscosity coefficients and to the choices of methods and models is investigated. In earlier DOME studies, three different bottom boundary conditions and a range of vertical grid sizes are applied. In other parts of the literature on numerical studies of oceanic gravity currents, there are statements that appear to contradict choices made on bottom boundary conditions in some of the DOME papers. In the present study, we therefore address the effects of the bottom boundary condition and vertical resolution in numerical investigations of dense water cascading on a slope. The main finding of the present paper is that it is feasible to capture the bottom Ekman layer dynamics adequately and cost efficiently by using a terrain-following model system using a quadratic drag law with a drag coefficient computed to give near-bottom velocity profiles in agreement with the logarithmic law of the wall. Many studies of dense water flows are performed with a quadratic bottom drag law and a constant drag coefficient. It is shown that when using this bottom boundary condition, Ekman drainage will not be adequately represented. In other studies of gravity flow, a no-slip bottom boundary condition is applied. With no-slip and a very fine resolution near the seabed, the solutions are essentially equal to the solutions obtained with a quadratic drag law and a drag coefficient computed to produce velocity profiles matching the logarithmic law of the wall. However, with coarser resolution near the seabed, there may be a substantial artificial blocking effect when using no-slip.  相似文献   

19.
The magnetohydrodynamic dynamo problem is solved for an electrically conducting spherical fluid shell with spherically symmetric distributions of gravity and heat sources. The dynamics of motions generated by thermal buoyancy are dominated by the effects of rotation of the fluid shell. Dynamos are found for low and intermediate values of the Taylor number, T ? 105, if the scale of the nonaxisymmetric component of the velocity field is sufficiently small. The generation of magnetic fields of quadrupolar symmetry is preferred at Rayleigh numbers close to the critical value Rc for onset of convection. As the Rayleigh number increases, the generation of dipolar magnetic fields becomes preferred.  相似文献   

20.
In the PREM seismic model, the boundary between the upper and the lower mantle is accepted at a depth of 670 km, where seismic velocities and density increase. However, until recently there was an obvious inconsistency in this model. The density increases abruptly, and the velocities, in addition to the jumps, have also the subsequent zones of increased gradient. The discontinuity between the upper and the lower mantle is related to the transition of olivine from the ringwoodite phase into the mixture of perovskite and magnesiowustite. However, in the pyrolyte model, the transition zone of the upper mantle consists not wholly of olivine, but partly of olivine (60%) and partly of garnet (40%). The latest data of the garnet measurement at high pressures show that it also experiences phase transition, being converted into magnesium perovskite with the impurity of calcium perovskite. In contrast to the sharp transition in olivine (within a depth interval of only 5 km), the transition in garnet is spread over the interval of depths of 660–710 km. In the widely used PREM and AK135 models, this additional transition corresponds to the zone of the increased gradient in seismic velocities, while in the density distribution it is included in the sharp transition of ringwoodite. Thus, the mineralogy data indicate the need for correction of the PREM and AK135 seismic models: the density jump at a depth of 660 km should be reduced by approximately a factor of two, and a subjacent layer with the increased density gradient should be added at the depth interval of 660–710 km. The phase transition in olivine hampers the mantle flows, although in garnet it accelerates them. Therefore, with an allowance for the smaller jump in density, the decelerating effect of the subducting plates, caused by the phase transition in olivine, decreases, and, furthermore, the effect of their acceleration, caused by the phase transition in garnet, is added. The decrease in the density jump by almost a factor of two will lead to essential changes in the results of the majority of recent works addressing the assessment of the deceleration of convection at the upper/lower mantle discontinuity on the basis of the PREM model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号