首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Finite amplitude convection in spherical shells with spherically symmetric gravity and heat source distribution is considered. The nonlinear problem of three-dimensional convection in shells with stress-free and isothermal boundaries is solved by expanding the dependent variables in terms of powers of the amplitude of convection. The preferred mode of convection is determined by a stability analysis in which arbitrary infinitesimal disturbances are superimposed on the steady solutions. The shell is assumed to be thick and only shells for which the ratio ζ of outer radius to inner radius is 2 or 3 are considered. Three cases, two of which lead to a self adjoint problem, are treated in this paper. The stable solutions are found to be l=2 modes for ζ=3 where l is the degree of the spherical harmonics and an l=3 non-axisymmetric mode which exhibits the symmetry of a tetrahedron for ζ=2. These stable solutions transport the maximum amount of heat. The Prandtl number dependence of the heat transport is computed for the various solutions analyzed in the paper.  相似文献   

2.
Abstract

The linear problem of the onset of convection in rotating spherical shells is analysed numerically in dependence on the Prandtl number. The radius ratio η=r i/r o of the inner and outer radii is generally assumed to be 0.4. But other values of η are also considered. The goal of the analysis has been the clarification of the transition between modes drifting in the retrograde azimuthal direction in the low Taylor number regime and modes traveling in the prograde direction at high Taylor numbers. It is shown that for a given value m of the azimuthal wavenumber a single mode describes the onset of convection of fluids of moderate or high Prandtl number. At low Prandtl numbers, however, three different modes for a given m may describe the onset of convection in dependence on the Taylor number. The characteristic properties of the modes are described and the singularities leading to the separation with decreasing Prandtl number are elucidated. Related results for the problem of finite amplitude convection are also reported.  相似文献   

3.
Investigation of magnetic field generation by convective flows is carried out for three values of kinematic Prandtl number: P = 0.3, 1 and 6.8. We consider Rayleigh–Bénard convection in Boussinesq approximation assuming stress-free boundary conditions on horizontal boundaries and periodicity with the same period in the x and y directions. Convective attractors are modelled for increasing Rayleigh numbers for each value of the kinematic Prandtl number. Linear and non-linear dynamo action of these attractors is studied for magnetic Prandtl numbers P m ≤ 100. Flows, which can act as magnetic dynamos, have been found for all the three considered values of P, if the Rayleigh number R is large enough. The minimal R, for which of magnetic field generation occurs, increases with P. The minimum (over R) of critical Pm for magnetic field generation in the kinematic regime is admitted for P = 0.3. Thus, our study indicates that smaller values of P are beneficial for magnetic field generation.  相似文献   

4.
The effects of rotation and a toroidal magnetic field on the preferred pattern of small amplitude convection in spherical fluid shells are considered. The convective motions are described in terms of associated Legendre functions Pl|m| (cos θ). For a given pair of Prandtl number P and magnetic Prandtl number Pm the physically realized solution is represented either by m = 0 or |m| = l depending on the ratio of the rotation rate Λ to the magnetic field amplitude H. The case of m = 0 is preferred if this ratio ranges below a critical value, which is a function of the shell thickness, and |m| = l otherwise.  相似文献   

5.
Abstract

The onset of convection in a cylindrical fluid annulus is analyzed in the case when the cylindrical walls are rotating differentially, a temperature gradient in the radial direction is applied, and the centrifugal force dominates over gravity. The small gap approximation is used and no-slip conditions on the cylindrical walls are assumed. It is found that over a considerable range of the parameter space either convection rolls aligned with the axis of rotation or rolls in the perpendicular (azimuthal) direction are preferred. It is shown that by a suitable redefinition of parameters, results for finite amplitude Taylor vortices and for convection rolls in the presence of shear can be applied to the present problem. Weakly nonlinear results for transverse rolls in a Couette flow indicate the possibility of subcritical bifurcation for Prandtl numbers P less than 0.82. Heat and momentum transports are derived as functions of P and the problem of interaction between transverse and longitudinal rolls is considered. The relevance of the analysis for problems of convection in planetary and stellar atmospheres is briefly discussed.  相似文献   

6.
Abstract

This paper develops further a convection model that has been studied several times previously as a very crude idealization of planetary core dynamics. A plane layer of electrically-conducting fluid rotates about the vertical in the presence of a magnetic field. Such a field can be created spontaneously, as in the Childress—Soward dynamo, but here it is uniform, horizontal and externally-applied. The Prandtl number of the fluid is large, but the Ekman, Elsasser and Rayleigh numbers are of order unity, as is the ratio of thermal to magnetic diffusivity. Attention is focused on the onset of convection as the temperature difference applied across the layer is increased, and on the preferred mode, i.e., the planform and time-dependence of small amplitude convection. The case of main interest is the layer confined between electrically-insulating no-slip walls, but the analysis is guided by a parallel study based on illustrative boundary conditions that are mathematically simpler.  相似文献   

7.
Abstract

Numerical simulations of thermal convection in a rapidly rotating spherical fluid shell heated from below and within have been carried out with a nonlinear, three-dimensional, time-dependent pseudospectral code. The investigated phenomena include the sequence of transitions to chaos and the differential mean zonal rotation. At the fixed Taylor number T a =106 and Prandtl number Pr=1 and with increasing Rayleigh number R, convection undergoes a series of bifurcations from onset of steadily propagating motions SP at R=R c = 13050, to a periodic state P, and thence to a quasi-periodic state QP and a non-periodic or chaotic state NP. Examples of SP, P, QP, and NP solutions are obtained at R = 1.3R c , R = 1.7 R c , R = 2R c , and R = 5 R c , respectively. In the SP state, convection rolls propagate at a constant longitudinal phase velocity that is slower than that obtained from the linear calculation at the onset of instability. The P state, characterized by a single frequency and its harmonics, has a two-layer cellular structure in radius. Convection rolls near the upper and lower surfaces of the spherical shell both propagate in a prograde sense with respect to the rotation of the reference frame. The outer convection rolls propagate faster than those near the inner shell. The physical mechanism responsible for the time-periodic oscillations is the differential shear of the convection cells due to the mean zonal flow. Meridional transport of zonal momentum by the convection cells in turn supports the mean zonal differential rotation. In the QP state, the longitudinal wave number m of the convection pattern oscillates among m = 3,4,5, and 6; the convection pattern near the outer shell has larger m than that near the inner shell. Radial motions are very weak in the polar regions. The convection pattern also shifts in m for the NP state at R = 5R c , whose power spectrum is characterized by broadened peaks and broadband background noise. The convection pattern near the outer shell propagates prograde, while the pattern near the inner shell propagates retrograde with respect to the basic rotation. Convection cells exist in polar regions. There is a large variation in the vigor of individual convection cells. An example of a more vigorously convecting chaotic state is obtained at R = 50R c . At this Rayleigh number some of the convection rolls have axes perpendicular to the axis of the basic rotation, indicating a partial relaxation of the rotational constraint. There are strong convective motions in the polar regions. The longitudinally averaged mean zonal flow has an equatorial superrotation and a high latitude subrotation for all cases except R = 50R c , at this highest Rayleigh number, the mean zonal flow pattern is completely reversed, opposite to the solar differential rotation pattern.  相似文献   

8.
Abstract

A spherical αω-dynamo is studied for small values of the viscous coupling parameter ε ~ v1/2, paying attention particularly to large dynamo numbers. The present study is a follow-up of the work by Hollerbach et al. (1992) with their choice of α-effect and Archimedean wind including also the constraint of magnetic field symmetry (or antisymmetry) due to equatorial plane. The magnetic field scaled by ε1/2 is independent of ε in the solutions for dynamo numbers smaller than a certain value of D b (the Ekman state) which are represented by dynamo waves running from pole to equator or vice-versa. However, for dynamo numbers larger than D b the solution bifurcates and subsequently becomes dependent on ε. The bifurcation is a consequence of a crucial role of the meridional convection in the mechanism of magnetic field generation. Calculations suggest that the bifurcation appears near dynamo number about 33500 and the solutions for larger dynamo numbers and ε = 0 become unstable and fail, while the solutions for small but non-zero ε are characterized by cylindrical layers of local maximum of magnetic field and sharp changes of geostrophic velocity. Our theoretical analysis allows us to conclude that our solution does not take the form of the usual Taylor state, where the Taylor constraint should be satisfied due to the special structure of magnetic field. We rather obtained the solution in the form of a “weak” Taylor state, where the Taylor constraint is satisfied partly due to the amplitude of the magnetic field and partly due to its structure. Calculations suggest that the roles of amplitude and structure are roughly fifty-fifty in our “weak” Taylor state solution and thus they can be called a Semi-Taylor state. Simple estimates show that also Ekman state solutions can be applicable in the geodynamo context.  相似文献   

9.
Abstract

The linear hydromagnetic stability of a non-constantly stratified horizontal fluid layer permeated by an azimuthal non-homogeneous magnetic field is investigated for various widths of the stably stratified part of the layer in the geophysical limit q→0 (q is the ratio of thermal and magnetic diffusivities). The choice of the strength of the magnetic field Bo is as in Soward (1979) (see also Soward and Skinner, 1988) and the equations for the disturbances are treated as in Fearn and Proctor (1983). It was found that convection is developed in the whole layer regardless of the width of its stably stratified part. The thermal instability penetrates essentially from the unstably stratified part of the layer into the stably stratified part for A ~ 1 (A characterises the ratio of the Lorentz and Coriolis forces). When the magnetic field is strong (A>1) the thermal convection is suppressed in the stably stratified part of the layer. However, in this case, it is replaced by the magnetically driven instability; which is fully developed in the whole layer. The thermal instabilities always propagate westward and exist for all the modes m. The magnetically driven instabilities propagate either westward or eastward according to the width of the stably and unstably stratified parts and exist only for the mode m=1.  相似文献   

10.
Abstract

This paper develops further a convection model that has been studied several times previously as a very crude idealization of planetary core dynamics. A plane layer of electrically-conducting fluid rotates about the vertical in the presence of a magnetic field. Such a field can be created spontaneously, as in the Childress-Soward dynamo, but here it is uniform, horizontal and externally-applied. The Prandtl number of the fluid is large, but the Ekman, Elsasser and Rayleigh numbers are of unit order. In Part I of this series, it was also supposed that the ratio thermal diffusivity diffusivity/magnetic diffusivity is O(1), but here we suppose that this ratio is large. The character of the solution is changed in this limit. In the case of main interest, when the layer is confined between electrically-insulating no-slip walls, the solution is significantly different from the solution when the mathematically simpler, illustrative boundary conditions also considered in Part I are employed. As in Part I, attention is focussed on the onset of convection as the temperature difference applied across the layer is increased, and on the preferred mode, i.e., the planform and time-dependence of small amplitude convection.  相似文献   

11.
Abstract

Convection in a rotating spherical shell has wide application for understanding the dynamics of the atmospheres and interiors of many celestial bodies. In this paper we review linear results for convection in a shell of finite depth at substantial but not asymptotically large Taylor numbers, present nonlinear multimode calculations for similar conditions, and discuss the model and results in the context of the problem of solar convection and differential rotation. Detailed nonlinear calculations are presented for Taylor number T = 105, Prandtl number P = 1, and Rayleigh number R between 1 |MX 104 and 4 |MX 104 (which is between about 4 and 16 times critical) for a shell of depth 20% of the outer radius. Sixteen longitudinal wave numbers are usually included (all even wave numbers m between 0 and 30) the amplitudes of which are computed on a staggered grid in the meridian plane.

The kinetic energy spectrum shows a peak in the wave number range m = 12–18 at R = 104, which straddles the critical wave number m = 14 predicted by linear theory. These are modes which peak near the equator. The spectrum shows a second strong peak at m = 0, which represents the differential rotation driven by the peak convective modes. As R is increased, the amplitude of low wave numbers increases relative to high wave numbers as convection fills in in high and middle latitudes, and as the longitudinal scale of equatorial convection grows. By R = 3 |MX 104, m = 8 is the peak convective mode. There is a clear minimum in the total kinetic energy at middle latitudes relative to low and high, well into the nonlinear regime, representing the continued dominance of equatorial and polar modes found in the linear case. The kinetic energy spectrum for m > 0 is maintained primarily by buoyancy work in each mode, but with substantial nonlinear transfer of kinetic energy from the peak modes to both lower and higher wave numbers.

For R = 1 to 2 |MX 104, the differential rotation takes the form of an equatorial acceleration, with angular velocity generally decreasing with latitude away from the equator (as on the sun) and decreasing inwards. By R = 4 |MX 104, this equatorial profile has completely reversed, with angular velocity increasing with depth and latitude. Also, a polar vortex which has positive rotation relative to the reference frame (no evidence of which has been seen on the sun) builds up as soon as polar modes become important. Meridional circulation is quite weak relative to differential rotation at R = 104, but grows relative to it as R is increased. This circulation takes the farm of a single cell of large latitudinal extent in equatorial regions, with upward flow near the equator, together with a series of narrower cells in high latitudes. It is maintained primarily by axisymmetric buoyancy forces. The differential rotation is maintained at all R primarily by Reynolds stresses, rather than meridional circulation. Angular momentum transport toward the equator for R = 1–2 |MX 104 maintains the equatorial acceleration while radially inward transport maintains the opposite profile at R = 4 |MX 104.

The total heat flux out the top of the convective shell always shows two peaks for the range of R studied, one at the equator and the other near the poles (no significant variation with latitude is seen on the sun), while heat flux in at the bottom shows only a polar peak at large R. The meridional circulation and convective cells transport heat toward the equator to maintain this difference.

The helicity of the convection plus the differential rotation produced by it suggest the system may be capable of driving a field reversing dynamo, but the toroidal field may migrate with lime in each cycle toward the poles and equator, rather than just toward the equator as apparently occurs on the sun.

We finally outline additions to the physics of the model to make it more realistic for solar application.  相似文献   

12.
Abstract

Small amplitude two-dimensional Boussinesq convection in a plane layer with stress-free boundaries rotating uniformly about the vertical is studied. A horizontally unbounded layer is modelled by periodic boundary conditions. When the centrifugal force is balanced by an appropriate pressure gradient the resulting equations are translation invariant, and overstable convection can take the form of travelling waves. In the Prandtl number regime 0.53 < [sgrave] < 0.68 such solutions are preferred over the more usual standing waves. For [sgrave] < 0.53, travelling waves are stable provided the Taylor number is sufficiently large.  相似文献   

13.
14.
In Kim et al. (Kim, E., Hughes, D.W. and Soward, A.M., “An investigation into high conductivity dynamo action driven by rotating convection”, Geophys. Astrophys. Fluid Dynam. 91, 303–332 ().) we investigated kinematic dynamo action driven by rapidly rotating convection in a cylindrical annulus. Here we extend this work to consider self-consistent nonlinear dynamo action in which the back-reaction of the Lorentz force on the flow is taken into account. In particular, we investigate, as a function of magnetic Prandtl number, the evolution of an initially weak magnetic field in two different types of convective flow – one chaotic and the other integrable. On saturation, the latter shows a systematic dependence on the magnetic Prandtl number whereas the former appears not to. In addition, we show how, in keeping with the findings of Cattaneo et al. (Cattaneo, F., Hughes, D.W. and Kim, E., “Suppression of chaos in a simplified nonlinear dynamo model”, Phys. Rev. Lett. 76, 2057–2060 ().), saturation of the growth of the magnetic field is brought about, for the originally chaotic flow, by a strong suppression of chaos.  相似文献   

15.
Abstract

We examine the role played in annulus flows by mechanisms dependent upon the Prandtl number, σ. Solutions are obtained at σ = 1 for both the real annulus system and for the hypothetical “free annulus” system (free slip lateral boundaries). These solutions are compared with previously obtained solutions at σ = 7.

In the free annulus, the solution at σ = 1 differs radically from that at σ = 7. The σ = 1 solution appears to be essentially a finite amplitude mode due to Solberg instability whereas the solution at σ = 7 manifests a flow caused by the diffusive overturning mechanism.

The variation with σ of the real annulus flow is not so fundamental but some differences in the dynamical structures are noted.  相似文献   

16.
Numerous studies of magnetic fluctuations with a zero mean-field for small magnetic Prandtl numbers (Pr m 1) show that magnetic fluctuations cannot be generated by turbulent fluid flow with the Kolmogorov energy spectrum. In addition, the generation of magnetic fluctuations with a zero mean-field for Pr m 1 were not observed in numerical simulations. However, in astrophysical plasmas the magnetic Prandtl numbers are small and magnetic fluctuations are observed. Thus a mechanism of generation of magnetic fluctuations for Pr m 1 still remains poorly understood. On the other hand, in astrophysical applications (e.g., solar and stellar convection zones, galaxies, accretion disks) the turbulent velocity field cannot be considered as a divergence-free. The generation of magnetic fluctuations by turbulent flow of conducting fluid with a zero mean magnetic field for Pr m 1 is studied by means of linear and nonlinear analysis. The turbulent fluid velocity field is assumed to be homogeneous and isotropic with a power law energy spectrum ( k –p ) and with a very short scale-dependent correlation time. It is found that magnetic fluctuations can be generated when the exponent p > 3/2. It is shown also that the growth rates of the higher moments of the magnetic field are larger than those of the lower moments, i.e., the spatial distribution of the magnetic field is intermittent. In addition, the effect of compressibility (i.e., u 0) of the low-Mach-number turbulent fluid flow u is studied. It is demonstrated that the threshold for the generation of magnetic fluctuations by turbulent fluid flow with u 0 is higher than that for incompressible fluid. This implies that the compressibility impairs the generation of magnetic fluctuations. Nonlinear effects result in saturation of growth of the magnetic fluctuations. Asymptotic properties of the steady state solution for the second moment of the magnetic field in the case of the Hall nonlinearity for the low-Mach-number compressible flow are studied.  相似文献   

17.
Abstract

In the presence of a magnetic field, convection may set in at a stationary or an oscillatory bifurcation, giving rise to branches of steady, standing wave and travelling wave solutions. Numerical experiments provide examples of nonlinear solutions with a variety of different spatiotemporal symmetries, which can be classified by establishing an appropriate group structure. For the idealized problem of two-dimensional convection in a stratified layer the system has left-right spatial symmetry and a continuous symmetry with respect to translations in time. For solutions of period P the latter can be reduced to Z 2 symmetry by sampling solutions at intervals of ½P. Then the fundamental steady solution has the spatiotemporal symmetry D 2 = Z 2 ? Z 2 and symmetry-breaking yields solutions with Z 2 symmetry corresponding to travelling waves, standing waves and pulsating waves. A further loss of symmetry leads to modulated waves. Interactions between the fundamental and its first harmonic are described by the group D 2h = D 2 ? Z 2 and its invariant subgroups, which describe solutions that are either steady or periodic in a uniformly moving frame. For a Boussinesq fluid in a layer with identical top and bottom boundary conditions there is also an up-down symmetry. With fixed lateral boundaries the spatiotemporal symmetries, again described by D 2h and its invariant subgroups, can be related to results obtained in numerical experiments and analysed by Nagata et al. (1990). With periodic boundary conditions, the full symmetry group, D 2h ?Z 2, is of order 16. Its invariant subgroups describe pure and mixed-mode solutions, which may be steady states, standing waves, travelling waves, pulsating waves or modulated waves.  相似文献   

18.
Abstract

The weak-field Benard-type dynamo treated by Soward is considered here at higher levels of the induced magnetic field. Two sources of instability are found to occur in the intermediate field regime M ~ T 1/12, where M and T are the Hartmann and Taylor numbers. On the time scale of magnetic diffusion, solutions may blow up in finite time owing to destabilization of the convection by the magnetic field. On a faster time scale a dynamic instability related to MAC-wave instability can also occur. It is therefore concluded that the asymptotic structure of this dynamo is unstable to virtual increases in the magnetic field energy.

In an attempt to model stabilization of the dynamo in a strong-field regime we consider two approximations. In the first, a truncated expansion in three-dimensional plane waves is studied numerically. A second approach utilizes an ad hoc set of ordinary differential equations which contains many of the features of convection dynamos at all field energies. Both of these models exhibit temporal intermittency of the dynamo effect.  相似文献   

19.
Abstract

Two upper bounding problems for thermal convection in a layer of fluid contained between perfectly conducting stress-free boundaries are treated numerically. Since the Euler equations resulting from this variational approach are simpler than the Navier-Stokes equations, they allow numerical calculations to be carried out economically to fairly large values of the Rayleigh number. The upper bounding problem formulated by Howard (1963), which yields a Nusselt number independent of Prandtl number, diverges from the correct behavior as the Rayleigh number increases. In hopes of coming closer to results of previous investigations of the Boussinesq equations of motion, a more restrictive upper bounding problem is formulated. For large Prandtl numbers the momentum equation is linearized and is used as an explicit side constraint on the variational problem, thereby forcing the solutions to more closely resemble the solutions of the Boussinesq equations. Numerical calculations at values of the Rayleigh number up to 1.5 × 105 indicate that the additional constraint decreases the upper bound on the Nusselt number; it appears that this upper bound differs by only a multiplicative factor from that calculated from solutions of the full equations of motion and may be a reasonable approximation for large Rayleigh numbers.  相似文献   

20.
Abstract

It is shown that, even for vanishingly small diffusivities of momentum and heat, a rotating stratified zonal shear flow is more unstable to zonally symmetric disturbances than would be indicated by the classical inviscid adiabatic criterion, unless σ, the Prandtl number, = 1. Both monotonic instability, and growing oscillations ("overstability") are involved, the former determining the stability criterion and having the higher growth rates. The more σ differs from 1, the larger the region in parameter space for which the flow is stable by the classical criterion, but actually unstable.

If the baroclinity is sufficiently great for the classical criterion also to indicate instability, the corresponding inviscid adiabatic modes usually have the numerically highest growth rates. An exception is the case of small isotherm slope and small σ.

A single normal mode of the linearized theory is also, formally, a finite amplitude solution; however, no theoretical attempt is made to assess the effect of finite amplitude in general. But, in a following paper, viscous overturning (the mechanism giving rise to the sub‐classical monotonic instability when σ > 1) is shown to play an important role at finite amplitude in certain examples of nonlinear steady thermally‐driven axisymmetric flow of water in a rotating annulus. Irrespective of whether analogous mechanisms turn out to be identifiable and important in large‐scale nature, it appears then that a Prandtl‐type parameter should enter the discussion of any attempt to make laboratory or numerical models of zonally‐symmetric baroclinic geophysical or astrophysical flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号