首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The process of wave steepening in Long's model of steady, two-dimensional stably stratified flow over orography is examined. Under conditions of the long-wave approximation, and constant values of the background static stability and basic flow, Long's equation is cast into the form of a nonlinear advection equation. Spectral properties of this latter equation, which could be useful for the interpretation of data analyses under mountain wave conditions, are presented. The principal features, that apply at the onset of convective instability (density constant with height), are:

i) a power spectrum for available potential energy that exhibits a minus eight-thirds decay, in terms of the vertical wavenumber k z -;

ii) a rate of energy transfer across the spectrum that is inversely proportional to the wavenumber for large k z -;

iii) an equipartition between the kinetic energy of the horizontal motion and the available potential energy, under the longwave approximation, although all the disturbance energy is kinetic at the point where convective instability is initiated. It is also shown that features i) and ii) apply to more general conditions that are appropriate to Long's model, not just the long-wave approximation. Application to fully turbulent flow or to conditions at the onset of shearing instability are not considered to be warranted, since the development only applies to conditions at the onset of convective instability.  相似文献   

2.
Abstract

Laboratory experiments are described on the flow past a solid obstacle in a rotating, homogeneous fluid. Specifically, the obstacle has the form of a walled crater specially constructed so that the volume of the depression is identically equal to the volume of the walls. The results show that closed streamlines occur rather more easily above such topography than above other obstacle types of the same scale but that the conditions for closure are determined essentially by the detailed geometry of the crater, the value of the Rossby number, and the depth of the fluid. The observed flow patterns are analysed and classified and attempts to quantify the most common flow type are made.  相似文献   

3.
Abstract

A cylindrical annulus containing a conducting fluid and rapidly rotating about its axis is a useful model for the Earth's core. With a shear flow U 0(s)∮, magnetic field B 0(s)∮, and temperature distribution T o(s) (where (s, ∮, z) are cylindrical polar coordinates), many important properties of the core can be modelled while a certain degree of mathematical simplicity is maintained. In the limit of rapid rotation and at geophysically interesting field strengths, the effects of viscous diffusion and fluid inertia are neglected. In this paper, the linear stability of the above basic state to instabilities driven by gradients of B 0 and U 0 is investigated. The global numerical results show both instabilities predicted by a local analysis due to Acheson (1972, 1973, 1984) as well as a new resistive magnetic instability. For the non-diffusive field gradient instability we looked at both monotonic fields [for which the local stability parameter Δ, defined in (1.4), is a constant] and non-monotonic fields (for which Δ is a function of s). For both cases we found excellent qualitative agreement between the numerical and local results but found the local criterion (1.6) for instability to be slightly too stringent. For the non-monotonic fields, instability is confined approximately to the region which is locally unstable. We also investigated the diffusive buoyancy catalysed instability for monotonic fields and found good quantitative agreement between the numerical results and the local condition (1.9). The new resistive instability was found for fields vanishing (or small) at the outer boundary and it is concentrated in the region of that boundary. The resistive boundary layer plays an important part in this instability so it is not of a type which could be predicted using a local stability analysis (which takes no account of the presence of boundaries).  相似文献   

4.

We present results from a new series of experiments on the geophysically important issue of the instability of anticyclonic columnar vortices in a rotating fluid in circumstances such that the Rossby number exceeds unity. The vortex pair consisting of a cyclonic and an anticyclonic vortex is induced by a rotating flap in a fluid which is itself initially in a state of solid-body rotation. The anticyclonic vortex is then subject to either centrifugal or elliptical instability, depending on whether its initial ellipticity is small or large, while the cyclone always remains stable. The experimental results demonstrate that the perturbations due to centrifugal instability have a typical form of toroidal vortices of alternating sign (rib vortices). The perturbations due to elliptical instability are of the form of sinuous deformation of the vortex filament in the plane of maximal stretching which corresponds to the plane of symmetry for the vortex pair. The initial perturbations in both cases are characterized by a definite wave number in the vertical direction. The characteristics of the unstable anticyclone are determined by the main nondimensional parameter of the flow - the Rossby number. The appearance of both centrifugal and elliptical instabilities are in accord with the predictions of theoretical criteria for these cases.  相似文献   

5.
Abstract

Numerical work indicates that resistive instability may be the dominant mode of instability in the Earth's outer core for realistic core parameter regimes. In this paper, we assume that the Elsasser number is large in order to obtain an asymptotic analysis of resistive instability in an electrically conducting fluid confined to a rotating cylindrical shell of infinite extent in the axial direction. The dimensionless equations of motion are linearized about an ambient magnetic field which is purely azimuthal and depends only on the cylindrical radial variable. Applying the theory of ordinary differential equations with a large parameter, we obtain an asymptotic approximation to the solution. Relatively simple analytic expressions for the complex frequencies are obtained by applying the boundary conditions for insulating boundaries at the cylindrical sidewalls and then assuming that the ambient magnetic field vanishes at one or both of those sidewalls. The results appear to be consistent with previous numerical work.  相似文献   

6.
Abstract

The two-dimensional (horizontal) shear instability of a differentially rotating star is examined. A solar-type rotation law is investigated. and it is found that for equatorial accelerations there is instability when there is a difference of 29% between the angular velocity of the equator and the poles.  相似文献   

7.
Abstract

The effect of an axial magnetic field on the linear stability of shear flows in rotating systems is examined by extending Busse's analysis of the nonmagnetic case to fluids of high magnetic diffusivity in the presence of a magnetic field. The shear is caused by differential rotation which creates slight deviations from a state of rigid rotation, corresponding to a small Rossby number. It is found that the Rossby number for the onset of instability is larger when a magnetic field is present than when it is absent.  相似文献   

8.
Abstract

The stability of a plane parallel shear flow with the profile U(z) = tanh z is considered in a rotating system with the axis of rotation in the z-direction. The establishment of the basic flow requires a baroclinic state, but baroclinic effects are suppressed in the stability analysis by assuming a limit of high thermal conductivity. It is shown that the strongest growing disturbance changes from a purely transverse form in the limit of vanishing rotation rate to a nearly longitudinal form as the angular velocity of rotation increases. An analytical solution of the stability equation is obtained for vanishing growth rates of the transverse form of the instability. But, in general, the solution of the problem requires numerical integrations which demonstrate that the preferred direction of the wave vector of the instability is towards the left of the direction of the mean flow.  相似文献   

9.
Abstract

As an extension of a model by Busse (1983a), a two-layer model of thermal convection in the self-gravitating rotating spherical fluid is considered. The upper layer with arbitrary vertical distributions of density and potential temperature representing the atmospheric layer of major planets is imposed on the spherical Boussinesq fluid. The Prandtl number P and the ratio of the mass of the upper layer to that of the lower layer are used as small expansion parameters. The modification of the critical Rayleigh number by imposing the upper layer are clearly separated into two parts, proportional to (1) the mass of the upper layer and to (2) an integral representing a measure of convective instability of the upper layer. Some implications for atmospheric dynamics of the major planets are also presented.  相似文献   

10.
This study utilises the equivalent granular state parameter, ψ, as a key parameter for studying static and cyclic instability and their linkage. ψ can be considered as a generalisation of the state parameter as first proposed by Been and Jefferies so that the influence of fines content in addition to stress and density state can be captured. Test results presented in this study conclusively showed that ψ at the start of undrained shearing and ηIS, the stress ratio at onset of static instability, can be described by a single relationship irrespective of fines content for both compression and extension shearing. This single relationship is referred as instability curve. However, the instability curve in extension shearing is different from that of compression. In this paper, the capacity of the instability curve in predicting triggering of cyclic instability was evaluated experimentally. An extensive series of undrained one-way (compression) and non-symmetric two-way cyclic triaxial tests, in addition to monotonic triaxial tests in both compression and extension were conducted for this evaluation. Furthermore, a published database for Hokksund sand with fines was also used. Test results show that cyclic instability was triggered shortly after the cyclic effective stress path crossed the estimated ηIS-zone(s) as obtained from instability curve(s) irrespective of whether instability occurs in the compression or extension side.  相似文献   

11.
Abstract

The stability of a zonal shear flow to symmetric baroclinic perturbations is examined when the Ekman number, E, is asymptotically small. It is assumed, following Antar and Fowlis (1982), that the zonal Row is generated by imposing a constant horizontal temperature gradient γ* at the horizontal boundaries, and by maintaining a constant temperature difference δT* between them. The boundaries are at rest relative to a rotating frame.

Features of the neutral stability curve are determined for several ranges of values of δT/E 1/3, where δT = δT*/Hγ* and H is the depth of the fluid layer, and all values of the Prandtl number, [sgrave]. In some cases it is possible to determine the whole curve analytically. The most important feature of the results is that the neutral stability curve is closed.

The results are compared to the numerical integrations of Antar and Fowlis (1982). The qualitative features of the solutions are in accord and the quantitative results are, in most cases, as good as can be expected for E only as small as ~ 10?4. The implications of the results for experimental observations of symmetric baroclinic instability are explored.  相似文献   

12.
We investigate instability of convective flows of simple structure (rolls, standing and travelling waves) in a rotating layer with stress-free horizontal boundaries near the onset of convection. We show that the flows are always unstable to perturbations, which are linear combinations of large-scale modes and short-scale modes, whose wave numbers are close to those of the perturbed flows. Depending on asymptotic relations of small parameters α (the difference between the wave number of perturbed flows and the critical wave number for the onset of convection) and ε (ε2 being the overcriticality and the perturbed flow amplitude being O(ε)), either small-angle or Eckhaus instability is prevailing. In the case of small-angle instability for rolls the largest growth rate scales as ε8/5, in agreement with results of Cox and Matthews (Cox, S.M. and Matthews, P.C., Instability of rotating convection. J. Fluid. Mech., 2000, 403, 153–172) obtained for rolls with k = k c . For waves, the largest growth rate is of the order ε4/3. In the case of Eckhaus instability the growth rate is of the order of α2.  相似文献   

13.

We examine the three-dimensional, nonlinear evolution of columnar vortices in a rotating environment. As the initial vorticity distribution, a wavetrain of finite amplitude Kelvin-Helmholtz vortices in shear is employed. Through direct numerical simulation of the Navier-Stokes equations we seek to better understand the process of maturation of the various three-dimensional modes of instability to which such vortical flows are subject, especially those which exist as a consequence of the action of the Coriolis force. In the absence of rotational influence, we thereby demonstrate that the nonlinear evolution of columnar vortices is most strongly controlled by one or the other of two mechanisms. One mechanism of instability is identifiable as a so-called elliptical instability, which promotes the initial bending of vortex tubes in a sinusoidal fashion, while the other is a hyperbolic mode, which is responsible for the development of streamwise vortex streaks in the "braids" between adjacent vortex cores. In the rotating case, anticyclonic vortices are strongly destabilized by weak background rotation, while rapid rotation stabilizes both the cyclones and anticyclones. The strong anticyclones are subject to two distinct forms of instability, namely a Coriolis force modified elliptical instability and an inertial (centrifugal) instability. The former instability is very similar to the nonrotating form of the elliptical instability as it promotes bending of vortex tubes, while the latter instability grows on the edge of the vortex core and generates streaks of vorticity, which surround the vortex core itself. These results of direct numerical simulation fully verify the results of previous linear stability analyses. Taken together, they provide a simple explanation for the broken symmetry that is often observed to be characteristic of the von Karman vortex streets that develop in the atmospheric lee of oceanic islands.  相似文献   

14.
Abstract

The normal mode instability of steady Wu-Verkley (1993) wave and modons by Verkley (1984, 1987, 1990) and Neven (1992) is considered. All these flows are solutions to the vorticity equation governing the motion of an ideal incompressible fluid on a rotating sphere. A conservation law for infinitesimal perturbations to each solution is derived and used to obtain a necessary condition for its exponential instability. By these conditions, Fjörtoft's (1953) average spectral number of the amplitude of an unstable mode must be equal to a specific number that depends on the degree of the solution in its inner and outer regions as well as on spectral distribution of the mode energy in these regions. Some properties of the conditions for different types of modons are discussed. The maximum growth (and decay) rate of the modes is estimated, and the orthogonality of the amplitude of each unstable, decaying, or non-stationary mode to the basic solution is shown in the energy inner product.

The new instability conditions confine the unstable disturbances of the WV wave and modon to a hypersurface in the perturbation space and allow interpretation of their energy structure. They are also useful both in estimating the maximum growth rate of unstable modes and in testing the numerical algorithms designed for the linear stability study.  相似文献   

15.
Abstract

Broad band secondary instability of elliptical vortex motion has been proposed as a principal source of shear-flow turbulence. Here experiments on such instability in an elliptical flow with no shear boundary layer are described. This is made possible by the mechanical distortion in the laboratory frame of a rotating fluid-filled elastic cylinder. One percent ellipticity of a 10 cm diameter cylinder rotating once each second can give rise to an exponentially-growing mode stationary in the laboratory frame. In first order this mode is a sub-harmonic parametric Faraday instability. The finite-amplitude equations represent angular momentum transfer on an inertial time scale due to Reynolds stresses. The growth of this mode is not limited by boundary friction but by detuning and centrifugal stabilization. On average, a generalized Richardson number achieves a marginal value through much of the evolved flow. However, the characteristic flow is intermittent with the cycle: rapid growth, stabilizing momentum transfer from the mean flow, interior re-spin up, and then again. Data is presented in which, at large Reynolds numbers, seven percent ellipticity causes a fifty percent reduction in the kinetic energy of the rotating fluid. In the geophysical setting, this tidal instability in the earth's interior could be inhibited by sub-adiabatic temperature gradients. A near adiabatic region greater than 10 km in height would permit the growth of tidally destabilized modes and the release of energy to three-dimensional disturbances. Such disturbances might play a central role in the geodynamo and add significantly to overall tidal dissipation.  相似文献   

16.
Abstract

Angular momentum driven instabilities in a stratified differentially rotating star are investigated. In the strong buoyancy limit axisymmetric instabilities of the Goldreich-Schubert type are the most important. A detailed discussion of the linear and small amplitude theories at an arbitrary latitude is given. The bifurcation to finite amplitude steady modes is typically transcritical, and occurs whenever the angular momentum or its gradient is neither parallel not perpendicular to local gravity. Such misalignments enhance the time scale for transport of angular momentum by the Goldreich-Schubert instability. Depending on the turbulent viscosity produced by secondary shear instabilities time scales as short as the Kelvin-Helmholtz time scale are possible.  相似文献   

17.
Abstract

We prove that the presence of viscosity does not affect stability to axisymmetric convective modes of a thin differentially rotating disc with no thermal conduction but in which viscosity is taken fully into account. In such a case the Schwarzschild criterion is necessary and sufficient for convective stability to local perturbations. In the proof we use a general formulation of local stability analysis, which allows a rigorous demonstration. Restricted particular forms of the viscous stress tensor introduced in the modelling of thin accretion discs may lead to viscous overstabilities. The additional instability found by Elstner et al. (1989) and described by the authors as a correction to the Schwarzschild criterion is a manifestation of these. However, when viscosity is taken fully into account, such instabilities cannot be discussed within the framework of a local analysis, a fully global treatment being required.  相似文献   

18.
Abstract

Results are presented of a numerical study of marginal convection of electrically conducting fluid, permeated by a strong azimuthal magnetic field, contained in a circular cylinder rotating rapidly about its vertical axis of symmetry. To this basic state is added a geostrophic flow UG (s), constant on geostrophic cylinders radius s. Its magnitude is fixed by requiring that the Lorentz forces induced by the convecting mode satisfy Taylor's condition. The nonlinear mathematical problem describing the system was developed in an earlier paper (Skinner and Soward, 1988) and the predictions made there are confirmed here. In particular, for small values of the Roberts number q which measures the ratio of the thermal to magnetic diffusivities, two distinct regions can be recognised within the fluid with the outer region moving rapidly compared to the inner. Otherwise, conditions for the onset of instability via the Taylor state (UG 0) do not differ significantly from those appropriate to the static (UG = 0) basic state. The possible disruption of the Taylor states by shear flow instabilities is discussed briefly.  相似文献   

19.
ABSTRACT

It is shown that flows in precessing cubes develop at certain parameters large axisymmetric components in the velocity field which are large enough to either generate magnetic fields by themselves, or to contribute to the dynamo effect if inertial modes are already excited and acting as a dynamo. This effect disappears at small Ekman numbers. The critical magnetic Reynolds number also increases at low Ekman numbers because of turbulence and small-scale structures.  相似文献   

20.
Abstract

It is shown that, even for vanishingly small diffusivities of momentum and heat, a rotating stratified zonal shear flow is more unstable to zonally symmetric disturbances than would be indicated by the classical inviscid adiabatic criterion, unless σ, the Prandtl number, = 1. Both monotonic instability, and growing oscillations ("overstability") are involved, the former determining the stability criterion and having the higher growth rates. The more σ differs from 1, the larger the region in parameter space for which the flow is stable by the classical criterion, but actually unstable.

If the baroclinity is sufficiently great for the classical criterion also to indicate instability, the corresponding inviscid adiabatic modes usually have the numerically highest growth rates. An exception is the case of small isotherm slope and small σ.

A single normal mode of the linearized theory is also, formally, a finite amplitude solution; however, no theoretical attempt is made to assess the effect of finite amplitude in general. But, in a following paper, viscous overturning (the mechanism giving rise to the sub‐classical monotonic instability when σ > 1) is shown to play an important role at finite amplitude in certain examples of nonlinear steady thermally‐driven axisymmetric flow of water in a rotating annulus. Irrespective of whether analogous mechanisms turn out to be identifiable and important in large‐scale nature, it appears then that a Prandtl‐type parameter should enter the discussion of any attempt to make laboratory or numerical models of zonally‐symmetric baroclinic geophysical or astrophysical flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号