首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large, long-lived vortices are abundant in the atmospheres of the giant planets. Some of them survive a few orders of magnitude longer than the dispersive linear Rossby wave packets, e.g. the Great Red Spot (GRS), Little Red Spot (LRS) and White Ovals (WO) of Jupiter, Big Bertha, Brown Spot and Anne's Spot of Saturn, the Great Dark Spot (GDS) of Neptune, etc. Nonlinear effects which prevent their dispersion spreading are the main subject of our consideration. Particular emphasis is placed on determining the dynamical processes which may explain the remarkable properties of observed vortices such as anticyclonic rotation in preference to cyclonic one and the uniqueness of the GRS, the largest coherent vortex, along the perimeter of Jupiter at corresponding latitude.We review recent experimental and theoretical studies of steadily translating solitary Rossby vortices (anticyclones) in a rotating shallow fluid. Two-dimensional monopolar solitary vortices trap fluid which is transported westward. These dualistic structures appear to be vortices, on the one hand, and solitary waves, on the other hand. Owing to the presence of the trapped fluid, such solitary structures collide inelastically and have a memory of the initial disturbance which is responsible for the formation of the structure. As a consequence, they have no definite relationship between the amplitude and characteristic size. Their vortical properties are connected with geostrophic advection of local vorticity. Their solitary properties (nonspreading and stationary translation) are due to a balance between Rossby wave dispersion and nonlinear effects which allow the anticyclones, with an elevation of a free surface, to propagate faster than the linear waves, without a resonance with linear waves, i.e. without wave radiation. On the other hand, cyclones, with a depression of a free surface, are dispersive and nonstationary features. This asymmetry in dispersion-nonlinear properties of cyclones and anticyclones is thought to be one of the essential reasons for the observed predominance of anticyclones among the long-lived vortices in the atmospheres of the giant planets and also among the intrathermocline oceanic eddies.The effects of shear flows and differences between the properties of monopolar vortices in planetary flows and various laboratory experiments are discussed. General geostrophic (GG) theory of Rossby vortices is presented. It differs essentially from the traditional quasi-geostrophic (QG) and intermediate-geostrophic (IG) approximations by the account of (i) all scales between the deformation radius and the planetary scale and (ii) the arbitrary amplitudes of vortices. It is shown that, unlike QG- and IG-models, the GG-model allows for explaining the mentioned cyclonic-anticyclonic asymmetry not only in planetary flows, but also in laboratory modeling with vessels of near paraboloidal form.  相似文献   

2.
In this article we address two questions: Why do freely evolving vortices weaken on average, even when the viscosity is very small? Why, in the fluid's interior, away from vertical boundaries and under the influence of Earth's rotation and stable density stratification, do anticyclonic vortices become dominant over cyclonic ones when the Rossby number and deformation radius are finite? The context for answering these questions is a rotating, conservative, Shallow-water model with Asymmetric and Gradient-wind Balance approximations. The controlling mechanisms are vortex weakening under straining deformation (with a weakening that is substantially greater for strong cyclones than strong anticyclones) followed by a partially compensating vortex strengthening during a relaxation phase dominated by Vortex Rossby Waves (VRWs) and their eddy–mean interaction with the vortex. The outcome is a net, strain-induced vortex weakening that is greater for cyclones than anticyclones when the deformation radius is not large compared to the vortex radius and the Rossby number is not small. Furthermore, when the exterior strain flow is sustained, the vortex changes also are sustained: for small Rossby number (i.e., the quasigeostrophic limit, QG), vortices continue to weaken at a relatively modest rate, but for larger Rossby number, cyclones weaken strongly and anticyclones actually strengthen systematically when the deformation radius is comparable to the vortex radius. The sustained vortex changes are associated with strain-induced VRWs on the periphery of the mean vortex. It therefore seems likely that, in a complex flow with many vortices, anticyclonic dominance develops over a sequence of transient mutual straining events due to the greater robustness of anticyclones (and occasionally their net strengthening).  相似文献   

3.
The dynamics of a single vortex on a beta-plane is discussed in this paper. A barotropic, an equivalent barotropic, one-and-a half and two-layer models are considered. The momentum and energy balances are used to describe the evolution of a vortex. A quasi-stationary balance of the Rossby, Zhukovsky-Kutta forces and the force induced by Rossby-wave radiation, describes the dynamics of the barotropic vortex. A net Coriolis force occurs if the fluid is stratified. The difference between the dynamics of cyclones and anticyclones results directly from the Coriolis force acting on a single vortex in a stratified fluid.All vortices radiate Rossby waves in the quasigeostrophic approximation but intense anticyclones propagate steadily in a one-and-a half layer model. A critical amplitude that bounds radiating and steadily propagating anticyclones is found. Steady propagation of anticyclones in general is impossible in a two-layer fluid due to the radiation of a barotropic Rossby-wave. Some solutions of solitary wave type which are known for a two-layer model, survive owing to wave interference.A single vortex can extract energy from a Rossby wave if synchronism conditions are satisfied. The wave interference again plays a crucial role in this case. The wave interference also determines the energy exchange of vortices located at larger distances. If the distance between the vortices is shorter than the length of the radiated waves, modon may be formed due to a small energy loss.The unbounded monotonic variation of the planetary vorticity is a characteristic feature of a beta-plane approximation. As a result, a single vortex propagates up to a 'rest latitude' where it disappears. The evolution of a single barotropic vortex over bottom topography provides another example of a background vorticity distribution with a local extremum above hills (valleys) or ridges (troughs). Physics of its movement differs from a beta-plane case, but if a vortex lies over broad topography, equations are similar and the evolution of a vortex manifests the same typical features. Particularly, a cyclonic vortex tends to drift to the top of a hill or a ridge. An anticyclonic vortex, on the contrary, slides to the bottom of a valley or a trough.An interaction of a barotropic vortex with a broad mean flow is tractable qualitatively on the basis of previous results. Numerical examples illustrating absorption of a small vortex by a larger one and a vortex movement across the flow, are direct analogies of the vortex evolution over a hill and a ridge, respectively. At the same time, strong influence of strain drastically changes the vortex structure.  相似文献   

4.

We examine the three-dimensional, nonlinear evolution of columnar vortices in a rotating environment. As the initial vorticity distribution, a wavetrain of finite amplitude Kelvin-Helmholtz vortices in shear is employed. Through direct numerical simulation of the Navier-Stokes equations we seek to better understand the process of maturation of the various three-dimensional modes of instability to which such vortical flows are subject, especially those which exist as a consequence of the action of the Coriolis force. In the absence of rotational influence, we thereby demonstrate that the nonlinear evolution of columnar vortices is most strongly controlled by one or the other of two mechanisms. One mechanism of instability is identifiable as a so-called elliptical instability, which promotes the initial bending of vortex tubes in a sinusoidal fashion, while the other is a hyperbolic mode, which is responsible for the development of streamwise vortex streaks in the "braids" between adjacent vortex cores. In the rotating case, anticyclonic vortices are strongly destabilized by weak background rotation, while rapid rotation stabilizes both the cyclones and anticyclones. The strong anticyclones are subject to two distinct forms of instability, namely a Coriolis force modified elliptical instability and an inertial (centrifugal) instability. The former instability is very similar to the nonrotating form of the elliptical instability as it promotes bending of vortex tubes, while the latter instability grows on the edge of the vortex core and generates streaks of vorticity, which surround the vortex core itself. These results of direct numerical simulation fully verify the results of previous linear stability analyses. Taken together, they provide a simple explanation for the broken symmetry that is often observed to be characteristic of the von Karman vortex streets that develop in the atmospheric lee of oceanic islands.  相似文献   

5.
Abstract

A spectral low-order model is proposed in order to investigate some effects of bottom corrugation on the dynamics of forced and free Rossby waves. The analysis of the interaction between the waves and the topographic modes in the linear version of the model shows that the natural frequencies lie between the corresponding Rossby wave frequencies for a flat bottom and those applying in the “topographic limit” when the beta-effect is zero. There is a possibility of standing or eastward-travelling free waves when the integrated topograhic effect exceeds the planetary beta-effect.

The nonlinear interactions between forced waves in the presence of topography and the beta-effect give rise to a steady dynamical mode correlated to the topographic mode. The periodic solution that includes this steady wave is stable when the forcing field moves to the West with relatively large phase speed. The energy of this solution may be transferred to the steady zonal shear flow if the spatial scale of this zonal mode exceeds the scale of the directly forced large-scale dynamical mode.  相似文献   

6.
Abstract

The term ‘‘solitary wave'’ is usually used to denote a steadily propagating permanent form solution of a nonlinear wave equation, with the permanency arising from a balance between steepening and dispersive tendencies. It is known that large-scale thermal anomalies in the ocean are subject to a steepening mechanism driven by the beta effect, while at the smaller deformation scale, such phenomena are highly dispersive. It is shown here that the evolution of a physical system subject to both effects is governed by the ‘‘frontal semi-geostrophic equation'’ (FSGE), which is valid for large amplitude thermocline disturbances. Solitary wave solutions of the FSGE (here named planetons) are calculated and their properties are described with a view towards examining the behavior of finite amplitude solitary waves. In contrast, most known solitary wave solutions belong to weakly nonlinear wave equations (e.g., the Korteweg—deVries (KdV) equation).

The FSGE is shown to reduce to the KdV equation at small amplitudes. Classical sech2 solitons thus represent a limiting class of solutions to the FSGE. The primary new effect on planetons at finite amplitudes is nonlinear dispersion. It is argued that due to this effect the propagation rates of finite amplitude planetons differ significantly from the ‘‘weak planeton'', or KdV, dispersion relation. Planeton structure is found to be simple and reminiscent of KdV solitons. Numerical evidence is presented which suggests that collisions between finite amplitude solitary waves are weakly inelastic, indicating the loss of true soliton behavior of the FSGE at moderate amplitudes. Lastly, the sensitivity of solitary waves to the existence of a nontrivial far field is demonstrated and the role of this analysis in the interpretation of lab experiments and the evolution of the thermocline is discussed.  相似文献   

7.
In a previous paper, Caillol [Geophys. Astrophys. Fluid Dyn., 2014, 108] investigated the steady nonlinear vortical structure of a singular vortex Rossby mode that has survived to a strong critical-layer-like interaction with a linearly stable, columnar, axisymmetric and dry vortex. We presented a general theory for this wave/mean flow interaction through the nonlinear critical layer theory and calculated the mean azimuthal and axial winds induced at the critical radius at the end of this interaction in the final stage. We here apply that theory to rapidly rotating geophysical vortices: tropical cyclones, cold-air mesocyclones and tornadoes. We find that the numerous assumptions invoked in that paper agree well with the reality of those intense vortices. We also find that in spite of a lack of moist-convection modelling, this dry vortex is fairly well accelerated at the critical radius by such a shear wave with a magnitude of order the square root of the damped-wave amplitude. The intensification level strongly depends on the aspect ratio, height of the system: rapid vortex and parent vortex, over core radius. The thinner the vortex is, the sharper the intensification is. This result is in sharp contrast to the numerous numerical simulations on VR wave/vortex interactions that yield a much smaller intensification of order the square of the wave amplitude. This weakly nonlinear approach nevertheless fails to model small vertical wavelength VR wave/vortex interactions for their related asymptotic expansions are divergent and for they yield strongly nonlinear VR waves coupled with evolving critical layers whose extent can no longer be considered as thin.  相似文献   

8.

We present results from a new series of experiments on the geophysically important issue of the instability of anticyclonic columnar vortices in a rotating fluid in circumstances such that the Rossby number exceeds unity. The vortex pair consisting of a cyclonic and an anticyclonic vortex is induced by a rotating flap in a fluid which is itself initially in a state of solid-body rotation. The anticyclonic vortex is then subject to either centrifugal or elliptical instability, depending on whether its initial ellipticity is small or large, while the cyclone always remains stable. The experimental results demonstrate that the perturbations due to centrifugal instability have a typical form of toroidal vortices of alternating sign (rib vortices). The perturbations due to elliptical instability are of the form of sinuous deformation of the vortex filament in the plane of maximal stretching which corresponds to the plane of symmetry for the vortex pair. The initial perturbations in both cases are characterized by a definite wave number in the vertical direction. The characteristics of the unstable anticyclone are determined by the main nondimensional parameter of the flow - the Rossby number. The appearance of both centrifugal and elliptical instabilities are in accord with the predictions of theoretical criteria for these cases.  相似文献   

9.
Abstract

Various interactions between small numbers (two and four) of baroclinic, geostrophic point vortices in a two-layer system are studied with attention to the qualitative changes in behavior which occur as size of the deformation radius is varied.

A particularly interesting interaction, which illustrates the richness of baroclinic vortex dynamics, is a collision between two hetons. (A heton is a vortex pair in which the constituent vortices have opposite signs and are in opposite layers. The “breadth” of a heton is the distance between its constituent vortices. A translating heton transports heat.) When two hetons, which initially have different breadths, collide, the result is either an exchange of partners, or a “slip-through” collision in which the initial structures are preserved. It is shown here that the outcome is always an exchange, provided the deformation radius is sufficiently small. This strongly contrasts with a collision between pairs of classical, one-layer vortices in which no exchange occurs if the initial ratio of the breadths is sufficiently extreme.

Finally the transport of passive fluid by a translating baroclinic pair is investigated. A pair of vortices in the top layer transports no lower layer fluid if the distance between the vortices is less than 1.72 deformation radii. By contrast, the size of the region trapped by a heton increases without bound as the spacing between the vortices increases.  相似文献   

10.
Abstract

We study the formation of lenses of the ocean's intermediate water using a 2.5-layerβ-plane primitive equation model with localized injection of water mass. For the injecting rate of 1.0 Sv, we have observed that strong vortices are shed regularly. These vortices propagate westward much faster than the second baroclinic long Rossby wave. They are totally isolated from each other and show strong baroclinicity as well. Moreover, they remain stable over a sufficiently long period of time. Regular formation of such strong vortices in the intermediate layer has not been reported previously. The translation speed is explained using the Euler's momentum integral theorem for the nonlinear baroclinic vortex on the β-plane. We have demonstrated that coupling between the primary motion in the intermediate layer and the secondary motion in the upper layer with a meridional shift is crucial to the fast westward translation of the intense vortices. A simple dispersion formula relating the zonal translation speed with the vortex radius is also derived under the assumption of quasi-geostrophy. It has turned out that the analytical relation explains the numerical results surprisingly well despite the limitation of its derivation.  相似文献   

11.
Abstract

In a laboratory model ocean, fluid in a rotating tank of varying depth is subjected to “wind-stress”, For a certain range of the parameters, Ekman number E and Rossby number R, a homogeneous fluid displays steady, westward intensified flow. For the same range of E and R, a two-layer fluid can have baroclinic instabilities. The parameter range for the various kinds of instabilities is mapped in a regime diagram. The northward transport in the western boundary current is measured as it varies with Rossby number for both homogeneous and two-layer fluid.  相似文献   

12.
Rossby wave patterns in zonal and meridional winds   总被引:1,自引:0,他引:1  
The propagation properties of Rossby waves in zonal and meridional winds are analyzed using the local dispersion relation in its wave number form, the geometry of which plays a crucial role in illuminating radiation patterns and ray trajectories. In the presence of a wind/current, the classical Rossby wave number curve, an offset circle, is distorted by the Doppler shift in frequency and a new branch, consisting of a blocking line with an eastward facing indentation, arises from waves convected with or against the flow. The radiation patterns generated by a time harmonic compact source in the laboratory frame are calculated using the method of stationary phase and are illustrated through a series of figures given by the reciprocal polars to the various types of wave number curves. We believe these results are new. Some of these wave patterns are reminiscent of a “reversed” ship wave pattern in which cusps (caustics) arise from the points of inflection of the wave number curves; whilst others bear a resemblance to the parabolic like curves characteristic of the capillary wave pattern formed around an obstacle in a stream. The Rossby stationary wave in a westerly is similar to the gravity wave pattern in a wind, whereas its counterpart in a meridional wind exhibits caustics, again arising from points of inflection in the wavenumber curve.  相似文献   

13.
Abstract

The generation of stationary Rossby waves by sources of potential vorticity in a westerly flow is examined here in the context of a two-layer, quasi-geostrophic, β-plane model. The response in each layer consists of a combination of a barotropic Rossby wave disturbance that extends far downstream of the source, and a baroclinic disturbance which is evanescent or wave-like in character, depending on the shear and degree of stratification. Contributions from each of these modes in each layer are strongly dependent on the basic flows in each layer; the degree of stratification; and the depths of the two layers. The lower layer response is dominated by an evanescent baroclinic mode when the upper layer westerlies are much larger than those in the lower layer. In this case, weak stationary Rossby waves of large wavelengths are confined to the upper layer and the disturbance in the lower layer is confined to the source region.

Increasing the upper layer flow (with the lower layer flow fixed) increases the Rossby wavelength and decreases the amplitude. Decreasing the lower layer flow (with the upper layer flow fixed) decreases the wavelength and increases the amplitude. Stratification increases the contribution from the barotropic wave-like mode and causes the response to be confined to the lower layer.

The finite amplitude response to westerly flow over two sources of potential vorticity is also considered. In this case stationary Rossby waves induced by both sources interact to reinforce or diminish the downstream wave pattern depending on the separation distance of the sources relative to the Rossby wavelength. For fixed separation distance, enhancement of the downstreatm Rossby waves will only occur for a narrow range of flow variables and stratification.  相似文献   

14.
Abstract

The flow in a mechanically driven thin barotropic rotating fluid system is analysed. The linear theory of Baker and Robinson (1969) is modified and extended into the non-linear regime.

An internal parameter, the “local Rossby number”, is indicative of the onset of nonlinear effects. If this parameter is 0(1) then inertial effects are as important as Coriolis accelerations in the interior of the transport-turning western boundary layer and both of its Ekman layers. The inertial effects in the Ekman layers, ignored in previous explorations of non-linear wind driven oceanic circulation, are retained here and calculated using an approximation of the Oseen type. The circulation problem is reduced to a system of scalar equations in only two independent variables; the system is valid for non-small local Rossby number provided only that the approximate total vorticity is positive.

To complete the solution for small Rossby number a boundary condition for the inertially induced transport is needed. It is found by examining the dynamics controlling this additional transport from the western boundary layer as the transport recirculates through the rest of the ocean basin. The strong constraint of total recirculation within the western boundary layer (zero net inertial transport) is derived.

The calculated primary inertial effects are in agreement with the observations of the laboratory model of Baker and Robinson (1969).

The analysis indicates the extent to which three-dimensional non-linear circulation can be reduced to a two dimensional problem.  相似文献   

15.
Abstract

We consider the mixing of passive tracers and vorticity by temporally fluctuating large scale flows in two dimensions. In analyzing this problem, we employ modern developments stemming from properties of Hamiltonian chaos in the particle trajectories; these developments generally come under the heading “chaotic advection” or “Lagrangian turbulence.” A review of the salient properties of this kind of mixing, and the mathematics used to analyze it, is presented in the context of passive tracer mixing by a vacillating barotropic Rossby wave. We then take up the characterization of subtler aspects of the mixing. It is shown the chaotic advection produces very nonlocal mixing which cannot be represented by eddy diffusivity. Also, the power spectrum of the tracer field is found to be k ? l at shortwaves—precisely as for mixing by homogeneous, isotropic two dimensional turbulence,—even though the physics of the present case is very different. We have produced two independent arguments accounting for this behavior.

We then examine integrations of the unforced barotropic vorticity equation with initial conditions chosen to give a large scale streamline geometry similar to that analyzed in the passive case. It is found that vorticity mixing proceeds along lines similar to passive tracer mixing. Broad regions of homogenized vorticity ultimately surround the separatrices of the large scale streamline pattern, with vorticity gradients limited to nonchaotic regions (regions of tori) in the corresponding passive problem.

Vorticity in the chaotic zone takes the form of an arrangement of strands which become progressively finer in scale and progressively more densely packed; this process transfers enstrophy to small scales. Although the enstrophy cascade is entirely controlled by the large scale wave, the shortwave enstrophy spectrum ultimately takes on the classical k ? l form. If one accepts that the enstrophy cascade is indeed mediated by chaotic advection, this is the expected behavior. The extreme form of nonlocality (in wavenumber space) manifest in this example casts some doubt on the traditional picture of enstrophy cascade in the Atmosphere, which is based on homogeneous two dimensional turbulence theory. We advance the conjecture that these transfers are in large measure attributable to large scale, low frequency, planetary waves.

Upscale energy transfers amplifying the large scale wave do indeed occur in the course of the above-described process. However, the energy transfer is complete long before vorticity mixing has gotten very far, and therefore has little to do with chaotic advection. In this sense, the vorticity involved in the enstrophy cascade is “fossil vorticity,” which has already given up its energy to the large scale.

We conclude with some speculations concerning statistical mechanics of two dimensional flow, prompted by our finding that flows with identical initial energy and enstrophy can culminate in very different final states. We also outline prospects for further applications of chaotic mixing in atmospheric problems.  相似文献   

16.
Abstract

An experimental study was carried out to investigate the effect of rotation on turbulent mixing in a stratified fluid when the turbulence in the mixed layer is generated by an oscillating grid. Two types of experiments were carried out: one of them is concerned with the deepening of the upper mixed layer in a stable, two-fluid system, and the other deals with the interaction between a stabilizing buoyancy flux and turbulence.

In the first type of experiments, it was found that rotation suppresses entrainment at larger Rossby numbers. As the Rossby number becomes smaller (Ro 0.1), the entrainment rate increases with rotation—the onset of this phenomenon, however, was found to coincide with the appearance of coherent vortices within the mixed layer. The radiation of energy from the mixed layer to the lower non-turbulent layer was found to occur and the magnitude of the energy flux was found to be increased with the rotational frequency. It was also observed that vortices are generated, rather abruptly, in the lower layer as the mixed layer deepens.

In the second set of experiments a quasi-steady mixed layer was found to develop of which the thickness varies with rotation in a fashion that is consistent with the result of the first experiment. Also the rotation was found to delay the formation of a pycnocline.  相似文献   

17.
Atmospheric electrification is not a purely terrestrial phenomenon: all Solar System planetary atmospheres become slightly electrified by cosmic ray ionisation. There is evidence for lightning on Jupiter, Saturn, Uranus and Neptune, and it is possible on Mars, Venus and Titan. Controversy surrounds the role of atmospheric electricity in physical climate processes on Earth; here, a comparative approach is employed to review the role of electrification in the atmospheres of other planets and their moons. This paper reviews the theory, and, where available, measurements, of planetary atmospheric electricity which is taken to include ion production and ion–aerosol interactions. The conditions necessary for a planetary atmospheric electric circuit similar to Earth’s, and the likelihood of meeting these conditions in other planetary atmospheres, are briefly discussed. Atmospheric electrification could be important throughout the solar system, particularly at the outer planets which receive little solar radiation, increasing the relative significance of electrical forces. Nucleation onto atmospheric ions has been predicted to affect the evolution and lifetime of haze layers on Titan, Neptune and Triton. Atmospheric electrical processes on Titan, before the arrival of the Huygens probe, are summarised. For planets closer to Earth, heating from solar radiation dominates atmospheric circulations. However, Mars may have a global circuit analogous to the terrestrial model, but based on electrical discharges from dust storms. There is an increasing need for direct measurements of planetary atmospheric electrification, in particular on Mars, to assess the risk for future unmanned and manned missions. Theoretical understanding could be increased by cross-disciplinary work to modify and update models and parameterisations initially developed for a specific atmosphere, to make them more broadly applicable to other planetary atmospheres.  相似文献   

18.
Abstract

Supercritically unstable density fronts near a vertical wall in a rotating, two-layer fluid were created on a laboratory turntable by withdrawing the outer wall of an annulus with a narrow gap, and allowing buoyant fluid from within the annulus to collapse toward a state of quasi-geostrophic balance. The resulting “coastal” current has a nearly uniform potential vorticity and is bounded by a front on which ageostrophic, wave-like disturbances grow. If the current width is comparable to the Rossby radius of deformation, the dominant length scale of disturbances is proportional to the width of the current. On the other hand, if the upper layer is much wider than the Rossby radius, then the observed length scale is a constant multiple of the Rossby radius. If the vertical boundary is omitted in the experiments, so that we are left with a circular anticyclonic vortex, the observed length scales and large-amplitude behaviour of disturbances are identical to those for the boundary currents, indicating that the wall has no significant influence on the flow.

At very large amplitude the growing waves lead to the formation of cyclone-anticyclone vortex pairs. For very wide currents, both the mean flow and the disturbances are first confined to a region within a few Rossby radii of the front. However, both the mean flow and the turbulent eddy motions slowly propagate into the previously stationary upper layer until, eventually, the whole of the upper layer is turbulent.  相似文献   

19.
Abstract

The vortex pair known as a modon is a classical solitary wave in the sense that it decays exponentially with distance from the center of the wave whenever the modon's phase speed of the wave is outside the linear range. In contrast, when ?1 < c < 0, the modon “far field” is oscillatory so that the modon is “nonlocal” in the sense that it has nonzero amplitude even at arbitrarily far distances from the vortex maximum. However, Tribbia and Verkley have independently noted that the oscillatory far field may be very weak for some parameter ranges.  相似文献   

20.
River plume front-generated internal solitons play an important role in the interaction between the plume and coastal waters. The internal solitons drive a non-harmonic velocity field, resulting in a horizontal transport that carries plume water seaward and redistributes nutrients and sediments. In this study, we present observations of internal solitons generated at the Columbia River plume front that separates the new, tidal plume, older plume and coastal waters. Scale analyses suggest that the plume front-generated internal solitons are highly non-linear waves, and their dynamic properties do not conform to any weakly non-linear theory. Thus, a high-order Korteweg–de Vries (KdV) theory is used to analyze the internal solitons. The comparison between theoretical values and cruise data shows that the high-order KdV model is much better than the weakly non-linear theories for prediction of the soliton dynamic parameters. Based on the model, we develop theoretical and numerical solutions of the soliton-induced upper layer horizontal transport and Lagrangian water parcel transport distance, which shows that the water particle drift, during the internal soliton passage, is as far as 1 km, and demonstrates the role of the internal solitons on the exchange between the plume and ambient coastal water. Energy fluxes caused by the internal solitons are estimated using the high-order KdV theory. The leading soliton fluxes 2.0×103 W m−1 per unit crest length, and carries energy of 4.2×105 J m−1. The total energy carried by the eight internal solitons is 1.6×106 J m−1, about 70% of the total frontal energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号