首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

An idealised α2ω-dynamo is considered in which the α-effect is prescribed. The additional ω-effect results from a geostrophic motion whose magnitude is determined indirectly by the Lorentz forces and Ekman suction at the boundary. As the strength of the α-effect is increased, a critical value α? c is reached at which dynamo activity sets in; α? c is determined by the solution of the kinematic α2-dynamo problem. In the neighbourhood of the critical value of α? the magnetic field is weak of order E 1/4(μηρω)½ due to the control of Ekman suction; E(?1) is the Ekman number. At certain values of α?, viscosity independent solutions are found satisfying Taylor's constraint. They are identified by the bifurcation of a nonlinear eigenvalue problem. Dimensional arguments indicate that following this second bifurcation the magnetic field is strong of order (μηρω)½. The nature of the transition between the kinematic linear theory and the Taylor state is investigated for various distributions of the α-effect. The character of the transition is found to be strongly model dependent.  相似文献   

2.
Abstract

In a laboratory model ocean, fluid in a rotating tank of varying depth is subjected to “wind-stress”, For a certain range of the parameters, Ekman number E and Rossby number R, a homogeneous fluid displays steady, westward intensified flow. For the same range of E and R, a two-layer fluid can have baroclinic instabilities. The parameter range for the various kinds of instabilities is mapped in a regime diagram. The northward transport in the western boundary current is measured as it varies with Rossby number for both homogeneous and two-layer fluid.  相似文献   

3.
An axisymmetric model of convection in a rotating cylinder in an external uniform magnetic field has been considered. In the considered model, the meridional circulation is created by a nonuniform rotation of the lower boundary relative to the other boundaries. In the considered model, the time of formation of the stationary regime in the magnetic field considerably increases if the vertical density (compressibility) inhomogeneity is taken into account for Ekman numbers of E = E M = 3 × 10−3. This example shows that the compressibility of a medium should be taken into account in the convection and dynamics of the magnetic field when the magnetohydrodynamics of the Earth is analyzed.  相似文献   

4.
Abstract

The flow properties of an homogeneous fluid which is bounded by two concentric spheres and two meridional planes which intersect along a diameter of the spheres are investigated. The spheres rotate about this diameter with slightly different angular velocities. As in the axisymmetric case studied by Proudman (1956) and Stewartson (1966) the viscous terms in the equations of motion are important only in boundary layers on the spheres and on the cylinder C which circumscribes the inner sphere and which has generators parallel to the axis of rotation, provided the Ekman number E is small. In the inviscid region the velocities are independent of the coordinate measuring distance along the axis of rotation and are much weaker, by a factor 0(E ½), than the velocities in the Ekman layer on the driving surface (outer sphere). (It is assumed that the reference frame is fixed in the slower rotating inner sphere.) If the separation of the spheres is small compared to their radii then the asymmetric circulation inside C is characterized by an intense jet along the western wall. Loss of fluid from this jet sustains the eastward and northward flow in the inviscid interior where motion is driven by the suction of the Ekman layer on the outer sphere. (Geophysical conventions have been adopted.) Outside C an intense current is present on the eastern, not western, wall while motion in the inviscid region is westward, and away from the axis of rotation. Though there is no transport across C in the inviscid region, the meridional transport of the Ekman layer on the outer sphere is continuous across C and increases, through suction, as the equator is approached until it drains into an eastward flowing equatorial current of width 0(E 1/7). The eastern boundary current outside C and shear layers on C carry this fluid to the intersection of C and the western wall where it feeds the western boundary current inside C.

The relation between this study and the experiments of Baker and Robinson (1970) is discussed.  相似文献   

5.
A key non-linear mechanism in a strong-field geodynamo is that a finite amplitude magnetic field drives a flow through the Lorentz force in the momentum equation and this flow feeds back on the field-generation process in the magnetic induction equation, equilibrating the field. We make use of a simpler non-linear?α?2-dynamo to investigate this mechanism in a rapidly rotating fluid spherical shell. Neglecting inertia, we use a pseudo-spectral time-stepping procedure to solve the induction equation and the momentum equation with no-slip velocity boundary conditions for a finitely conducting inner core and an insulating mantle. We present calculations for Ekman numbers (E) in the range 2.5× 10?3 to 5.0× 10?5, for?α?=α 0cos?θ?sin?π?(r?ri ) (which vanishes on both inner and outer boundaries). Solutions are steady except at lower E and higher values of?α?0. Then they are periodic with a reversing field and a characteristic rapid increase then equally rapid decrease in magnetic energy. We have investigated the mechanism for this and shown the influence of Taylor's constraint. We comment on the application of our findings to numerical hydrodynamic dynamos.  相似文献   

6.
Abstract

The flow of a rotating homogeneous, incompressible fluid past a long ridge is investigated. An analysis is presented for flows in which E ? 1, Ro ~ E½, H/D ~ E0, h/D ~ E½ and cosα ~ E0 where E is the Ekman number, Ro the Rossby number, H/D the fluid depth to ridge width ratio, h/D the ridge height to ridge width ratio and α the angle between the free stream flow and a line perpendicular to the ridge axis. The analysis includes effects of the nonlinear inertial terms. Particular examples of a ridge of triangular cross section and a sinusoidal topography are investigated in some detail. Experiments are presented for a triangular ridge which are in good agreement with the theory.  相似文献   

7.
Abstract

The low Rossby number flow in a rotating cylinder with an inclined bottom, of small slope, is examined when part of the lid of the container is rotating at a slightly different rate. The resulting flow is calculated numerically by solving the governing equations for the two-dimensional geostrophic motion which approximates the flow in most of the fluid including the inertially-modified E ¼ -layers. The presence of ageostrophic regions, on the container walls and beneath the velocity discontinuity on the lid, is accounted for in the governing equations and their boundary conditions. This study supplements previous work on this configuration, in which the zero Rossby number flow was calculated and experimental results were presented, by enabling a direct comparison to be made between the results of the low Rossby number theory and the experiments. The numerical results for a range of Rossby and Ekman numbers compare well with those from the experiments despite a severe limitation on the size of the Rossby number arising from the analysis in the ageostrophic part of the detached shear layer.  相似文献   

8.
Abstract

This paper examines the detailed E 1/4-layer structure of separated flow past a circular cylinder in a low-Rossby-number rotating fluid as the Ekman number E tends to zero. This structure is based on an initial proposal by Page (1987) but with some modifications in response to further evidence, outlined both in this paper and elsewhere, on the behaviour of E 1/4-layer flows in this context. Numerical calculations for flow in an E 1/4 shear layer along the separated free streamline are described and the mass flux from this layer is then used to calculate the higher-order flow within the separation bubble. The flow structure is found to have two forms, depending on the value of the O(1) parameter λ, and these are compared with results from published “Navier-Stokes” type calculations for the flow at small but finite values of E.  相似文献   

9.
Abstract

It is shown that the linear equatorial dynamics of a shallow ocean is characterized by two boundary layers of width γ? L and γL (γ is the Ekman number of the flow, assumed small, and L is a horizontal dimension of the basin). In the γ? layer stress in the bottom Ekman layer is comparable to that in the surface Ekman layer. In the γ layer vertical friction is important throughout the depth of the ocean. Should the Rossby number ? be so large as to invalidate a linear theory (? > γ5/3), then inertial effects become important at a distance ?2/5 L from the equator. The role played in the circulation of the basin by the non-linear equatorial current first studied by Charney (1960) is shown to be similar to that of the γ layer of the linear theory. Though lateral friction is unimportant in a linear model of the flow, shear layers at the equator are found to be a necessary feature of non-linear flow.  相似文献   

10.
Abstract

The stability of a zonal shear flow to symmetric baroclinic perturbations is examined when the Ekman number, E, is asymptotically small. It is assumed, following Antar and Fowlis (1982), that the zonal Row is generated by imposing a constant horizontal temperature gradient γ* at the horizontal boundaries, and by maintaining a constant temperature difference δT* between them. The boundaries are at rest relative to a rotating frame.

Features of the neutral stability curve are determined for several ranges of values of δT/E 1/3, where δT = δT*/Hγ* and H is the depth of the fluid layer, and all values of the Prandtl number, [sgrave]. In some cases it is possible to determine the whole curve analytically. The most important feature of the results is that the neutral stability curve is closed.

The results are compared to the numerical integrations of Antar and Fowlis (1982). The qualitative features of the solutions are in accord and the quantitative results are, in most cases, as good as can be expected for E only as small as ~ 10?4. The implications of the results for experimental observations of symmetric baroclinic instability are explored.  相似文献   

11.
Abstract

A two gyre circulation and inertial western boundary currents have been observed in a sloping bottom laboratory model of a barotropic ocean circulation. Water of viscosity v is contained in a rotating (angular velocity ω), square basin of side L (30 cm) with a flat top and a bottom slope (tan θ) such that the depth (H) varies from 12 to 15 cm. The flow is driven by a distributed source and sink at the upper surface, a plate drilled with 342 holes. The hole distribution and size is arranged so that the average imposed vertical velocity, w = w 0 sin (2πy′/30), models the Ekman divergence from a two gyre zonal wind stress. Fluid flow is observed with the thymol blue technique over the ranges of Rossby numbers (w 0/2ωL tan θ) from 1.44 × 10?3 to 1.41 × 10?2 and Ekman numbers (v/2ωH 2) from 2.13 × 10?5 to 2.10 × 10?3. At the largest Rossby numbers the flow pattern changes markedly, but the non-uniformity of the imposed vertical velocity also penetrates deep into the fluid in this regime.  相似文献   

12.
Abstract

This paper presents an analytical, two-dimensional model of the wind-induced homogeneous circulation near the edge of an ice pack floating on the ocean surface. It is shown that a vertical shear layer arises under the ice edge, by which the wind-driven geostrophic motion in the open ocean is matched to the flow region underneath the ice. As in coastal upwelling models, this shear layer consists of a thin E 1/2-layer inside a thicker E 1/4-layer (E being the Ekman number). Under certain conditions the shear layer produces a vertical mass flux from the bottom to the surface Ekman layer. Near the surface this upwelling flux is concentrated in the narrow E 1/2-layer. Comparison with observations of upwelling at the edge of a polar ice pack shows good agreement.  相似文献   

13.
Abstract

We propose a method of derivation of global asymptotic solutions of the hydromagnetic dynamo problem at large magnetic Reynolds number. The procedure reduces to matching the local asymptotic forms for the magnetic field generated near individual extrema of generation strength. The basis of the proposed method, named here the Maximally-Efficient-Generation Approach (MEGA), is the assertion that properties of global asymptotic solutions of the kinematic dynamo are determined by the distribution of the generation strength near its leading extrema and by the number and distribution of the extrema.

The general method is illustrated by the global asymptotic solution of the α2-dynamo problem in a slab. The nature of oscillatory solutions revealed earlier in numerical simulations and the reasons for the dominance of even magnetic modes in slab geometry are clarified.

Applicability of the asymptotic solutions at moderate values of the asymptotic parameter is also discussed. We confirm this applicability using comparisons with complementary asymptotic expansions and numerical simulations. In particular, this justifies application of the MEGA solutions to estimation of the generation threshold.  相似文献   

14.
Abstract

Some new measurements are presented of the axisymmetric heat transport in a differentially heated rotating fluid annulus. Both rigid and free upper surface cases are studied, for Prandtl numbers of 7 and 45, from low to high rotation rates. The rigid lid case is extended to high rotation rates by suppressing the baroclinic waves, that would normally develop at some intermediate rotation rate, with the use of sloping endwalls.

A parameter P is defined as the square of the ratio of the (non-rotating) thermal sidewall layer thickness to the Ekman layer thickness. For small P the heat transport remains unaffected by the rotation, but as P increases to order unity the Ekman layer becomes thin enough to inhibit the radial mass transport, and hence the heat flux. No explicit Prandtl number dependence is observed. Also this scaling allows the identification of the region in which the azimuthal velocity reaches its maximum. Direct comparisons are drawn with previous experimental and numerical results, which show what can be interpreted as an inhibiting effect of increasing curvature on the heat transport.  相似文献   

15.
Abstract

Numerical simulations of thermal convection in a rapidly rotating spherical fluid shell with and without inhomogeneous temperature anomalies on the top boundary have been carried out using a three-dimensional, time-dependent, spectral-transform code. The spherical shell of Boussinesq fluid has inner and outer radii the same as those of the Earth's liquid outer core. The Taylor number is 107, the Prandtl number is 1, and the Rayleigh number R is 5Rc (Rc is the critical value of R for the onset of convection when the top boundary is isothermal and R is based on the spherically averaged temperature difference across the shell). The shell is heated from below and cooled from above; there is no internal heating. The lower boundary of the shell is isothermal and both boundaries are rigid and impermeable. Three cases are considered. In one, the upper boundary is isothermal while in the others, temperature anomalies with (l,m) = (3,2) and (6,4) are imposed on the top boundary. The spherically averaged temperature difference across the shell is the same in all three cases. The amplitudes of the imposed temperature anomalies are equal to one-half of the spherically averaged temperature difference across the shell. Convective structures are strongly controlled by both rotation and the imposed temperature anomalies suggesting that thermal inhomogeneities imposed by the mantle on the core have a significant influence on the motions inside the core. The imposed temperature anomaly locks the thermal perturbation structure in the outer part of the spherical shell onto the upper boundary and significantly modifies the velocity structure in the same region. However, the radial velocity structure in the outer part of the shell is different from the temperature perturbation structure. The influence of the imposed temperature anomaly decreases with depth in the shell. Thermal structure and velocity structure are similar and convective rolls are more columnar in the inner part of the shell where the effects of rotation are most dominant.  相似文献   

16.
Abstract

The steady nonlinear regime of Bénard convection in a uniformly rotating fluid is treated using a two-dimensional primitive-equation numerical model with rigid boundaries. Quantitative comparisons with laboratory heat transport data for water are made in the parameter ranges for which the experimental flows are approximately two-dimensional and steady. When an experimentally realistic spatial periodicity is imposed upon the numerical solution, the model simulates the experimental determinations of Nusselt number fairly accurately. In particular, it predicts the observed non-monotonic dependence on Taylor number. When spatial periodicities corresponding to those of the linear stability problem are specified, however, the accuracy of the simulation is less and the Taylor number dependence is monotonic.  相似文献   

17.
Abstract

A spherical αω-dynamo is studied for small values of the viscous coupling parameter ε ~ v1/2, paying attention particularly to large dynamo numbers. The present study is a follow-up of the work by Hollerbach et al. (1992) with their choice of α-effect and Archimedean wind including also the constraint of magnetic field symmetry (or antisymmetry) due to equatorial plane. The magnetic field scaled by ε1/2 is independent of ε in the solutions for dynamo numbers smaller than a certain value of D b (the Ekman state) which are represented by dynamo waves running from pole to equator or vice-versa. However, for dynamo numbers larger than D b the solution bifurcates and subsequently becomes dependent on ε. The bifurcation is a consequence of a crucial role of the meridional convection in the mechanism of magnetic field generation. Calculations suggest that the bifurcation appears near dynamo number about 33500 and the solutions for larger dynamo numbers and ε = 0 become unstable and fail, while the solutions for small but non-zero ε are characterized by cylindrical layers of local maximum of magnetic field and sharp changes of geostrophic velocity. Our theoretical analysis allows us to conclude that our solution does not take the form of the usual Taylor state, where the Taylor constraint should be satisfied due to the special structure of magnetic field. We rather obtained the solution in the form of a “weak” Taylor state, where the Taylor constraint is satisfied partly due to the amplitude of the magnetic field and partly due to its structure. Calculations suggest that the roles of amplitude and structure are roughly fifty-fifty in our “weak” Taylor state solution and thus they can be called a Semi-Taylor state. Simple estimates show that also Ekman state solutions can be applicable in the geodynamo context.  相似文献   

18.
Abstract

A spherical α2-dynamo is presented as an expansion in the free decay modes of the magnetic field. In the limit of vanishing viscosity the momentum equation yields various asymptotic expansions for the flow, depending on the precise form of the dissipation and boundary conditions applied. A new form for the dissipation is introduced that greatly simplifies this asymptotic expansion. When these expansions are substituted back into the induction equation, a set of modal amplitude equations is derived, and solved for various distributions of the α-effect. For all choices of α the solutions approach the Taylor state, but the manner in which this occurs can vary, as previously found by Soward and Jones (1983). Furthermore, as hypothesized by Malkus and Proctor (1975), but not previously demonstrated, the post-Taylor equilibration is indeed independent of the viscosity in the asymptotic limit, and depending on the choice of a may be either steady-state or oscillatory.  相似文献   

19.
As a step towards a physically realistic model of a fast dynamo, we study numerically a kinematic dynamo driven by convection in a rapidly rotating cylindrical annulus. Convection maintains the quasi-geostrophic balance whilst developing more complicated time-dependence as the Rayleigh number is increased. We incorporate the effects of Ekman suction and investigate dynamo action resulting from a chaotic flow obtained in this manner. We examine the growth rate as a function of magnetic Prandtl number Pm, which is proportional to the magnetic Reynolds number. Even for the largest value of Pm considered, a clearly identifiable asymptotic behaviour is not established. Nevertheless the available evidence strongly suggests a fast dynamo process.  相似文献   

20.
Abstract

The linear spin-up of a stably stratified, electrically conducting fluid within an electrically insulating cylindrical container in the presence of an applied axial magnetic field is analyzed for those cases in which electric currents generated within the steady MAC layer control the fluid interior, The MAC layer is a new boundary layer first studied by Loper (1976a) which controls the fluid in the parameter range E2 ? σS ? α2/E, α2 ? 1 Where E = vωL2, 2α2 = σB2/pω and σS = vN2/κω;2. The problem is solved using the Laplace transform and four new spin-up times are obtained. Combined into one expression they are t = ω;?1E-½[1+(σSE/α6)½ + δα-2] [1+(σSE/α6 1/4]?1 where δ = σμv. The internal spin-up mechanisms for this problem are shown to be very similar to those discussed in part 1 (Loper, 1976b). The ten known spin-up times are summarized and their inter-relationships are investigated. It is shown how to obtain the seven hydromagnetic spin-up times from a simple torsional Alfvén wave model involving a single parameter which measures the strength of the boundary layer dissipation. Finally, the present theory is applied to the solar spin-down problem and it is found that if the magnetic field in the solar interior is at least as strong as the interplanetary field of 10-5 gauss, then the hydromagnetic spin-down time is much shorter than the Eddington-Sweet time and is comparable to the age of the sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号