共查询到20条相似文献,搜索用时 0 毫秒
1.
Initial dispersion of material in complex-shaped embayments is examined using observations and scaling based in Crail Bay, Pelorus Sound, New Zealand in autumn of 2005. These observations show the highly variable nature of dispersive transport in an embayment with multiple headlands. Acoustic current profiler-derived typical flow speeds were around 0.05 m s−1 which resulted in drifter-derived short-term (<6 h) horizontal eddy diffusivities of the order of 1 m2 s−1 which is somewhat larger than the empirical paradigm. Microstructure estimates of the turbulent kinetic energy dissipation rate were in the range 10−9–10−7 m2 s−3, with some evidence that sidewalls influence the variability and that headlands increase the dissipation rate by at least and order of magnitude. A new parameter relating horizontal diffusivity to circulation and the tide is proposed. This and other scaling comparisons indicate that the headlands in Crail Bay create similar effects to those studied in other systems. However, the long decay times estimated for eddies here implies that they likely interact with other headlands, unlike some previously studied examples. 相似文献
2.
3.
Integrated assessment of lateral flow, density effects and dispersion in aquifer storage and recovery 总被引:1,自引:0,他引:1
James D. Ward Craig T. Simmons Peter J. Dillon Paul Pavelic 《Journal of Hydrology》2009,370(1-4):83-99
Aquifer storage and recovery (ASR) involves the injection of freshwater into an aquifer for later recovery and use. This paper investigates three major factors leading to reduction in performance of ASR systems in brackish or saline aquifers: lateral flow, density-driven flow and dispersive mixing. Previous analyses of aquifer storage and recovery (ASR) have considered at most two of the above processes, but never all three together, and none have considered lateral flow and density effects together. In this analysis, four dimensionless parameters are defined to give an approximate characterisation of lateral flow, dispersive mixing, mixed convection (density effects during pumping) and free convection (density effects during storage). An extensive set of numerical models spanning a wide parameter range is then used to develop a predictive framework using the dimensionless numbers. If the sum of the four dimensionless numbers (denoted RASR) exceeds 10, the ASR operation is likely to fail with no recoverable freshwater, while if RASR < 0.1, the ASR operation is likely to provide at least some recovery of freshwater. The predictive framework is tested using limited data available from ASR field sites, broadly lending support to the framework. This study has several important implications. Firstly, the lack of completeness of field data sets in the literature must be rectified if we are to properly characterise mixed-convective flow processes in ASR operations. Once data are available, the dimensionless numbers can be used to identify suitable ASR sites and the desirable operational conditions that maximise recovery efficiencies. 相似文献
4.
A numerical model based on smoothed particle hydrodynamics (SPH) was developed and used to simulate immiscible and miscible fluid flows in porous media and to study effects of pore scale heterogeneity and anisotropy on such flows. 相似文献
5.
Ahmad ShakibaeiniaYee-Chung Jin 《Advances in water resources》2011,34(6):794-807
Mesh-free particle (Lagrangian) methods such as Moving Particle Semi-Implicit (MPS) and Smoothed Particle Hydrodynamics (SPH) are the latest generation of methods in the field of computational fluid dynamics that attracts lots of attention in modeling applications where large interfacial deformations and fragmentations exist. Due to their mesh-free nature, these methods are capable of simulating any kind of boundary/interface deformation and fragmentations. This study aims to develop a new mesh-free particle model based on the weakly compressible MPS (WC-MPS) formulation for modeling of a dam break over a mobile bed, which is a highly erosive and transient flow problem. A multiphase model, capable of handling the density and viscosity discontinuity and in which the solid (sediment) phase is treated as a non-Newtonian fluid, is introduced. The resulting model is first validated using a two-phase dam break problem and is then applied to the mobile-bed dam break problem with different conditions, comparing the results to those obtained from some experimental works. 相似文献
6.
Modeling of suspended sediment particle movement in surface water can be achieved by stochastic particle tracking model approaches.In this paper,different mathematical forms of particle tracking models are introduced to describe particle movement under various flow conditions,i.e.,the stochastic diffusion process,stochastic jump process,and stochastic jump diffusion process.While the stochastic diffusion process can be used to represent the stochastic movement of suspended particles in turbulent flows,the stochastic jump and the stochastic jump diffusion processes can be used to describe suspended particle movement in the occurrences of a sequence of extreme flows.An extreme flow herein is defined as a hydrologic flow event or a hydrodynamic flow phenomenon with a low probability of occurrence and a high impact on its ambient flow environment.In this paper,the suspended sediment particle is assumed to immediately follow the extreme flows in the jump process(i.e.the time lag between the flow particle and the sediment particle in extreme flows is considered negligible).In the proposed particle tracking models,a random term mainly caused by fluid eddy motions is modeled as a Wiener process,while the random occurrences of a sequence of extreme flows can be modeled as a Poisson process.The frequency of occurrence of the extreme flows in the proposed particle tracking model can be explicitly accounted for by the Poisson process when evaluating particle movement.The ensemble mean and variance of particle trajectory can be obtained from the proposed stochastic models via simulations.The ensemble mean and variance of particle velocity are verified with available data.Applicability of the proposed stochastic particle tracking models for sediment transport modeling is also discussed. 相似文献
7.
将时空守恒元/解元(CE/SE)方法推广到二维孔隙介质多相流问题的数值计算中,采用人工压缩法耦合速度和压力,同时结合杂交粒子水平集方法捕捉物质界面.提出一套完整的二维欧拉型孔隙介质非稳态多相不可压缩黏性流动计算方案.通过对溃坝和液滴在重力作用下的运动和变形问题的数值模拟,验证了方法的精度和有效性.在此基础上,提出了一个新的孔隙介质两相流物理模型——双层流体顶盖驱动方腔流. 相似文献
8.
9.
Tufi di Grotte dei Rossi Inferiori are thick ash deposits, representing the most voluminous stratigraphic unit on Vulcano
Island. The deposits are related to hydromagmatic eruption which occurred under shallow water inside a caldera depression.
Grain-size data and results of SEM investigation allow the character of the transporting medium, solid material concentration
in the cloud during the lateral expansion, and the nature and role of the fluids present at the time of deposition to be constrained.
We suggest that the eruption was characterized by closely timed hydromagmatic pulses giving rise to eruption clouds rich in
water vapor and steam. The coarser material was not significantly transported in the eruptive cloud and it probably deposited
in the caldera depression area. The finer material was extensively transported in the cloud, creating turbulent flows which
surmounted the caldera rim barrier and dispersed in a southward direction, forming widespread deposits in the Piano area.
Lower concentrated flows produced laminated deposits of more limited dispersion, whereas higher concentrated flows formed
more dispersed thicker massive layers.
Received: 26 February 1996 / Accepted: 17 June 1997 相似文献
10.
The purpose of this study is to quantify the dispersivity in the longitudinal direction by upscaling pore scale mixing over a network domain and to verify the dispersivity with that obtained through the more rigorous upscaling technique, the Brownian particle tracking model (BPTM). We model a porous medium with a network of pore-units that are comprised of pore bodies and bonds of finite volume. Such a pore-unit is assumed to be a mixing cell with the steady state flow condition for a single fluid. Dispersivity can be obtained by solving the mixing cell model (MCM) for the concentration in each pore-unit and by averaging the concentrations for a large number of pore units (as a function of time and space). A minimal size of network that ascertains an asymptotic value of dispersivity was determined and verified with large size pore networks. This numerically computed dispersivity is compared with the results from the BPTM for the same porous medium and flow conditions. We show that the dispersivity obtained from the MCM is equally reliable for the heterogeneous pore-networks and can be estimated as a function of pore size heterogeneity. For homogeneous networks with the MCM, the iteration time step plays an important role. On the other hand, for networks with the BPTM, the assumption of intra-bond velocity profile affects the results. 相似文献
11.
A horizontal saltation layer of glass particles in air is investigated experimentally over a flat bed and also over a triangular ridge in a wind tunnel. Particle concentrations are measured by light scattering diffusion (LSD) and digital image processing, and velocities using particle image velocimetry (PIV). All the statistical moments of the particle concentration are determined such as mean concentration, root mean square concentration fluctuations, skewness and flatness coefficients. Over the flat bed, it is confirmed that the mean concentration decreases exponentially with height, the mean dispersion height being a significant length scale. It is shown that the concentration distribution follows quite well a lognormal distribution. Over the ridge, measurements were made at the top of the ridge and in the cavity region and are compared with measurements without the ridge. On the hill crest, particles are retarded, the saltation layer decreases in thickness and concentration is increased. Downwind of the ridge, particle flow behaves like a jet, in particular no particle return flow is observed. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
12.
Yongsheng Wu Charles G. Hannah Pramod Thupaki Ruping Mo Brent Law 《Marine pollution bulletin》2017,114(1):176-182
Raindrops falling on the sea surface produce turbulence. The present study examined the influence of rain-induced turbulence on oil droplet size and dispersion of oil spills in Douglas Channel in British Columbia, Canada using hourly atmospheric data in 2011–2013. We examined three types of oils: a light oil (Cold Lake Diluent - CLD), and two heavy oils (Cold Lake Blend - CLB and Access Western Blend - AWB). We found that the turbulent energy dissipation rate produced by rainfalls is comparable to what is produced by wind-induced wave breaking in our study area. With the use of chemical dispersants, our results indicate that a heavy rainfall (rain rate > 20 mm h? 1) can produce the maximum droplet size of 300 μm for light oil and 1000 μm for heavy oils, and it can disperse the light oil with fraction of 22–45% and the heavy oils of 8–13%, respectively. Heavy rainfalls could be a factor for the fate of oil spills in Douglas Channel, especially for a spill of light oil and the use of chemical dispersants. 相似文献
13.
海啸造成的灾害与损失并非都与淹没有关,特别是港口中海啸诱导的强流会对船只及海事设施产生重要的影响及损害.由于海啸流观测数据稀缺及海啸诱导涡流机制的不确定性,过去60年海啸科学主要集中于对海啸波特征及淹没过程的研究与分析,海啸流模拟及验证工作开展较少,导致对海啸流基本特征及其造成灾害现象的曲解.开展海啸诱导的涡流研究及预警服务显得尤为重要及紧迫.考虑快速海啸预警需要,综合对比海啸诱导涡流的物理框架及模型方法,探索兼顾效率与计算精度的海啸流模拟方法是本文的核心工作及出发点.通过分析浅层湍流相干结构(TCS)产生的主要物理耗散机制,确定了考虑2D水平耗散机制的非线性浅水方程可用于海啸涡流的模拟分析.基于高精、高分辨率有限体积模型Geoclaw建立了三个精细化的港口海啸流模型,模型分辨率为5m.利用基于海啸浮标反演的海啸源模型作为初始条件,模拟分析了日本东北地震海啸在远场的海啸波流特征.海啸波流特征模拟结果与观测吻合较好,结果可信.对比发现:波驱动的自由表面流,小的位相或波幅误差就会导致大的流速误差,流的模拟和预报相对波幅来说更具挑战性.研究了海啸波流能量在港池中的分布特征,得到:港池入口及防波堤两端常被强流控制,具有极高的危险性;相对于波幅的空间变化,海啸流具有更强的空间敏感性;所建立的高分辨率海啸模型模拟再现了日本海啸在近场的涡旋结构,给出了与观测基本一致的涡流特征.最后,引入海啸流危险等级标准,分析了港口海啸流危险性等级分布、船只疏散的安全深度及回港的时间周期.针对港口、海湾同时考虑海啸波流特征的海啸预警与评估对于港口应急管理者科学决策具有重要意义. 相似文献
14.
Studies on turbulent diffusion processes and evaluation of diffusivity values from hydrodynamic observations in Corpus Christi Bay 总被引:1,自引:0,他引:1
The physical process of dispersion which can be attributed to turbulence (turbulent diffusion) or shear (shear-augmented diffusion) within the flow field is very important as it ultimately governs the distribution of constituents of interest within the environment. A series of diffusion experiments were conducted in Corpus Christi Bay, TX with the purpose of characterizing turbulent diffusion through dispersion coefficients or turbulent diffusivity, Ki (i=x, y, z) dependent on the degree of randomness or turbulence intensity, I.Measured with a boat-mounted acoustic doppler current profiler (ADCP), the Eulerian velocity time-series of fluid particles in random motion, ui was used in the evaluation of the Eulerian time-scale of turbulence, TE based on the velocity correlation function, RE with TE being related to the Lagrangian time-scale TL through a scaling parameter, β(=TL/TE). Surface currents were obtained with high frequency (HF) Radar equipment deployed over the study area from which the horizontal velocity gradients were determined.Within the spatial scale of the experiment (1000 m), the observed low horizontal gradients (10−4 s−1) allowed for the generation of velocity time-series from an ADCP mounted on a moving platform. A numerical scheme for evaluating turbulent diffusivity values was developed on the basis of Eulerian current measurements and calibrated through the statistics of an evolving dye patch for the scaling parameter β which in this scheme was found to be in the range 1–3. 相似文献
15.
We determine the nonlinear drift velocities of the mean magnetic field and nonlinear turbulent magnetic diffusion in a turbulent convection. We show that the nonlinear drift velocities are caused by three kinds of the inhomogeneities; i.e., inhomogeneous turbulence, the nonuniform fluid density and the nonuniform turbulent heat flux. The inhomogeneous turbulence results in the well-known turbulent diamagnetic and paramagnetic velocities. The nonlinear drift velocities of the mean magnetic field cause the small-scale magnetic buoyancy and magnetic pumping effects in the turbulent convection. These phenomena are different from the large-scale magnetic buoyancy and magnetic pumping effects which are due to the effect of the mean magnetic field on the large-scale density stratified fluid flow. The small-scale magnetic buoyancy and magnetic pumping can be stronger than these large-scale effects when the mean magnetic field is smaller than the equipartition field. We discuss the small-scale magnetic buoyancy and magnetic pumping effects in the context of the solar and stellar turbulent convection. We demonstrate also that the nonlinear turbulent magnetic diffusion in the turbulent convection is anisotropic even for a weak mean magnetic field. In particular, it is enhanced in the radial direction. The magnetic fluctuations due to the small-scale dynamo increase the turbulent magnetic diffusion of the toroidal component of the mean magnetic field, while they do not affect the turbulent magnetic diffusion of the poloidal field. 相似文献
16.
Matheron and de Marsily [Matheron M, de Marsily G. Is the transport in porous media always diffusive? A counter-example. Water Resour Res 1980;16:901–17] studied transport in a perfectly stratified infinite medium as an idealized aquifer model. They observed superdiffusive solute spreading quantified by anomalous increase of the apparent longitudinal dispersion coefficient with the square root of time. Here, we investigate solute transport in a vertically bounded stratified random medium. Unlike for the infinite medium at asymptotically long times, disorder-induced mixing and spreading is uniquely quantified by a constant Taylor dispersion coefficient. Using a stochastic modeling approach we study the effective mixing and spreading dynamics at pre-asymptotic times in terms of effective average transport coefficients. The latter are defined on the basis of local moments, i.e., moments of the transport Green function. We investigate the impact of the position of the initial plume and the initial plume size on the (highly anomalous) pre-asymptotic effective spreading and mixing dynamics for single realizations and in average. Effectively, the system “remembers” its initial state, the effective transport coefficients show so-called memory effects, which disappear after the solute has sampled the full vertical extent of the medium. We study the impact of the intrinsic non-ergodicity of the confined medium on the validity of the stochastic modeling approach and study in this context the transition from the finite to the infinite medium. 相似文献
17.
Tracy L. Johnson 《Pure and Applied Geophysics》1978,116(4-5):954-963
Summary Laboratory measurements of rupture and particle velocity are in surprisingly good agreement with seismic values, providing further evidence that stick-slip friction is a suitable mechanism for shallow earthquakes. A simple theory is developed to explain the linear relationship observed between average particle velocity and stress drop for stick-slip events. Both stick-slip ruptures and cracks in brittle material commonly propagate at velocities roughly comparable to theS wave velocity of the material. Rupture normally begins relatively slowly and accelerates to a steady velocity in a few centimeters. Observations suggest that stick-slip ruptures can propagate atS wave speeds or occasionally greater and that cracks in pre-stressed glass can also propagate faster than theS waves. Fracture and thus rupture velocity of intact rock specimens is greatly influenced by the inhomogeneous structure of rock. Fracture may be modeled by coalescence of many cracks rather than growth of a single crack.Lamont-Doherty Geological Observatory Contribution No. 2627. 相似文献
18.
Space observations in the solar wind and simulations of high Mach number bow-shocks have detected particle populations with two coexisting nongyrotropic ion species. We investigate the influence of these two sources of free energy on the stability of parallel (with respect to the ambient magnetic field) and perpendicular propagation. For parallel modes, we derive their dispersion equation in a magnetoplasma with protons and alpha particles that may exhibit stationary nongyrotropy (SNG) and discuss the characteristics of its solutions. Kinetic simulations study the behaviour of perpendicular electrostatic (Bernstein-like) waves in a plasma whose ion populations (positrons and fictitious singly-charged particles with twice the electron mass, for the sake of simulation feasability) can be time-varying nongyrotropic (TNG). The results show that the coexistence of two gyrophase bunched species does not significantly enhance the parallel SNG instability already found for media with only one nongyrotropic species, whereas it strongly intensifies the growth of Bernstein-like modes in TNG plasmas. 相似文献
19.
The nonlinear effects on the characteristics of gravity wave packets: dispersion and polarization relations 总被引:6,自引:0,他引:6
By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region. 相似文献
20.
1 INTRODUCTION AND REVIEW Numerous investigations related to vertical velocity and suspension concentration distributions have been undertaken to the steady, uniform, open channel turbulent flow. The problems of sediment mixed water flows are of direct interest to the practical situations in the field of river sedimentation, coastalsediment transport and in the field of two-phase flow in particular. In hydraulic open channel flow, the vertical velocity profile is usually described by… 相似文献