首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wave tank experiments with long internal waves of elevation, of different initial length l, moving in a two-fluid system, interacting with a weak slope of 0.045 rad, show an onshore flow of the dense water, at the undisturbed pycnocline-slope intersection, of duration $11.3\sqrt{l/g'}Wave tank experiments with long internal waves of elevation, of different initial length l, moving in a two-fluid system, interacting with a weak slope of 0.045 rad, show an onshore flow of the dense water, at the undisturbed pycnocline-slope intersection, of duration 11.3?{l/g¢}11.3\sqrt{l/g'} (g′ reduced gravity). This period corresponds to that of a strong bottom current event measured in the stratified ocean at the Ormen Lange gas field, at 850 m depth, lasting for 24 hrs, corresponding to 11.2?{l/g¢}11.2\sqrt{l/g'}, using the width l = 300 km of the Norwegian Atlantic Current (NAC) at the site as length scale, suggesting a lateral sloshing motion of the NAC causing the event. The onshore velocity of the dense fluid has a maximal velocity of 0.4?{gh2}0.4\sqrt{g'h_2} in laboratory and 0.5 ms-1=0.3?{gh2}^{-1}=0.3\sqrt{g'h_2} in the field (h 2 mixed upper layer thickness). Run-up of the dense fluid, beyond the undisturbed pycnocline-slope intersection, has initially a front velocity of 0.35?{gh2}0.35\sqrt{g'h_2}, corresponding to the velocity of the head of a density current on a flat bottom. Due to disintegration, an initially depressed pycnocline results in comparatively smaller run-up and velocity. While moving past the turning point, a dispersive wave train is formed in the back part of the depression wave, developing by breaking into a sequence of up to eight boluses moving by the undisturbed pycnocline-slope intersection.  相似文献   

2.
Small local earthquakes from two aftershock sequences in Porto dos Gaúchos, Amazon craton—Brazil, were used to estimate the coda wave attenuation in the frequency band of 1 to 24 Hz. The time-domain coda-decay method of a single backscattering model is employed to estimate frequency dependence of the quality factor (Q c) of coda waves modeled using Qc = Q0 fhQ_{\rm c} =Q_{\rm 0} f^\eta , where Q 0 is the coda quality factor at frequency of 1 Hz and η is the frequency parameter. We also used the independent frequency model approach (Morozov, Geophys J Int, 175:239–252, 2008), based in the temporal attenuation coefficient, χ(f) instead of Q(f), given by the equation c(f)=g+\fracpfQe \chi (f)\!=\!\gamma \!+\!\frac{\pi f}{Q_{\rm e} }, for the calculation of the geometrical attenuation (γ) and effective attenuation (Qe-1 )(Q_{\rm e}^{-1} ). Q c values have been computed at central frequencies (and band) of 1.5 (1–2), 3.0 (2–4), 6.0 (4–8), 9.0 (6–12), 12 (8–16), and 18 (12–24) Hz for five different datasets selected according to the geotectonic environment as well as the ability to sample shallow or deeper structures, particularly the sediments of the Parecis basin and the crystalline basement of the Amazon craton. For the Parecis basin Qc = (98±12)f(1.14±0.08)Q_{\rm c} =(98\pm 12)f^{(1.14\pm 0.08)}, for the surrounding shield Qc = (167±46)f(1.03±0.04)Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)}, and for the whole region of Porto dos Gaúchos Qc = (99±19)f(1.17±0.02)Q_{\rm c} =(99\pm 19)f^{(1.17\pm 0.02)}. Using the independent frequency model, we found: for the cratonic zone, γ = 0.014 s − 1, Qe-1 = 0.0001Q_{\rm e}^{-1} =0.0001, ν ≈ 1.12; for the basin zone with sediments of ~500 m, γ = 0.031 s − 1, Qe-1 = 0.0003Q_{\rm e}^{-1} =0.0003, ν ≈ 1.27; and for the Parecis basin with sediments of ~1,000 m, γ = 0.047 s − 1, Qe-1 = 0.0005Q_{\rm e}^{-1} =0.0005, ν ≈ 1.42. Analysis of the attenuation factor (Q c) for different values of the geometrical spreading parameter (ν) indicated that an increase of ν generally causes an increase in Q c, both in the basin as well as in the craton. But the differences in the attenuation between different geological environments are maintained for different models of geometrical spreading. It was shown that the energy of coda waves is attenuated more strongly in the sediments, Qc = (78±23)f(1.17±0.14)Q_{\rm c} =(78\pm 23)f^{(1.17\pm 0.14)} (in the deepest part of the basin), than in the basement, Qc = (167±46)f(1.03±0.04)Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)} (in the craton). Thus, the coda wave analysis can contribute to studies of geological structures in the upper crust, as the average coda quality factor is dependent on the thickness of sedimentary layer.  相似文献   

3.
The attenuation properties of the crust in the Chamoli region of Himalaya have been examined by estimating the frequency-dependent relationships of quality factors for P waves (Qα) and for S waves (Qβ) in the frequency range 1.5–24 Hz. The extended coda normalization method has been applied on the waveforms of 25 aftershocks of the 1999 Chamoli earthquake (M 6.4) recorded at five stations. The average value of Qα is found to be varied from 68 at 1.5 Hz to 588 at 24 Hz while it varies from 126 at 1.5 Hz to 868 at 24 Hz for Qβ. The estimated frequency-dependent relations for quality factors are Qα = (44 ± 1)f(0.82±.04) and Qβ = (87 ± 3)f(0.71±.03). The rate of increase of Q(f) for P and S waves in the Chamoli region is comparable with the other regions of the world. The ratio Qβ/Qα is greater than one in the region which along with the frequency dependence of quality factors indicates that scattering is an important factor contributing to the attenuation of body waves in the region. A comparison of attenuation relation for S wave estimated here (Qβ = 87f0.71) with that of coda waves (Qc = 30f1.21) obtained by Mandal et al. (2001) for the same region shows that Qc > Qβ for higher frequencies (>8 Hz) in the region. This indicates a possible high frequency coda enrichment which suggests that the scattering attenuation significantly influences the attenuation of S waves at frequencies >8 Hz. This observation may be further investigated using multiple scattering models. The attenuation relations for quality factors obtained here may be used for the estimation of source parameters and near-source simulation of earthquake ground motion of the earthquakes, which in turn are required for the assessment of seismic hazard in the region.  相似文献   

4.
Abstract

In the presence of a magnetic field, convection may set in at a stationary or an oscillatory bifurcation, giving rise to branches of steady, standing wave and travelling wave solutions. Numerical experiments provide examples of nonlinear solutions with a variety of different spatiotemporal symmetries, which can be classified by establishing an appropriate group structure. For the idealized problem of two-dimensional convection in a stratified layer the system has left-right spatial symmetry and a continuous symmetry with respect to translations in time. For solutions of period P the latter can be reduced to Z 2 symmetry by sampling solutions at intervals of ½P. Then the fundamental steady solution has the spatiotemporal symmetry D 2 = Z 2 ? Z 2 and symmetry-breaking yields solutions with Z 2 symmetry corresponding to travelling waves, standing waves and pulsating waves. A further loss of symmetry leads to modulated waves. Interactions between the fundamental and its first harmonic are described by the group D 2h = D 2 ? Z 2 and its invariant subgroups, which describe solutions that are either steady or periodic in a uniformly moving frame. For a Boussinesq fluid in a layer with identical top and bottom boundary conditions there is also an up-down symmetry. With fixed lateral boundaries the spatiotemporal symmetries, again described by D 2h and its invariant subgroups, can be related to results obtained in numerical experiments and analysed by Nagata et al. (1990). With periodic boundary conditions, the full symmetry group, D 2h ?Z 2, is of order 16. Its invariant subgroups describe pure and mixed-mode solutions, which may be steady states, standing waves, travelling waves, pulsating waves or modulated waves.  相似文献   

5.
Numerical modelling ofSH wave seismograms in media whose material properties are prescribed by a random distribution of many perfectly elastic cavities and by intrinsic absorption of seismic energy (anelasticity) demonstrates that the main characteristics of the coda waves, namely amplitude decay and duration, are well described by singly scattered waves in anelastic media rather than by multiply scattered waves in either elastic or anelastic media. We use the Boundary Integral scheme developed byBenites et al. (1992) to compute the complete wave field and measure the values of the direct waveQ and coda wavesQ in a wide range of frequencies, determining the spatial decay of the direct wave log-amplitude relation and the temporal decay of the coda envelope, respectively. The effects of both intrinsic absorption and pure scattering on the overall attenuation can be quantified separately by computing theQ values for corresponding models with (anelastic) and without (elastic) absorption. For the models considered in this study, the values of codaQ –1 in anelastic media are in good agreement with the sum of the corresponding scatteringQ –1 and intrinsicQ –1 values, as established by the single-scattering model ofAki andChouet (1975). Also, for the same random model with intrinsic absorption it appears that the singly scattered waves propagate without significant loss of energy as compared with the multiply scattered waves, which are strongly affected by absorption, suggesting its dominant role in the attenuation of coda waves.  相似文献   

6.
The local earthquake waveforms recorded on broadband seismograph network of Institute of Seismological Research in Gujarat, India have been analyzed to understand the attenuation of high frequency (2–25 Hz) P and S waves in the region. The frequency dependent relationships for quality factors for P (Q P) and S (Q S) waves have been obtained using the spectral ratio method for three regions namely, Kachchh, Saurashtra and Mainland Gujarat. The earthquakes recorded at nine stations of Kachchh, five stations of Saurashtra and one station in mainland Gujarat have been used for this analysis. The estimated relations for average Q P and Q S are: Q P = (105 ± 2) f 0.82 ± 0.01, Q S = (74 ± 2) f 1.06 ± 0.01 for Kachchh region; Q P = (148 ± 2) f 0.92 ± 0.01, Q S = (149 ± 14) f 1.43 ± 0.05 for Saurashtra region and Q P = (163 ± 7) f 0.77 ± 0.03, Q S = (118 ± 34) f 0.65 ± 0.14 for mainland Gujarat region. The low Q (<200) and high exponent of f (>0.5) as obtained from present analysis indicate the predominant seismic activities in the region. The lowest Q values obtained for the Kachchh region implies that the area is relatively more attenuative and heterogeneous than other two regions. A comparison between Q S estimated in this study and coda Q (Qc) previously reported by others for Kachchh region shows that Q C > Q S for the frequency range of interest showing the enrichment of coda waves and the importance of scattering attenuation to the attenuation of S waves in the Kachchh region infested with faults and fractures. The Q S/Q P ratio is found to be less than 1 for Kachchh and Mainland Gujarat regions and close to unity for Saurashtra region. This reflects the difference in the geological composition of rocks in the regions. The frequency dependent relations developed in this study could be used for the estimation of earthquake source parameters as well as for simulating the strong earthquake ground motions in the region.  相似文献   

7.
The seismic quality factor (Q c) and the attenuation coefficient (δ) in the earth’s crust in southwest (SW) Anatolia are estimated by using the coda wave method based on the decrease of coda wave amplitude by time on the seismogram. The quality factor Q o, the value of Q c at 1 Hz, and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves. δ is determined from the observations of amplitude variations of seismic waves. In applying the coda wave method, firstly, a type curve representing the average pattern of the individual coda decay curves for 0.75, 1.5, 3.0, 6.0, 12.0, and 24.0 Hz values was estimated. Secondly, lateral variation of coda Q and the attenuation coefficients for three main tectonic patterns are estimated. The shape of the type curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The Q o and η values vary from 30 to 180 and from 0.55 to 1.25, respectively for SW Anatolia. In SW Anatolia, coda Qf relation is described by and δ = 0.008 km−1. These results are expected to help in understanding the degree of tectonic complexity of the crust in SW Anatolia.  相似文献   

8.
Summary The waves generated by a steadily moving two-dimensional pressure distribution are examined using non-linear shallow water theory. The applied pressure is zero ahead of the disturbance, that is in the downstream direction, and is a constantP 0 in the upstream direction, these regions being joined smoothly by a cubic function.We consider here only the case of supercritical flow in both regions, the solution representing an asymmetric solitary wave travelling with the disturbance. The wave profiles are determined by an iterative method previously employed for non-linear waves. Wave amplitudes and profiles, and the wave drag, associated with each system are computed for various values ofP 0/Q g h, whereh is the undisturbed depth of water ahead of the wave.The solution obtained reduces to the classical solitary wave of finite amplitude when the applied pressure is everywhere zero.
Résumé Nous avons calculé les expressions des profils d'ondes solitaires produites par une pression, qui se propagent sur la surface d'une couche d'eau peu profonde avec une vitesseU plus grande que (g h)1/2. La pression appliquée est nulle en avant de l'onde, elle est une constanteP 0 en arrière, et entre ces deux régions elle est representée par une fonction cubique. Les profils sont calculés par une methode iterative déjà employée pour des ondes non-linéaires. L'amplitude, le profil et la force ont été evalués pour diverses valeurs deP 0/Q g h, ouh est la profondeur en avant de l'onde.


Division of Numerical and Applied Mathematics, National Physical Laboratory.  相似文献   

9.
The fundamental mode Love and Rayleigh waves generated by earthquakes occurring in Kashmir, Nepal Himalaya, northeast India and Burma and recorded at Hyderabad, New Delhi and Kodaikanal seismic stations are analysed. Love and Rayleigh wave attenuation coefficients are obtained at time periods of 15–100 seconds, using the spectral amplitude of these waves for 23 different paths along northern (across Burma to New Delhi) and central (across Kashmir, Nepal Himalaya and northeast India to Hyderabad and Kodaikanal) India. Love wave attenuation coefficients are found to vary from 0.0003 to 0.0022 km–1 for northern India and 0.00003 km–1 to 0.00016 km–1 for central India. Similarly, Rayleigh wave attenuation coefficients vary from 0.0002 km–1 to 0.0016 km–1 for northern India and 0.00001 km–1 to 0.0009 km–1 for central India. Backus and Gilbert inversion theory is applied to these surface wave attenuation data to obtainQ –1 models for the crust and uppermost mantle beneath northern and central India. Inversion of Love and Rayleigh wave attenuation data shows a highly attenuating zone centred at a depth of 20–80 km with lowQ for northern India. Similarly, inversion of Love and Rayleigh wave attenuation data shows a high attenuation zone below a depth of 100 km. The inferred lowQ value at mid-crustal depth (high attenuating zone) in the model for northern India can be by underthrusting of the Indian plate beneath the Eurasian plate which has caused a low velocity zone at this shallow depth. The gradual increase ofQ –1 from shallow to deeper depth shows that the lithosphere-asthenosphere boundary is not sharply defined beneath central India, but rather it represents a gradual transformation, which starts beneath the uppermost mantle. The lithospheric thickness is 100 km beneath central India and below that the asthenosphere shows higher attenuation, a factor of about two greater than that in the lithosphere. The very lowQ can be explained by changes in the chemical constitution taking place in the uppermost mantle.  相似文献   

10.
We studied spatial and temporal characteristics of seismic attenuation inCentral Italy using S- and coda- waves recorded by the MarchesanSeismograph Network from earthquakes located in the epicentral area ofthe 1997 Umbria-Marche sequence. The amplitude decay of the S waveswith distance was defined calculating empirical attenuation functions at 15frequencies between 1 and 25 Hz. We analyzed separately foreshocks andaftershocks and we found the same attenuation functions, suggesting thatthe possible temporal variations could be confined in a small area. Thefrequency dependence of Q S was approximated by the equation Q S=18 · f 2.0between 1 and 10 Hz. At higher frequencies (10–25 Hz), the frequencydependence of Q s weakens, having an average value of Q S=990. We also estimated Q from coda waves (Q C) using the single-scattering models of Aki andChouet (1975) and Sato (1977). We found that Q C=77 · f 0.6, (between 2 and 20Hz) at the western side of the mountain chain, using either foreshocks oraftershocks. This relation is consistent with previous estimates of Q Creported for the Central Apennines. For a volume sampling the Colfioritobasin, the Apennines and the Marche region we found that Q C=55 · f 0.8,indicating highattenuation below the mountain belt. To detect small temporal changes ofQ, we calculated spectral ratios of 5 temporal doublets located in theepicentral area and recorded at the closest station. We found temporalchanges of Q that vary from 27% to 56%, depending on the locationof the doublets. This variability suggests that the temporal change ofattenuation may depend on the spatial variation of Q and perhaps on thespatial distribution of tectonic stress in the epicentral area.  相似文献   

11.
The quality factor Q as a function of frequency in an S wave range of 1–8 Hz is estimated from records of ~60 earthquakes (M w > 3.9 and source depths of 1–60 km) obtained at the Sochi seismic station at epicentral distances of less than ~300 km. Methods of Q estimation used in the paper were developed in works by Aki, Rautian, and others; they are based on the suppression of source-related and local effects in S wave spectra with the help of coda waves measured at a fixed time from the first arrival. To compensate for directivity effects, averaging was performed over the set of events whose sources were located in a wide range of back azimuths. The geometric divergence is represented as a three-segment function: 1/R, 1, and 1/√R at epicentral distances of 1/50–1/70 to 50–70 km, 50–70 to 130–150 km, and greater than 130–150 km, respectively. The geometric divergences in this model yielded the following estimates of the quality factor: Q(f) ~ 80f 0.9 with a base of 35–280 km and Q(f) ~ 110f 0.8 with a base of 60–280 km. The resulting combinations of the propagation path effects (Q and the geometric divergence) can be used for predicting strong motion parameters in the Northern Caucasus.  相似文献   

12.
We theoretically study the scattering ofP, SV andSH waves by a zonal distribution of cracks, which simulates a fault fracture zone. An investigation is conducted how the geometrical properties of the crack distribution and the frictional characteristics of the crack surface are reflected in the attenuation and dispersion of incident waves, as well as in the amplitudes of the transmitted and reflected waves from the zone. If the crack distribution within the fault zone changes temporally during the preparation process of the expected earthquake, it will be important for earthquake prediction to monitor it, utilizing the scattering-induced wave phenomena.We consider the two-dimensional problem. Aligned cracks with the same length are assumed to be randomly distributed in a zone with a finite width, on which elastic waves are assumed to be incident. The distribution of cracks is assumed to be homogeneous and sparse. The crack surface is assumed to be stress-free, or to undergo viscous friction; the latter case simulates fluid-filled cracks. The opening displacement of the crack is assumed to be negligibly small. The idea of the mean wave formalism is employed in the analysis, and Foldy's approximation is assumed.When the crack surface is stress-free, it is commonly observed for every wave mode (P, SV andSH) that the attenuation coefficientQ –1 peaks aroundka1, the phase velocity is almost independent ofk in the rangeka<1 and it increases monotonically withk in the rangeka>1, wherek is the intrinsicS wavenumber anda is the half length of the crack. The effect of the friction is to shift the peak ofQ –1 and the corner of the phase velocity curve to the low wavenumber range. The high wavenumber asymptote ofQ –1 is proportional tok –1 independently of model parameters and the wave modes. If the seismological observation thatQ –1 ofS waves has a peak at around 0.5 Hz in the earth's crust is combined with our results, the upper limit of crack size within the crust is estimated about 4 km. The information regarding the transmitted and reflected waves, such as the high wavenumber limit of the amplitude of the transmitted wave etc., allows estimation of the strength of the friction.  相似文献   

13.
Abstract

The study of relation between the flow and the surface area for river basins of different size and under different climatic conditions aids us to consider it as a possible basis for hydrological analysis of the streams, and permits us to deduce a method which is very valuable in regions having few or insufficient number of hydrological stations. The fundamental relation connecting the flow of a stream Q, with the surface area A, Q = hAg , this formular being extended to all frequences of the flow is the essential tool of this method. Wether or not the basin posesses hydrometric stations, using the relation is possible: on one hand we have shown that there was a relation between the parametres h and g in a given physico-geographic circunstance that on the other hand a basin could be identified to another one on condition that their morphometric characteristics are equivalent. In all cases the unknown quantities h and g can be determined, the relation Q = hAg being defined then; so from the measure of A we can estimate the values of the flow Q for the frequences of it which are interesting on any part of this basin.  相似文献   

14.
A study of inertial scale gravity wave motions in the region of the atmosphere between 30 and 60 km has been undertaken, using wind and temperature data derived from rocket-borne falling sphere density experiments performed over Woomera, Australia between 1962 nad 1976. The gross features of the wave field compare favorably with those found in similar northern hemispheric studies. Wave propagation is found to be both vertically and horizontally anisotropic. A rotary spectral analysis indicates predominately upgoing wave energy, suggesting that the majority of sources of these waves lie below 30 km. A detailed statistical investigation of the waves, made using the Stokes parameters technique, reveals that phase progression is also highly directional in the horizontal, with a significant zonal component in summer, but with a strong meridional component in winter. Propagation towards the southeast is inferred in summer, with the waves possibly emanating from tropospheric sources in equatorial regions to the north of Australia. The technique also shows that, on average, the waves appear to have mean ellipse eccentricities (=f/) around 0.4–0.45. Indirect estimates of a number of important wave parameters are made. In particular,v andw flux estimates are made over several height intervals. The vertical gradient of density weighted flux implies wave-induced mean flow accelerations of the order 0.1–1 ms–1day–1. This suggests that dissipating gravity waves are a significant source of the momentum residuals that are encountered in studies of satellite data from this region.  相似文献   

15.
Body-wave Attenuation in the Region of Garda, Italy   总被引:1,自引:0,他引:1  
We analyzed the spectral amplitude decay with hypocentral distance of P and S waves generated by 76 small magnitude earthquakes (ML 0.9–3.8) located in the Garda region, Central-Eastern Alps, Italy. These events were recorded by 18 stations with velocity sensors, in a distance range between 8 and 120 km. We calculated nonparametric attenuation functions (NAF) and estimated the quality factor Q of both body waves at 17 different frequencies between 2 and 25 Hz. Assuming a homogeneous model we found that the Q frequency dependence of P and S can be approximated with the functions Q P = 65 f 0.9 and Q S = 160 f 0.6 , respectively. At 2 Hz the Q S /Q P ratio reaches the highest value of 2.8. At higher frequencies Q S /Q P varies between 0.7 and 1.7, suggesting that for this frequency band scattering may be an important attenuation mechanism in the region of Garda. To explore the variation of Q in depth, we estimated Q at short (r ≤ 30 km) and intermediate (35–90 km) distance paths. We found that in the shallow crust P waves attenuate more than S (1.3 < Q S /Q P < 2.5). Moreover, P waves traveling along paths in the lower crust (depths approximately greater than 30 km) attenuate more than S waves. To quantify the observed variability of Q in depth we considered a three-layer model and inverted the NAF to estimate Q in each layer. We found that in the crust Q increases with depth. However, in the upper mantle (~40–50 km depth) Q decreases and in particular the high frequency Q S (f > 9 Hz) has values similar to those estimated for the shallow layer of the crust.  相似文献   

16.
QC-estimates of Kachchh Basin in western India have been obtained in a high frequency range from 1.5 to 24.0 Hz using the aftershock data of Bhuj earthquake of January 26, 2001 recorded within an epicentral distance of 80 km. The decay of coda waves of 30 sec window from 186 seismograms has been analysed in four lapse time windows, adopting the single backscattering model. The study shows that Qc is a function of frequency and increases as frequency increases. The frequency dependent Qc relations obtained for four lapse-time windows are: Qc=82 f1.17 (20–50 sec), Qc=106 f1.11 (30–60 sec), Qc=126f1.03 (40–70 sec) and Qc=122f1.02 (50–80 sec). These empirical relations represent the average attenuation properties of a zone covering the surface area of about 11,000, 20,000, 28,000 and 38,000 square km and a depth extent of about 60, 80, 95, 110 km, respectively. With increasing window length, the degree of frequency dependence, n, decreases marginally from 1.17 to 1.02, whereas Q0 increases significantly from 82 to 122. At lower frequencies up to 6 Hz, Qc−1 of Kachchh Basin is in agreement with other regions of the world, whereas at higher frequencies from 12 to 24 Hz it is found to be low.  相似文献   

17.
The relative contribution of scattering (Q s –1 ) and intrinsic (Q i –1 ) attenuation to the totalS-wave attenuation for the frequencies of 1.5, 3.0, 6.0 and 12.0 Hz has been studied by applying the radiative energy transfer theory, Data of local earthquakes which occurred in northern Greece and were recorded by the permanent telementered network of the Geophysical Laboratory of the University of Thessaloniki have been used. The results show that in this area the scattering attenuation is dominant over all frequencies while intrinsic attenuation is significantly lower. The estimatedQ s –1 andQ i –1 values have frequency dependences off –0.72 andf –0.45, respectively. The frequency dependence ofQ s –1 is the same as that of the codaQ c –1 , obtained by applying the single scattering model, which probably implies that the frequency dependence of the coda wave attenuation is attributed to the frequency dependence of the scattering attenuation.Q c –1 values are very close to scattering attenuation for short lapse times, (10–20 sec), and intermediate between scattering and intrinsic attenuation for the longer lapse times, (50–100 sec). This difference is explained as the result of the depth-dependent attenuation properties and the multiple scattering effects.  相似文献   

18.
We analyze the anelasticity of the earth using group delays of P-body waves of deep (>200 km) events in the period range 4–32 s for epicentral distances of 5–85 degrees. We show that Time Frequency Analysis (TFA), which is usually applied to very dispersive surface waves, can be applied to the much less dispersive P-body waves to measure frequency-dependent group delays with respect to arrival times predicted from the CMT centroid location and PREM reference model. We find that the measured dispersion is due to: (1) anelasticity (described by the P-wave quality factor Q p ), (2) ambient noise, which results in randomly distributed noise in the dispersion measurements, (3) interference with other phases (triplications, crustal reverberations, conversions at deep mantle boundaries), for which the total dispersion depends on the amplitude and time separation between the different phases, and (4) the source time function, which is dispersive when the wavelet is asymmetrical or contains subevents. These mechanisms yield dispersion ranging in the order of one to 10 seconds with anelasticity responsible for the more modest dispersion. We select 150 seismograms which all have small coda amplitudes extending to ten percent of the main arrival, minimizing the effect of interference. The main P waves have short durations, minimizing effects of the source. We construct a two-layer model of Q p with an interface at 660 km depth and take Q p constant with period. Our data set is too small to solve for a possible frequency dependence of Q p . The upper mantle Q 1 is 476 [299–1176] and the lower mantle Q 2 is 794 [633–1064] (the bracketed numbers indicate the 68 percent confidence range of Q p –1). These values are in-between the AK135 model (Kennett et al., 1995) and the PREM model (Dziewonski and Anderson, 1981) for the lower mantle and confirm results of Warren and Shearer (2000) that the upper mantle is less attenuating than PREM and AK135.  相似文献   

19.
Abstract

The geometry of a meandering stream depends strongly on the relative stream size (Q 2/5 / g 1/5)/D, on the valley slope, Sv, and on the charge, Q s/Q, where Q and Q s are the fluid and sediment discharges respectively, g is acceleration due to gravity and D is the mean sediment size. The geometry depends less strongly on the relative settling size of sediment, D/(v 2/3 / g 1/3), where v is the kinematic viscosity. For constant values of Q, S v and D, the effect of increase of charge reduces the meander length, M L, and the mean channel surface width, B, whereas meander width, M B, bend radius, R M, and mean channel depth, H, increase, For a constant value of (Q 2/5 / g1/5)/D the values of M L, M B, R M and B increase with the increase of valley slope but the value of H tends to decrease.  相似文献   

20.
Velocity as well as attenuation factorQ –1 ofP-wave in a dry granitic rock sample under uniaxial compressions were measured in the range of frequency between 100 kHz and 710 kHz by using the pulse transmission technique. Above the stress of 0.5 f , where f is the fracture stress, theP-wave velocity decreases with increasing axial stress, whereasQ –1 increases. Particularly, the change ofQ –1 is greater for high frequency than for low frequency. At a given stress level, the higher the frequency, the higher theP-wave velocity and the largerQ –1. This result means that the velocity decrease with increasing stress is smaller for higher frequency. Because of this frequency-dependence of velocity decrease, theP-wave in the rock under dilatant state shows dispersion. The body wave dispersion is more remarkable at higher stress, and is not found in a homogeneous material with no cracks. Thus the disperison is attributed to the generation of cracks. When the frequency-dependence ofQ –1 is approximated asf n in the present frequency range, the exponentn takes a value from 0.63 to 0.77.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号