首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shock metamorphism, caused by hypervelocity impact, is a poorly understood process in feldspar due to the complexity of the crystal structure, the relative ease of weathering, and chemical variations, making optical studies of shocked feldspars challenging. Understanding shock metamorphism in feldspars, and plagioclase in particular, is vital for understanding the history of Earth's moon, Mars, and many other planetary bodies. We present here a comprehensive study of shock effects in andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada. Samples from a range of different settings were studied, from in situ central uplift materials to clasts from various breccias and impact melt rocks. Evidence of shock metamorphism includes undulose extinction, offset twins, kinked twins, alternate twin deformation, and partial to complete transformation to diaplectic plagioclase glass. In some cases, isotropization of alternating twin lamellae was observed. Planar deformation features (PDFs) are notably absent in the plagioclase, even when present in neighboring quartz grains. It is notable that various microlites, twin planes, and compositionally different lamellae could easily be mistaken for PDFs and so care must be taken. A pseudomorphous zeolite phase (levyne‐Ca) was identified as a replacement mineral of diaplectic feldspar glass in some samples, which could, in some instances, also be potentially mistaken for PDFs. We suggest that the lack of PDFs in plagioclase could be due to a combination of structural controls relating to the crystal structure of different feldspars and/or the presence of existing planes of weakness in the form of twin and cleavage planes.  相似文献   

2.
Abstract— Here we report the petrography, mineralogy, and trace element geochemistry of the Dhofar 1180 lunar meteorite. Dhofar 1180 is predominantly composed of fine‐grained matrix with abundant mineral fragments and a few lithic and glassy clasts. Lithic clasts show a variety of textures including cataclastic, gabbroic, granulitic, ophitic/subophitic, and microporphyritic. Both feldspathic and mafic lithic clasts are present. Most feldspathic lithic clasts have a strong affinity to ferroan anorthositic suite rocks and one to magnesian suite rocks. Mafic lithic clasts are moderately to extremely Fe‐rich. The Ti/[Ti+Cr]‐Fe/[Fe+Mg] compositional trend of pyroxenes in mafic lithic clasts is consistent with that of low‐Ti mare basalts. Glasses display a wide chemical variation from mafic to feldspathic. Some glasses are very similar to those from Apollo 16 soils. KREEP components are essentially absent in Dhofar 1180. One glassy clast is rich in K, REE and P, but its Mg/[Mg+Fe] is very low (0.25). It is probably a last‐stage differentiation product of mare basalt. Molar Fe/Mn ratios of both olivine and pyroxene are essentially consistent with a lunar origin. Dhofar 1180 has a LREE‐enriched (La 18 × CI, Sm 14 × CI) pattern with a small positive Eu anomaly (Eu 15 × CI). Th concentration is 0.7 ppm in Dhofar 1180. Petrography, mineralogy, and trace element geochemistry of Dhofar 1180 are different from those of other lunar meteorites, indicating that Dhofar 1180 represents a unique mingled lunar breccia derived from an area on the lunar nearside but far away from the center of the Imbrium Basin.  相似文献   

3.
Shock-related calcite twins are characterized in calcite-bearing metagranite cataclasites within crystalline megablocks of the Ries impact structure, Germany, as well as in cores from the FBN1973 research drilling. The calcite likely originates from pre-impact veins within the Variscan metagranites and gneisses, while the cataclasis is due to the Miocene impact. Quartz in the metagranite components does not contain planar deformation features, indicating low shock pressures (<7 GPa). Calcite, however, shows a high density (>1/μm) of twins with widths <100 nm. Different types of twins (e-, f-, and r-twins) crosscutting each other can occur in one grain. Interaction of r- and f-twins results in a-type domains characterized by a misorientation relative to the host with a misorientation angle of 35°–40° and a misorientation axis parallel to an a-axis. Such a-type domains have not been recorded from deformed rocks in nature before. The high twin density and activation of different twin systems in one grain require high differential stresses (on the order of 1 GPa). Twinning of calcite at high differential stresses is consistent with deformation during impact cratering at relatively low shock pressure conditions. The twinned calcite microstructure can serve as a valuable low shock barometer.  相似文献   

4.
Hypervelocity impacts occur on bodies throughout our solar system, and play an important role in altering the mineralogy, texture, and magnetic properties in target rocks at nanometer to planetary scales. Here we present the results of hypervelocity impact experiments conducted using a two-stage light-gas gun with 5 mm spherical copper projectiles accelerated toward basalt targets with ~6 km s−1 impact velocities. Four different types of magnetite- and titanomagnetite-bearing basalts were used as targets for seven independent experiments. These laboratory impacts resulted in the formation of agglutinate-like particles similar in texture to lunar agglutinates, which are an important fraction of lunar soil. Materials recovered from the impacts were examined using a suite of complementary techniques, including optical and scanning electron microscopy, micro-Raman spectroscopy, and high- and low-temperature magnetometry, to investigate the texture, chemistry, and magnetic properties of newly formed agglutinate-like particles and were compared to unshocked basaltic parent materials. The use of Cu-projectiles, rather than Fe- and Ni-projectiles, avoids magnetic contamination in the final shock products and enables a clearer view of the magnetic properties of impact-generated agglutinates. Agglutinate-like particles show shock features, such as melting and planar deformation features, and demonstrate shock-induced magnetic hardening (two- to seven-fold increases in the coercivity of remanence Bcr compared to the initial target materials) and decreases in low-field magnetic susceptibility and saturation magnetization.  相似文献   

5.
Jeptha Knob is a deformed structure, 4.5 km in diameter, composed entirely of carbonate rocks in the stable craton of North America. At Jeptha Knob, conventional evidence of meteorite impact, shock metamorphism, has not been found. I used calcite twin analysis to test the hypothesis that Jeptha Knob is a meteorite impact crater. Calcite twinning gives differential stresses of >170 MPa in rocks that were 600 to ≈800 m below the surface when the rocks were deformed. Under these conditions, high differential stresses cannot be explained by tectonic processes. In addition, twin intensities are >150 twins/mm which are >50% higher than the highest twin intensities observed in limestone from a wide variety of tectonic settings. Twin intensities and differential stresses are the same magnitudes as those found at Serpent Mound, a proven impact structure. Consistent with meteorite impact, differential stresses increase toward the center of the structure. If one accepts that Jeptha Knob is a marine impact crater, then (1) the presence of high temperature (>250°C) thick twins in calcite from a resurge deposit; (2) the extensive dolomitization of the central uplift with water/rock ratios >1.0; and (3) two episodes of calcite twin recorded incremental strains, are explained.  相似文献   

6.
7.
The electrical conductivities of several samples from returned Apollo 11 and 12 lunar rocks and from chondritic meteorites were measured from 300 to 1100K. Collectively the lunar samples represent all three of the major NASA classifications of lunar surface rocks. Of general interest is the observation that the conductivities of the lunar samples are much larger than the values which have previously been used in theoretical discussions of lunar phenomena. It is also found that the conductivity at 300K, (300), is extremely sensitive to the thermal history of the sample for both lunar and meteoritic material. Magnetic measurements are presented to help characterize the changes which occur upon heating.Principal Investigator - Apollo Lunar Science Program, Geophysics Research Laboratory, University of Tokyo, Japan.  相似文献   

8.
Abstract— The hypothesis of a lunar cataclysmic cratering episode between 3.8 and 3.9 Gyr ago lacks proof. Its strongest form proposes no cratering before about 4.0 Gyr, followed by catastrophic formation of most lunar craters and basins in >200 Myr. The premise that “zero impact melts implies zero impacts” is disproved by data from asteroids, on which early collisions clearly occurred, but from which early impact melts are scarce. Plausible cataclysm models imply that any cataclysm should have affected the whole inner solar system, but among available lunar and asteroid impact melt and impact age resetting data, a narrow, strong 3.8–3.9 Gyr spike in ages is seen only in the region sampled by Apollo/Luna. Reported lunar meteorite data do not show the spike. Asteroid data show a broader, milder peak, spreading from about 4.2 to 3.5 Gyr. These data suggest either that the spike in Apollo impact melt ages is associated with unique lunar front side events, or that the lunar meteorites data represent different kinds of events than the Apollo/Luna data. Here, we develop an alternate “megaregolith evolution” hypothesis to explain these data. In this hypothesis, early impact melts are absent not because there were no impacts, but because the high rate of early impacts led to their pulverization. The model estimates survival halflives of most lunar impact melts prior to 4.1 Gyr at >100 Myr. After a certain time, Tcritical ?4.0 Gyr, impact melts began to survive to the present. The age distribution differences among impact melts and plutonic rocks are controlled by, and hold clues to, the history of regolith evolution and the relative depths of sequestration of impact melts versus plutonic rocks, both among lunar and asteroidal samples. Both the “zero cratering, then cataclysm” hypothesis and the “megaregolith evolution” hypothesis require further testing, especially with lunar meteorite impact melt studies.  相似文献   

9.
The nature of the ancient magnetic field of the Moon, in which lunar rocks acquired their remanent magnetism, has emerged as an important potential source of evidence, if somewhat controversial, for a lunar core which at a period in the Moon's history was the source of the magnetic field. Many of the lunar rocks possess a stable, primary remanence (NRM) with characteristics consistent with and indicative of thermo-remanent magnetization, acquired when the rocks cooled in an ambient magnetic field. Also present are secondary components of magnetization, one type of which appears to have been acquired between collection on the Moon and reception in the laboratory and others which were apparently acquired on the Moon.An important question to be answered is whether meteorite impacts play any part in lunar magnetism, either in modifying pre-existing magnetizations or by imparting a shock remanent magnetism (SRM) in a transient magnetic field associated with the impact. With current knowledge, SRM, in either a global lunar magnetic field of a transient field, and TRM cannot be distinguished, and in the paper the secondary magnetization characteristic of lunar rocks are examined to investigate whether their nature favours the presence of a permanent lunar magnetic field or whether they are consistent with an origin as a transient field-generated SRM.Besides terrestrial processes of secondary magnetization, such as viscous, chemical and partial thermoremanent magnetization, possible processes peculiar to the Moon are discussed and their likely importance assessed in relation to lunar sample history. The nature of the secondary magnetizations appear to be best explained on the assumption that they are due to one or more of the processes that require an ambient lunar field, namely viscous, partial thermoremanent and shock magnetization. When associated with other types of evidence obtained from lunar magnetism studies, investigations of lunar sample remanent magnetism now favours the existence of an ancient lunar magnetic field.  相似文献   

10.
A single fragment from an Apollo 16 soil appears to be a soil agglutinate that has experienced thermal metamorphism. Its texture is similar to that observed in many of the samples of recrystallized polymict breccias collected in the lunar highlands. Debris blankets, consisting largely of mineral and lithic clasts and derived from highland bedrock by major impacts, are less likely than agglutinate-rich soil from the highland megaregolith to be the progenitor of this class of recrystallized rocks.  相似文献   

11.
Terrain classification is one of the critical steps used in lunar geomorphologic analysis and landing site selection. Most of the published works have focused on a Digital Elevation Model(DEM) to distinguish different regions of lunar terrain.This paper presents an algorithm that can be applied to lunar CCD images by blocking and clustering according to image features, which can accurately distinguish between lunar highland and lunar mare. The new algorithm, compared with the traditional algorithm, can improve classification accuracy. The new algorithm incorporates two new features and one Tamura texture feature. The new features are generating an enhanced image histogram and modeling the properties of light reflection, which can represent the geological characteristics based on CCD gray level images. These features are applied to identify texture in order to perform image clustering and segmentation by a weighted Euclidean distance to distinguish between lunar mare and lunar highlands.The new algorithm has been tested on Chang'e-1 CCD data and the testing result has been compared with geological data published by the U.S. Geological Survey. The result has shown that the algorithm can effectively distinguish the lunar mare from highlands in CCD images. The overall accuracy of the proposed algorithm is satisfactory, and the Kappa coefficient is 0.802, which is higher than the result of combining the DEM with CCD images.  相似文献   

12.
Recent studies geared toward understanding the volatile abundances of the lunar interior have focused on the volatile‐bearing accessory mineral apatite. Translating measurements of volatile abundances in lunar apatite into the volatile inventory of the silicate melts from which they crystallized, and ultimately of the mantle source regions of lunar magmas, however, has proved more difficult than initially thought. In this contribution, we report a detailed characterization of mesostasis regions in four Apollo mare basalts (10044, 12064, 15058, and 70035) in order to ascertain the compositions of the melts from which apatite crystallized. The texture, modal mineralogy, and reconstructed bulk composition of these mesostasis regions vary greatly within and between samples. There is no clear relationship between bulk‐rock basaltic composition and that of bulk‐mesostasis regions, indicating that bulk‐rock composition may have little influence on mesostasis compositions. The development of individual melt pockets, combined with the occurrence of silicate liquid immiscibility, exerts greater control on the composition and texture of mesostasis regions. In general, the reconstructed late‐stage lunar melts have roughly andesitic to dacitic compositions with low alkali contents, displaying much higher SiO2 abundances than the bulk compositions of their host magmatic rocks. Relevant partition coefficients for apatite‐melt volatile partitioning under lunar conditions should, therefore, be derived from experiments conducted using intermediate compositions instead of compositions representing mare basalts.  相似文献   

13.
The Tenoumer impact structure is a small, well‐preserved crater within Archean to Paleoproterozoic amphibolite, gneiss, and granite of the Reguibat Shield, north‐central Mauritania. The structure is surrounded by a thin ejecta blanket of crystalline blocks (granitic gneiss, granite, and amphibolite) and impact‐melt rocks. Evidence of shock metamorphism of quartz, most notably planar deformation features (PDFs), occurs exclusively in granitic clasts entrained within small bodies of polymict, glass‐rich breccia. Impact‐related deformation features in oligoclase and microcline grains, on the other hand, occur both within clasts in melt‐breccia deposits, where they co‐occur with quartz PDFs, and also within melt‐free crystalline ejecta, in the absence of co‐occurring quartz PDFs. Feldspar deformation features include multiple orientations of PDFs, enhanced optical relief of grain components, selective disordering of alternate twins, inclined lamellae within alternate twins, and combinations of these individual textures. The distribution of shock features in quartz and feldspar suggests that deformation textures within feldspar can record a wide range of average pressures, starting below that required for shock deformation of quartz. We suggest that experimental analysis of feldspar behavior, combined with detailed mapping of shock metamorphism of feldspar in natural systems, may provide critical data to constrain energy dissipation within impact regimes that experienced low average shock pressures.  相似文献   

14.
Abstract— An important and poorly understood group of rocks found in the ancient lunar highlands is called “feldspathic granulitic impactites.” Rocks of the granulite suite occur at most of the Apollo highlands sites as hand samples, rake samples, clasts in breccias, and soil fragments. Most lunar granulites contain 70–80% modal plagioclase, but they can range from anorthosite to troctolite and norite. Previous studies have led to different interpretations for the thermal history of these rocks, including formation as igneous plutons, long-duration metamorphism at high temperatures, and short-duration metamorphism at low temperatures. This paper reports on a study of 24 polished thin sections of lunar granulites from the Apollo 15, 16, and 17 missions. We identify three different textural types of granulitic breccias: poikilitic, granoblastic, and poikilitic-granoblastic breccias. These breccias have similar equilibration temperatures (1100 ± 50 °C), as well as common compositions. Crystal size distributions in two granoblastic breccias reveal that Ostwald ripening took place during metamorphism. Solid-state grain growth and diffusion calculations indicate relatively rapid cooling during metamorphism (0.5 to 50 °C/year), and thermal modeling shows that they cooled at relatively shallow depths (<200 m). In contrast, we conclude that the poikilitic rocks formed by impact melting, whereas the poikilitic-granoblastic rocks were metamorphosed and may have partially melted. These results indicate formation of lunar granulites in relatively small craters (30–90 km in diameter), physically associated with the impact-melt breccia pile, and possibly from fine-grained fragmental precursor lithologies.  相似文献   

15.
Reflectance Spectral Characteristics of Lunar Surface Materials   总被引:2,自引:0,他引:2  
Based on a comprehensive analysis of the mineral composition of major lunar rocks (highland anorthosite, lunar mare basalt and KREEP rock), we investigate the reflectance spectral characteristics of the lunar rock-forming minerals, including feldspar, pyroxene and olivine. The affecting factors, the variation of the intensity of solar radiation with wavelength and the reflectance spectra of the lunar rocks are studied. We also calculate the reflectivity of lunar mare basalt and highland anorthosite at 300 nm, 415 nm, 750 nm, 900 nm, 950 nm and 1000 nm. It is considered that the difference in composition between lunar mare basalt and highland anorthosite is so large that separate analyses are needed in the study of the reflectivity of lunar surface materials in the two regions covered by mare basalt and highland anorthosite, and especially in the region with high Th contents, which may be the KREEP-distributed region.  相似文献   

16.
Abstract The ages of a number of small fragments of lunar granophyre have been determined by the in situ U-Th-Pb isotopic analysis of zircon using a sensitive high mass-resolution ion microprobe (SHRIMP I). The zircon from lunar granophyre is characterized by consistently high U and Th contents (most 200–500 ppm and 100–300 ppm, respectively) compared to zircon from mafic lunar rocks. Some fragments of lunar granophyre are found to be as old as 4.32 Ga, supporting other evidence that the original lunar magma ocean crystallized completely within ~200 Ma of the formation of the Moon itself. Other fragments are as young as 3.88 Ga, which is much later than the time of formation of most of the lunar crust. The older lunar granophyres have rare-earth-element (REE) patterns that are similar to lunar KREEP, whilst the younger granophyres have bow-shaped REE patterns that feature a greater relative enrichment in the heavy REE. The wide range of ages of numerous lunar zircons, lunar granophyres and other rocks indicates that zircon-forming magmatism in the lunar highlands was most active prior to 4.3 Ga but continuous until at least 3.88 Ga. The U-Pb isotopic composition of much lunar zircon is near concordant, but the effects of isotopic disturbance as late as ~1.0 Ga are observed in some zircon, both within granophyre fragments recrystallized by reheating and within fragments in which the original delicate silica-K-feldspar granophyric intergrowth is well preserved. It is therefore essential to make multiple analyses of individual zircon grains, and preferably analyses of suites of zircons from lunar igneous rocks if they are to be dated reliably by the U-Pb method. It is possible that some of the younger lunar granophyres are the product of large-scale silicate-liquid immiscibility within late-stage differentiates, but this remains unproven until remnants of demonstrably cogenetic, Fe-rich, immiscible liquid are positively identified.  相似文献   

17.
Abstract— Impact‐metamorphosed CaCO3‐bearing sandstones at the Haughton structure have been divided into 6 classes, based to a large extent on a previous classification developed for sandstones at Meteor Crater. Class 1a sandstones (<3 GPa) display crude shatter cones, but no other petrographic indications of shock. At pressures of 3 to 5.5 GPa (class 1b), porosity is destroyed and well‐developed shatter cones occur. Class 2 rocks display planar deformation features (PDFs) and are characterized by a “jigsaw” texture produced by rotation and shear at quartz grain boundaries. Calcite shows an increase in the density of mechanical twins and undergoes micro‐brecciation in class 1 and 2 sandstones. Class 3 samples display multiple sets of PDFs and widespread development of diaplectic glass, toasted quartz, and symplectic intergrowths of quartz, diaplectic glass, and coesite. Textural evidence, such as the intermingling of silicate glasses and calcite and the presence of flow textures, indicates that calcite in class 3 sandstones has undergone melting. This constrains the onset of melting of calcite in the Haughton sandstones to > 10 < 20 GPa. At higher pressures, the original texture of the sandstone is lost, which is associated with major development of vesicular SiO2 glass or lechatelierite. Class 5 rocks (>30 GPa) consist almost entirely of lechatelierite. A new class of shocked sandstones (class 6) consists of SiO2‐rich melt that recrystallized to microcrystalline quartz. Calcite within class 4 to 6 sandstones also underwent melting and is preserved as globules and euhedral crystals within SiO2 phases, demonstrating the importance of impact melting, and not decomposition, in these CaCO3‐bearing sandstones.  相似文献   

18.
The lunar regolith breccia Dhofar 1769, which was found in 2012 as a single 125 g piece in the Zufar desert area of Oman, contains a relatively large, dark-colored impact melt breccia embedded in a fine-grained clastic matrix. The internal texture of the fragment indicates the repeated melt breccia formation on the lunar surface, their repeated brecciation, and mixing in second, third, and fourth generations of brecciated rock types. The chemical and mineralogical data reveal the incorporation of a feldspar-rich subophitic crystalline melt within a feldspar-rich microporphyritic crystalline melt breccia. This lithic paragenesis itself is embedded within a mafic, crystalline melt breccia. The entire breccia with the three different impact melts has been finally incorporated into the whole rock breccia. The three impact melts are mixtures of different source rocks and impact projectiles, based on the obtained minor and trace element compositions (in particular of Ni and the rare earth elements [REE]) of the impact melt lithologies. For all processes of impact melt formation, additional steps of their brecciation and re-lithification require a minimum number of seven impact processes.  相似文献   

19.
Abstract— We survey the magnetic fields of lunar multi‐ring impact basins using data from the electron reflectometer instrument on the Lunar Prospector spacecraft. As for smaller lunar craters, the primary signature is a magnetic low that extends to ?1.5–2 basin radii, suggesting shock demagnetization of relatively soft crustal magnetization. A secondary signature, as for large terrestrial basins, is the presence of central magnetic anomalies, which may be due to thermal remanence in impact melt rocks and/or shock remanence in the central uplift. The radial extent of the anomalies may argue for the former possibility, but the latter or a combination of the two are also possible. Central anomaly fields are absent for the oldest pre‐Nectarian basins, increase to a peak in early Nectarian basins, and decrease to a low level for Imbrian basins. If basin‐associated anomalies provide a good indication of ambient magnetic fields when the basins formed, this suggests the existence of a “magnetic era” (possibly due to a lunar core dynamo) similar to that implied by paleointensity results from returned lunar samples. However, the central basin anomalies suggest that the fields peaked in early Nectarian times and were low in Imbrian times, while samples provide evidence for high fields in Nectarian and early Imbrian times.  相似文献   

20.
A human return to the Moon will require that astronauts are well equipped with instrumentation to aid their investigations during geological field work. Two instruments are described in detail. The first is a portable X-ray Spectrometer, which can provide rapid geochemical analyses of rocks and soils, identify lunar resources and aid selection of samples for return to Earth. The second instrument is the Geological and Radiation environment package (GEORAD). This is an instrument package, mounted on a rover, to perform in-situ measurements on the lunar surface. It can be used for bulk geochemical measurements of rocks and soils (particularly identifying KREEP-enriched rocks), prospect for ice in shadowed areas of craters at the poles and characterise the lunar radiation environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号